//===- EhFrame.cpp -------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // .eh_frame section contains information on how to unwind the stack when // an exception is thrown. The section consists of sequence of CIE and FDE // records. The linker needs to merge CIEs and associate FDEs to CIEs. // That means the linker has to understand the format of the section. // // This file contains a few utility functions to read .eh_frame contents. // //===----------------------------------------------------------------------===// #include "EhFrame.h" #include "Error.h" #include "InputSection.h" #include "Relocations.h" #include "Strings.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::ELF; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; namespace { template class EhReader { public: EhReader(InputSectionBase *S, ArrayRef D) : IS(S), D(D) {} size_t readEhRecordSize(); uint8_t getFdeEncoding(); private: template void failOn(const P *Loc, const Twine &Msg) { fatal("corrupted .eh_frame: " + Msg + "\n>>> defined in " + IS->getObjMsg((const uint8_t *)Loc - IS->Data.data())); } uint8_t readByte(); void skipBytes(size_t Count); StringRef readString(); void skipLeb128(); void skipAugP(); InputSectionBase *IS; ArrayRef D; }; } template size_t elf::readEhRecordSize(InputSectionBase *S, size_t Off) { return EhReader(S, S->Data.slice(Off)).readEhRecordSize(); } // .eh_frame section is a sequence of records. Each record starts with // a 4 byte length field. This function reads the length. template size_t EhReader::readEhRecordSize() { const endianness E = ELFT::TargetEndianness; if (D.size() < 4) failOn(D.data(), "CIE/FDE too small"); // First 4 bytes of CIE/FDE is the size of the record. // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, // but we do not support that format yet. uint64_t V = read32(D.data()); if (V == UINT32_MAX) failOn(D.data(), "CIE/FDE too large"); uint64_t Size = V + 4; if (Size > D.size()) failOn(D.data(), "CIE/FDE ends past the end of the section"); return Size; } // Read a byte and advance D by one byte. template uint8_t EhReader::readByte() { if (D.empty()) failOn(D.data(), "unexpected end of CIE"); uint8_t B = D.front(); D = D.slice(1); return B; } template void EhReader::skipBytes(size_t Count) { if (D.size() < Count) failOn(D.data(), "CIE is too small"); D = D.slice(Count); } // Read a null-terminated string. template StringRef EhReader::readString() { const uint8_t *End = std::find(D.begin(), D.end(), '\0'); if (End == D.end()) failOn(D.data(), "corrupted CIE (failed to read string)"); StringRef S = toStringRef(D.slice(0, End - D.begin())); D = D.slice(S.size() + 1); return S; } // Skip an integer encoded in the LEB128 format. // Actual number is not of interest because only the runtime needs it. // But we need to be at least able to skip it so that we can read // the field that follows a LEB128 number. template void EhReader::skipLeb128() { const uint8_t *ErrPos = D.data(); while (!D.empty()) { uint8_t Val = D.front(); D = D.slice(1); if ((Val & 0x80) == 0) return; } failOn(ErrPos, "corrupted CIE (failed to read LEB128)"); } static size_t getAugPSize(unsigned Enc) { switch (Enc & 0x0f) { case DW_EH_PE_absptr: case DW_EH_PE_signed: return Config->Wordsize; case DW_EH_PE_udata2: case DW_EH_PE_sdata2: return 2; case DW_EH_PE_udata4: case DW_EH_PE_sdata4: return 4; case DW_EH_PE_udata8: case DW_EH_PE_sdata8: return 8; } return 0; } template void EhReader::skipAugP() { uint8_t Enc = readByte(); if ((Enc & 0xf0) == DW_EH_PE_aligned) failOn(D.data() - 1, "DW_EH_PE_aligned encoding is not supported"); size_t Size = getAugPSize(Enc); if (Size == 0) failOn(D.data() - 1, "unknown FDE encoding"); if (Size >= D.size()) failOn(D.data() - 1, "corrupted CIE"); D = D.slice(Size); } template uint8_t elf::getFdeEncoding(EhSectionPiece *P) { auto *IS = static_cast(P->ID); return EhReader(IS, P->data()).getFdeEncoding(); } template uint8_t EhReader::getFdeEncoding() { skipBytes(8); int Version = readByte(); if (Version != 1 && Version != 3) failOn(D.data() - 1, "FDE version 1 or 3 expected, but got " + Twine(Version)); StringRef Aug = readString(); // Skip code and data alignment factors. skipLeb128(); skipLeb128(); // Skip the return address register. In CIE version 1 this is a single // byte. In CIE version 3 this is an unsigned LEB128. if (Version == 1) readByte(); else skipLeb128(); // We only care about an 'R' value, but other records may precede an 'R' // record. Unfortunately records are not in TLV (type-length-value) format, // so we need to teach the linker how to skip records for each type. for (char C : Aug) { if (C == 'R') return readByte(); if (C == 'z') { skipLeb128(); continue; } if (C == 'P') { skipAugP(); continue; } if (C == 'L') { readByte(); continue; } failOn(Aug.data(), "unknown .eh_frame augmentation string: " + Aug); } return DW_EH_PE_absptr; } template size_t elf::readEhRecordSize(InputSectionBase *S, size_t Off); template size_t elf::readEhRecordSize(InputSectionBase *S, size_t Off); template size_t elf::readEhRecordSize(InputSectionBase *S, size_t Off); template size_t elf::readEhRecordSize(InputSectionBase *S, size_t Off); template uint8_t elf::getFdeEncoding(EhSectionPiece *P); template uint8_t elf::getFdeEncoding(EhSectionPiece *P); template uint8_t elf::getFdeEncoding(EhSectionPiece *P); template uint8_t elf::getFdeEncoding(EhSectionPiece *P);