//===- CallGraphSort.cpp --------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// Implementation of Call-Chain Clustering from: Optimizing Function Placement /// for Large-Scale Data-Center Applications /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf /// /// The goal of this algorithm is to improve runtime performance of the final /// executable by arranging code sections such that page table and i-cache /// misses are minimized. /// /// Definitions: /// * Cluster /// * An ordered list of input sections which are layed out as a unit. At the /// beginning of the algorithm each input section has its own cluster and /// the weight of the cluster is the sum of the weight of all incomming /// edges. /// * Call-Chain Clustering (C³) Heuristic /// * Defines when and how clusters are combined. Pick the highest weighted /// input section then add it to its most likely predecessor if it wouldn't /// penalize it too much. /// * Density /// * The weight of the cluster divided by the size of the cluster. This is a /// proxy for the ammount of execution time spent per byte of the cluster. /// /// It does so given a call graph profile by the following: /// * Build a weighted call graph from the call graph profile /// * Sort input sections by weight /// * For each input section starting with the highest weight /// * Find its most likely predecessor cluster /// * Check if the combined cluster would be too large, or would have too low /// a density. /// * If not, then combine the clusters. /// * Sort non-empty clusters by density /// //===----------------------------------------------------------------------===// #include "CallGraphSort.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" using namespace llvm; using namespace lld; using namespace lld::elf; namespace { struct Edge { int From; uint64_t Weight; }; struct Cluster { Cluster(int Sec, size_t S) : Sections{Sec}, Size(S) {} double getDensity() const { if (Size == 0) return 0; return double(Weight) / double(Size); } std::vector Sections; size_t Size = 0; uint64_t Weight = 0; uint64_t InitialWeight = 0; Edge BestPred = {-1, 0}; }; class CallGraphSort { public: CallGraphSort(); DenseMap run(); private: std::vector Clusters; std::vector Sections; void groupClusters(); }; // Maximum ammount the combined cluster density can be worse than the original // cluster to consider merging. constexpr int MAX_DENSITY_DEGRADATION = 8; // Maximum cluster size in bytes. constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; } // end anonymous namespace typedef std::pair SectionPair; // Take the edge list in Config->CallGraphProfile, resolve symbol names to // Symbols, and generate a graph between InputSections with the provided // weights. CallGraphSort::CallGraphSort() { MapVector &Profile = Config->CallGraphProfile; DenseMap SecToCluster; auto GetOrCreateNode = [&](const InputSectionBase *IS) -> int { auto Res = SecToCluster.insert(std::make_pair(IS, Clusters.size())); if (Res.second) { Sections.push_back(IS); Clusters.emplace_back(Clusters.size(), IS->getSize()); } return Res.first->second; }; // Create the graph. for (std::pair &C : Profile) { const auto *FromSB = cast(C.first.first->Repl); const auto *ToSB = cast(C.first.second->Repl); uint64_t Weight = C.second; // Ignore edges between input sections belonging to different output // sections. This is done because otherwise we would end up with clusters // containing input sections that can't actually be placed adjacently in the // output. This messes with the cluster size and density calculations. We // would also end up moving input sections in other output sections without // moving them closer to what calls them. if (FromSB->getOutputSection() != ToSB->getOutputSection()) continue; int From = GetOrCreateNode(FromSB); int To = GetOrCreateNode(ToSB); Clusters[To].Weight += Weight; if (From == To) continue; // Remember the best edge. Cluster &ToC = Clusters[To]; if (ToC.BestPred.From == -1 || ToC.BestPred.Weight < Weight) { ToC.BestPred.From = From; ToC.BestPred.Weight = Weight; } } for (Cluster &C : Clusters) C.InitialWeight = C.Weight; } // It's bad to merge clusters which would degrade the density too much. static bool isNewDensityBad(Cluster &A, Cluster &B) { double NewDensity = double(A.Weight + B.Weight) / double(A.Size + B.Size); return NewDensity < A.getDensity() / MAX_DENSITY_DEGRADATION; } static void mergeClusters(Cluster &Into, Cluster &From) { Into.Sections.insert(Into.Sections.end(), From.Sections.begin(), From.Sections.end()); Into.Size += From.Size; Into.Weight += From.Weight; From.Sections.clear(); From.Size = 0; From.Weight = 0; } // Group InputSections into clusters using the Call-Chain Clustering heuristic // then sort the clusters by density. void CallGraphSort::groupClusters() { std::vector SortedSecs(Clusters.size()); std::vector SecToCluster(Clusters.size()); for (size_t I = 0; I < Clusters.size(); ++I) { SortedSecs[I] = I; SecToCluster[I] = &Clusters[I]; } std::stable_sort(SortedSecs.begin(), SortedSecs.end(), [&](int A, int B) { return Clusters[B].getDensity() < Clusters[A].getDensity(); }); for (int SI : SortedSecs) { // Clusters[SI] is the same as SecToClusters[SI] here because it has not // been merged into another cluster yet. Cluster &C = Clusters[SI]; // Don't consider merging if the edge is unlikely. if (C.BestPred.From == -1 || C.BestPred.Weight * 10 <= C.InitialWeight) continue; Cluster *PredC = SecToCluster[C.BestPred.From]; if (PredC == &C) continue; if (C.Size + PredC->Size > MAX_CLUSTER_SIZE) continue; if (isNewDensityBad(*PredC, C)) continue; // NOTE: Consider using a disjoint-set to track section -> cluster mapping // if this is ever slow. for (int SI : C.Sections) SecToCluster[SI] = PredC; mergeClusters(*PredC, C); } // Remove empty or dead nodes. Invalidates all cluster indices. llvm::erase_if(Clusters, [](const Cluster &C) { return C.Size == 0 || C.Sections.empty(); }); // Sort by density. std::stable_sort(Clusters.begin(), Clusters.end(), [](const Cluster &A, const Cluster &B) { return A.getDensity() > B.getDensity(); }); } DenseMap CallGraphSort::run() { groupClusters(); // Generate order. DenseMap OrderMap; ssize_t CurOrder = 1; for (const Cluster &C : Clusters) for (int SecIndex : C.Sections) OrderMap[Sections[SecIndex]] = CurOrder++; return OrderMap; } // Sort sections by the profile data provided by -callgraph-profile-file // // This first builds a call graph based on the profile data then merges sections // according to the C³ huristic. All clusters are then sorted by a density // metric to further improve locality. DenseMap elf::computeCallGraphProfileOrder() { return CallGraphSort().run(); }