//===- InputSection.cpp ---------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "InputSection.h" #include "Config.h" #include "EhFrame.h" #include "InputFiles.h" #include "LinkerScript.h" #include "OutputSections.h" #include "Relocations.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "llvm/Object/Decompressor.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Compression.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Path.h" #include "llvm/Support/Threading.h" #include "llvm/Support/xxhash.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace llvm::sys; using namespace lld; using namespace lld::elf; std::vector elf::InputSections; // Returns a string to construct an error message. std::string lld::toString(const InputSectionBase *Sec) { return (toString(Sec->File) + ":(" + Sec->Name + ")").str(); } DenseMap elf::buildSectionOrder() { DenseMap SectionOrder; if (Config->SymbolOrderingFile.empty()) return SectionOrder; // Build a map from symbols to their priorities. Symbols that didn't // appear in the symbol ordering file have the lowest priority 0. // All explicitly mentioned symbols have negative (higher) priorities. DenseMap SymbolOrder; int Priority = -Config->SymbolOrderingFile.size(); for (StringRef S : Config->SymbolOrderingFile) SymbolOrder.insert({S, Priority++}); // Build a map from sections to their priorities. for (InputFile *File : ObjectFiles) { for (Symbol *Sym : File->getSymbols()) { auto *D = dyn_cast(Sym); if (!D || !D->Section) continue; int &Priority = SectionOrder[D->Section]; Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); } } return SectionOrder; } template static ArrayRef getSectionContents(ObjFile *File, const typename ELFT::Shdr *Hdr) { if (!File || Hdr->sh_type == SHT_NOBITS) return makeArrayRef(nullptr, Hdr->sh_size); return check(File->getObj().getSectionContents(Hdr)); } InputSectionBase::InputSectionBase(InputFile *File, uint64_t Flags, uint32_t Type, uint64_t Entsize, uint32_t Link, uint32_t Info, uint32_t Alignment, ArrayRef Data, StringRef Name, Kind SectionKind) : SectionBase(SectionKind, Name, Flags, Entsize, Alignment, Type, Info, Link), File(File), Data(Data) { NumRelocations = 0; AreRelocsRela = false; // The ELF spec states that a value of 0 means the section has // no alignment constraits. uint32_t V = std::max(Alignment, 1); if (!isPowerOf2_64(V)) fatal(toString(File) + ": section sh_addralign is not a power of 2"); this->Alignment = V; } // Drop SHF_GROUP bit unless we are producing a re-linkable object file. // SHF_GROUP is a marker that a section belongs to some comdat group. // That flag doesn't make sense in an executable. static uint64_t getFlags(uint64_t Flags) { Flags &= ~(uint64_t)SHF_INFO_LINK; if (!Config->Relocatable) Flags &= ~(uint64_t)SHF_GROUP; return Flags; } // GNU assembler 2.24 and LLVM 4.0.0's MC (the newest release as of // March 2017) fail to infer section types for sections starting with // ".init_array." or ".fini_array.". They set SHT_PROGBITS instead of // SHF_INIT_ARRAY. As a result, the following assembler directive // creates ".init_array.100" with SHT_PROGBITS, for example. // // .section .init_array.100, "aw" // // This function forces SHT_{INIT,FINI}_ARRAY so that we can handle // incorrect inputs as if they were correct from the beginning. static uint64_t getType(uint64_t Type, StringRef Name) { if (Type == SHT_PROGBITS && Name.startswith(".init_array.")) return SHT_INIT_ARRAY; if (Type == SHT_PROGBITS && Name.startswith(".fini_array.")) return SHT_FINI_ARRAY; return Type; } template InputSectionBase::InputSectionBase(ObjFile *File, const typename ELFT::Shdr *Hdr, StringRef Name, Kind SectionKind) : InputSectionBase(File, getFlags(Hdr->sh_flags), getType(Hdr->sh_type, Name), Hdr->sh_entsize, Hdr->sh_link, Hdr->sh_info, Hdr->sh_addralign, getSectionContents(File, Hdr), Name, SectionKind) { // We reject object files having insanely large alignments even though // they are allowed by the spec. I think 4GB is a reasonable limitation. // We might want to relax this in the future. if (Hdr->sh_addralign > UINT32_MAX) fatal(toString(File) + ": section sh_addralign is too large"); } size_t InputSectionBase::getSize() const { if (auto *S = dyn_cast(this)) return S->getSize(); return Data.size(); } uint64_t InputSectionBase::getOffsetInFile() const { const uint8_t *FileStart = (const uint8_t *)File->MB.getBufferStart(); const uint8_t *SecStart = Data.begin(); return SecStart - FileStart; } uint64_t SectionBase::getOffset(uint64_t Offset) const { switch (kind()) { case Output: { auto *OS = cast(this); // For output sections we treat offset -1 as the end of the section. return Offset == uint64_t(-1) ? OS->Size : Offset; } case Regular: return cast(this)->OutSecOff + Offset; case Synthetic: { auto *IS = cast(this); // For synthetic sections we treat offset -1 as the end of the section. return IS->OutSecOff + (Offset == uint64_t(-1) ? IS->getSize() : Offset); } case EHFrame: // The file crtbeginT.o has relocations pointing to the start of an empty // .eh_frame that is known to be the first in the link. It does that to // identify the start of the output .eh_frame. return Offset; case Merge: const MergeInputSection *MS = cast(this); if (InputSection *IS = MS->getParent()) return IS->OutSecOff + MS->getOffset(Offset); return MS->getOffset(Offset); } llvm_unreachable("invalid section kind"); } OutputSection *SectionBase::getOutputSection() { InputSection *Sec; if (auto *IS = dyn_cast(this)) return IS->getParent(); else if (auto *MS = dyn_cast(this)) Sec = MS->getParent(); else if (auto *EH = dyn_cast(this)) Sec = EH->getParent(); else return cast(this); return Sec ? Sec->getParent() : nullptr; } // Uncompress section contents if required. Note that this function // is called from parallelForEach, so it must be thread-safe. void InputSectionBase::maybeUncompress() { if (UncompressBuf || !Decompressor::isCompressedELFSection(Flags, Name)) return; Decompressor Dec = check(Decompressor::create(Name, toStringRef(Data), Config->IsLE, Config->Is64)); size_t Size = Dec.getDecompressedSize(); UncompressBuf.reset(new char[Size]()); if (Error E = Dec.decompress({UncompressBuf.get(), Size})) fatal(toString(this) + ": decompress failed: " + llvm::toString(std::move(E))); this->Data = makeArrayRef((uint8_t *)UncompressBuf.get(), Size); this->Flags &= ~(uint64_t)SHF_COMPRESSED; } InputSection *InputSectionBase::getLinkOrderDep() const { if ((Flags & SHF_LINK_ORDER) && Link != 0) { InputSectionBase *L = File->getSections()[Link]; if (auto *IS = dyn_cast(L)) return IS; error("a section with SHF_LINK_ORDER should not refer a non-regular " "section: " + toString(L)); } return nullptr; } // Returns a source location string. Used to construct an error message. template std::string InputSectionBase::getLocation(uint64_t Offset) { // We don't have file for synthetic sections. if (getFile() == nullptr) return (Config->OutputFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")") .str(); // First check if we can get desired values from debugging information. std::string LineInfo = getFile()->getLineInfo(this, Offset); if (!LineInfo.empty()) return LineInfo; // File->SourceFile contains STT_FILE symbol that contains a // source file name. If it's missing, we use an object file name. std::string SrcFile = getFile()->SourceFile; if (SrcFile.empty()) SrcFile = toString(File); // Find a function symbol that encloses a given location. for (Symbol *B : File->getSymbols()) if (auto *D = dyn_cast(B)) if (D->Section == this && D->Type == STT_FUNC) if (D->Value <= Offset && Offset < D->Value + D->Size) return SrcFile + ":(function " + toString(*D) + ")"; // If there's no symbol, print out the offset in the section. return (SrcFile + ":(" + Name + "+0x" + utohexstr(Offset) + ")").str(); } // Concatenates arguments to construct a string representing an error location. static std::string createFileLineMsg(StringRef Path, unsigned Line) { std::string Filename = path::filename(Path); std::string Lineno = ":" + std::to_string(Line); if (Filename == Path) return Filename + Lineno; return Filename + Lineno + " (" + Path.str() + Lineno + ")"; } // This function is intended to be used for constructing an error message. // The returned message looks like this: // // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) // // Returns an empty string if there's no way to get line info. template std::string InputSectionBase::getSrcMsg(const Symbol &Sym, uint64_t Offset) { // Synthetic sections don't have input files. ObjFile *File = getFile(); if (!File) return ""; // In DWARF, functions and variables are stored to different places. // First, lookup a function for a given offset. if (Optional Info = File->getDILineInfo(this, Offset)) return createFileLineMsg(Info->FileName, Info->Line); // If it failed, lookup again as a variable. if (Optional> FileLine = File->getVariableLoc(Sym.getName())) return createFileLineMsg(FileLine->first, FileLine->second); // File->SourceFile contains STT_FILE symbol, and that is a last resort. return File->SourceFile; } // Returns a filename string along with an optional section name. This // function is intended to be used for constructing an error // message. The returned message looks like this: // // path/to/foo.o:(function bar) // // or // // path/to/foo.o:(function bar) in archive path/to/bar.a std::string InputSectionBase::getObjMsg(uint64_t Off) { // Synthetic sections don't have input files. if (!File) return (":(" + Name + "+0x" + utohexstr(Off) + ")").str(); std::string Filename = File->getName(); std::string Archive; if (!File->ArchiveName.empty()) Archive = (" in archive " + File->ArchiveName).str(); // Find a symbol that encloses a given location. for (Symbol *B : File->getSymbols()) if (auto *D = dyn_cast(B)) if (D->Section == this && D->Value <= Off && Off < D->Value + D->Size) return Filename + ":(" + toString(*D) + ")" + Archive; // If there's no symbol, print out the offset in the section. return (Filename + ":(" + Name + "+0x" + utohexstr(Off) + ")" + Archive) .str(); } InputSection InputSection::Discarded(0, 0, 0, ArrayRef(), ""); InputSection::InputSection(uint64_t Flags, uint32_t Type, uint32_t Alignment, ArrayRef Data, StringRef Name, Kind K) : InputSectionBase(nullptr, Flags, Type, /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, Alignment, Data, Name, K) {} template InputSection::InputSection(ObjFile *F, const typename ELFT::Shdr *Header, StringRef Name) : InputSectionBase(F, Header, Name, InputSectionBase::Regular) {} bool InputSection::classof(const SectionBase *S) { return S->kind() == SectionBase::Regular || S->kind() == SectionBase::Synthetic; } OutputSection *InputSection::getParent() const { return cast_or_null(Parent); } // Copy SHT_GROUP section contents. Used only for the -r option. template void InputSection::copyShtGroup(uint8_t *Buf) { // ELFT::Word is the 32-bit integral type in the target endianness. typedef typename ELFT::Word u32; ArrayRef From = getDataAs(); auto *To = reinterpret_cast(Buf); // The first entry is not a section number but a flag. *To++ = From[0]; // Adjust section numbers because section numbers in an input object // files are different in the output. ArrayRef Sections = this->File->getSections(); for (uint32_t Idx : From.slice(1)) *To++ = Sections[Idx]->getOutputSection()->SectionIndex; } InputSectionBase *InputSection::getRelocatedSection() { assert(this->Type == SHT_RELA || this->Type == SHT_REL); ArrayRef Sections = this->File->getSections(); return Sections[this->Info]; } // This is used for -r and --emit-relocs. We can't use memcpy to copy // relocations because we need to update symbol table offset and section index // for each relocation. So we copy relocations one by one. template void InputSection::copyRelocations(uint8_t *Buf, ArrayRef Rels) { InputSectionBase *Sec = getRelocatedSection(); for (const RelTy &Rel : Rels) { RelType Type = Rel.getType(Config->IsMips64EL); Symbol &Sym = this->getFile()->getRelocTargetSym(Rel); auto *P = reinterpret_cast(Buf); Buf += sizeof(RelTy); if (Config->IsRela) P->r_addend = getAddend(Rel); // Output section VA is zero for -r, so r_offset is an offset within the // section, but for --emit-relocs it is an virtual address. P->r_offset = Sec->getOutputSection()->Addr + Sec->getOffset(Rel.r_offset); P->setSymbolAndType(InX::SymTab->getSymbolIndex(&Sym), Type, Config->IsMips64EL); if (Sym.Type == STT_SECTION) { // We combine multiple section symbols into only one per // section. This means we have to update the addend. That is // trivial for Elf_Rela, but for Elf_Rel we have to write to the // section data. We do that by adding to the Relocation vector. // .eh_frame is horribly special and can reference discarded sections. To // avoid having to parse and recreate .eh_frame, we just replace any // relocation in it pointing to discarded sections with R_*_NONE, which // hopefully creates a frame that is ignored at runtime. auto *D = dyn_cast(&Sym); if (!D) { error("STT_SECTION symbol should be defined"); continue; } SectionBase *Section = D->Section; if (Section == &InputSection::Discarded) { P->setSymbolAndType(0, 0, false); continue; } if (Config->IsRela) { P->r_addend = Sym.getVA(getAddend(Rel)) - Section->getOutputSection()->Addr; } else if (Config->Relocatable) { const uint8_t *BufLoc = Sec->Data.begin() + Rel.r_offset; Sec->Relocations.push_back({R_ABS, Type, Rel.r_offset, Target->getImplicitAddend(BufLoc, Type), &Sym}); } } } } // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak // references specially. The general rule is that the value of the symbol in // this context is the address of the place P. A further special case is that // branch relocations to an undefined weak reference resolve to the next // instruction. static uint32_t getARMUndefinedRelativeWeakVA(RelType Type, uint32_t A, uint32_t P) { switch (Type) { // Unresolved branch relocations to weak references resolve to next // instruction, this will be either 2 or 4 bytes on from P. case R_ARM_THM_JUMP11: return P + 2 + A; case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_PREL31: case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: return P + 4 + A; case R_ARM_THM_CALL: // We don't want an interworking BLX to ARM return P + 5 + A; // Unresolved non branch pc-relative relocations // R_ARM_TARGET2 which can be resolved relatively is not present as it never // targets a weak-reference. case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_REL32: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: return P + A; } llvm_unreachable("ARM pc-relative relocation expected\n"); } // The comment above getARMUndefinedRelativeWeakVA applies to this function. static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t Type, uint64_t A, uint64_t P) { switch (Type) { // Unresolved branch relocations to weak references resolve to next // instruction, this is 4 bytes on from P. case R_AARCH64_CALL26: case R_AARCH64_CONDBR19: case R_AARCH64_JUMP26: case R_AARCH64_TSTBR14: return P + 4 + A; // Unresolved non branch pc-relative relocations case R_AARCH64_PREL16: case R_AARCH64_PREL32: case R_AARCH64_PREL64: case R_AARCH64_ADR_PREL_LO21: case R_AARCH64_LD_PREL_LO19: return P + A; } llvm_unreachable("AArch64 pc-relative relocation expected\n"); } // ARM SBREL relocations are of the form S + A - B where B is the static base // The ARM ABI defines base to be "addressing origin of the output segment // defining the symbol S". We defined the "addressing origin"/static base to be // the base of the PT_LOAD segment containing the Sym. // The procedure call standard only defines a Read Write Position Independent // RWPI variant so in practice we should expect the static base to be the base // of the RW segment. static uint64_t getARMStaticBase(const Symbol &Sym) { OutputSection *OS = Sym.getOutputSection(); if (!OS || !OS->PtLoad || !OS->PtLoad->FirstSec) fatal("SBREL relocation to " + Sym.getName() + " without static base"); return OS->PtLoad->FirstSec->Addr; } static uint64_t getRelocTargetVA(RelType Type, int64_t A, uint64_t P, const Symbol &Sym, RelExpr Expr) { switch (Expr) { case R_INVALID: return 0; case R_ABS: case R_RELAX_GOT_PC_NOPIC: return Sym.getVA(A); case R_ARM_SBREL: return Sym.getVA(A) - getARMStaticBase(Sym); case R_GOT: case R_RELAX_TLS_GD_TO_IE_ABS: return Sym.getGotVA() + A; case R_GOTONLY_PC: return InX::Got->getVA() + A - P; case R_GOTONLY_PC_FROM_END: return InX::Got->getVA() + A - P + InX::Got->getSize(); case R_GOTREL: return Sym.getVA(A) - InX::Got->getVA(); case R_GOTREL_FROM_END: return Sym.getVA(A) - InX::Got->getVA() - InX::Got->getSize(); case R_GOT_FROM_END: case R_RELAX_TLS_GD_TO_IE_END: return Sym.getGotOffset() + A - InX::Got->getSize(); case R_GOT_OFF: return Sym.getGotOffset() + A; case R_GOT_PAGE_PC: case R_RELAX_TLS_GD_TO_IE_PAGE_PC: return getAArch64Page(Sym.getGotVA() + A) - getAArch64Page(P); case R_GOT_PC: case R_RELAX_TLS_GD_TO_IE: return Sym.getGotVA() + A - P; case R_HINT: case R_NONE: case R_TLSDESC_CALL: llvm_unreachable("cannot relocate hint relocs"); case R_MIPS_GOTREL: return Sym.getVA(A) - InX::MipsGot->getGp(); case R_MIPS_GOT_GP: return InX::MipsGot->getGp() + A; case R_MIPS_GOT_GP_PC: { // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target // is _gp_disp symbol. In that case we should use the following // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf // microMIPS variants of these relocations use slightly different // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() // to correctly handle less-sugnificant bit of the microMIPS symbol. uint64_t V = InX::MipsGot->getGp() + A - P; if (Type == R_MIPS_LO16 || Type == R_MICROMIPS_LO16) V += 4; if (Type == R_MICROMIPS_LO16 || Type == R_MICROMIPS_HI16) V -= 1; return V; } case R_MIPS_GOT_LOCAL_PAGE: // If relocation against MIPS local symbol requires GOT entry, this entry // should be initialized by 'page address'. This address is high 16-bits // of sum the symbol's value and the addend. return InX::MipsGot->getVA() + InX::MipsGot->getPageEntryOffset(Sym, A) - InX::MipsGot->getGp(); case R_MIPS_GOT_OFF: case R_MIPS_GOT_OFF32: // In case of MIPS if a GOT relocation has non-zero addend this addend // should be applied to the GOT entry content not to the GOT entry offset. // That is why we use separate expression type. return InX::MipsGot->getVA() + InX::MipsGot->getSymEntryOffset(Sym, A) - InX::MipsGot->getGp(); case R_MIPS_TLSGD: return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + InX::MipsGot->getGlobalDynOffset(Sym) - InX::MipsGot->getGp(); case R_MIPS_TLSLD: return InX::MipsGot->getVA() + InX::MipsGot->getTlsOffset() + InX::MipsGot->getTlsIndexOff() - InX::MipsGot->getGp(); case R_PAGE_PC: case R_PLT_PAGE_PC: { uint64_t Dest; if (Sym.isUndefWeak()) Dest = getAArch64Page(A); else Dest = getAArch64Page(Sym.getVA(A)); return Dest - getAArch64Page(P); } case R_PC: { uint64_t Dest; if (Sym.isUndefWeak()) { // On ARM and AArch64 a branch to an undefined weak resolves to the // next instruction, otherwise the place. if (Config->EMachine == EM_ARM) Dest = getARMUndefinedRelativeWeakVA(Type, A, P); else if (Config->EMachine == EM_AARCH64) Dest = getAArch64UndefinedRelativeWeakVA(Type, A, P); else Dest = Sym.getVA(A); } else { Dest = Sym.getVA(A); } return Dest - P; } case R_PLT: return Sym.getPltVA() + A; case R_PLT_PC: case R_PPC_PLT_OPD: return Sym.getPltVA() + A - P; case R_PPC_OPD: { uint64_t SymVA = Sym.getVA(A); // If we have an undefined weak symbol, we might get here with a symbol // address of zero. That could overflow, but the code must be unreachable, // so don't bother doing anything at all. if (!SymVA) return 0; if (Out::Opd) { // If this is a local call, and we currently have the address of a // function-descriptor, get the underlying code address instead. uint64_t OpdStart = Out::Opd->Addr; uint64_t OpdEnd = OpdStart + Out::Opd->Size; bool InOpd = OpdStart <= SymVA && SymVA < OpdEnd; if (InOpd) SymVA = read64be(&Out::OpdBuf[SymVA - OpdStart]); } return SymVA - P; } case R_PPC_TOC: return getPPC64TocBase() + A; case R_RELAX_GOT_PC: return Sym.getVA(A) - P; case R_RELAX_TLS_GD_TO_LE: case R_RELAX_TLS_IE_TO_LE: case R_RELAX_TLS_LD_TO_LE: case R_TLS: // A weak undefined TLS symbol resolves to the base of the TLS // block, i.e. gets a value of zero. If we pass --gc-sections to // lld and .tbss is not referenced, it gets reclaimed and we don't // create a TLS program header. Therefore, we resolve this // statically to zero. if (Sym.isTls() && Sym.isUndefWeak()) return 0; if (Target->TcbSize) return Sym.getVA(A) + alignTo(Target->TcbSize, Out::TlsPhdr->p_align); return Sym.getVA(A) - Out::TlsPhdr->p_memsz; case R_RELAX_TLS_GD_TO_LE_NEG: case R_NEG_TLS: return Out::TlsPhdr->p_memsz - Sym.getVA(A); case R_SIZE: return A; // Sym.getSize was already folded into the addend. case R_TLSDESC: return InX::Got->getGlobalDynAddr(Sym) + A; case R_TLSDESC_PAGE: return getAArch64Page(InX::Got->getGlobalDynAddr(Sym) + A) - getAArch64Page(P); case R_TLSGD: return InX::Got->getGlobalDynOffset(Sym) + A - InX::Got->getSize(); case R_TLSGD_PC: return InX::Got->getGlobalDynAddr(Sym) + A - P; case R_TLSLD: return InX::Got->getTlsIndexOff() + A - InX::Got->getSize(); case R_TLSLD_PC: return InX::Got->getTlsIndexVA() + A - P; } llvm_unreachable("Invalid expression"); } // This function applies relocations to sections without SHF_ALLOC bit. // Such sections are never mapped to memory at runtime. Debug sections are // an example. Relocations in non-alloc sections are much easier to // handle than in allocated sections because it will never need complex // treatement such as GOT or PLT (because at runtime no one refers them). // So, we handle relocations for non-alloc sections directly in this // function as a performance optimization. template void InputSection::relocateNonAlloc(uint8_t *Buf, ArrayRef Rels) { const unsigned Bits = sizeof(typename ELFT::uint) * 8; for (const RelTy &Rel : Rels) { RelType Type = Rel.getType(Config->IsMips64EL); uint64_t Offset = getOffset(Rel.r_offset); uint8_t *BufLoc = Buf + Offset; int64_t Addend = getAddend(Rel); if (!RelTy::IsRela) Addend += Target->getImplicitAddend(BufLoc, Type); Symbol &Sym = this->getFile()->getRelocTargetSym(Rel); RelExpr Expr = Target->getRelExpr(Type, Sym, BufLoc); if (Expr == R_NONE) continue; if (Expr != R_ABS) { // GCC 8.0 or earlier have a bug that it emits R_386_GOTPC relocations // against _GLOBAL_OFFSET_TABLE for .debug_info. The bug seems to have // been fixed in 2017: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630, // but we need to keep this bug-compatible code for a while. if (Config->EMachine == EM_386 && Type == R_386_GOTPC) continue; error(this->getLocation(Offset) + ": has non-ABS relocation " + toString(Type) + " against symbol '" + toString(Sym) + "'"); return; } if (Sym.isTls() && !Out::TlsPhdr) Target->relocateOne(BufLoc, Type, 0); else Target->relocateOne(BufLoc, Type, SignExtend64(Sym.getVA(Addend))); } } template void InputSectionBase::relocate(uint8_t *Buf, uint8_t *BufEnd) { if (Flags & SHF_ALLOC) { relocateAlloc(Buf, BufEnd); return; } auto *Sec = cast(this); if (Sec->AreRelocsRela) Sec->relocateNonAlloc(Buf, Sec->template relas()); else Sec->relocateNonAlloc(Buf, Sec->template rels()); } void InputSectionBase::relocateAlloc(uint8_t *Buf, uint8_t *BufEnd) { assert(Flags & SHF_ALLOC); const unsigned Bits = Config->Wordsize * 8; for (const Relocation &Rel : Relocations) { uint64_t Offset = getOffset(Rel.Offset); uint8_t *BufLoc = Buf + Offset; RelType Type = Rel.Type; uint64_t AddrLoc = getOutputSection()->Addr + Offset; RelExpr Expr = Rel.Expr; uint64_t TargetVA = SignExtend64( getRelocTargetVA(Type, Rel.Addend, AddrLoc, *Rel.Sym, Expr), Bits); switch (Expr) { case R_RELAX_GOT_PC: case R_RELAX_GOT_PC_NOPIC: Target->relaxGot(BufLoc, TargetVA); break; case R_RELAX_TLS_IE_TO_LE: Target->relaxTlsIeToLe(BufLoc, Type, TargetVA); break; case R_RELAX_TLS_LD_TO_LE: Target->relaxTlsLdToLe(BufLoc, Type, TargetVA); break; case R_RELAX_TLS_GD_TO_LE: case R_RELAX_TLS_GD_TO_LE_NEG: Target->relaxTlsGdToLe(BufLoc, Type, TargetVA); break; case R_RELAX_TLS_GD_TO_IE: case R_RELAX_TLS_GD_TO_IE_ABS: case R_RELAX_TLS_GD_TO_IE_PAGE_PC: case R_RELAX_TLS_GD_TO_IE_END: Target->relaxTlsGdToIe(BufLoc, Type, TargetVA); break; case R_PPC_PLT_OPD: // Patch a nop (0x60000000) to a ld. if (BufLoc + 8 <= BufEnd && read32be(BufLoc + 4) == 0x60000000) write32be(BufLoc + 4, 0xe8410028); // ld %r2, 40(%r1) LLVM_FALLTHROUGH; default: Target->relocateOne(BufLoc, Type, TargetVA); break; } } } template void InputSection::writeTo(uint8_t *Buf) { if (this->Type == SHT_NOBITS) return; if (auto *S = dyn_cast(this)) { S->writeTo(Buf + OutSecOff); return; } // If -r or --emit-relocs is given, then an InputSection // may be a relocation section. if (this->Type == SHT_RELA) { copyRelocations(Buf + OutSecOff, this->template getDataAs()); return; } if (this->Type == SHT_REL) { copyRelocations(Buf + OutSecOff, this->template getDataAs()); return; } // If -r is given, we may have a SHT_GROUP section. if (this->Type == SHT_GROUP) { copyShtGroup(Buf + OutSecOff); return; } // Copy section contents from source object file to output file // and then apply relocations. memcpy(Buf + OutSecOff, Data.data(), Data.size()); uint8_t *BufEnd = Buf + OutSecOff + Data.size(); this->relocate(Buf, BufEnd); } void InputSection::replace(InputSection *Other) { this->Alignment = std::max(this->Alignment, Other->Alignment); Other->Repl = this->Repl; Other->Live = false; } template EhInputSection::EhInputSection(ObjFile *F, const typename ELFT::Shdr *Header, StringRef Name) : InputSectionBase(F, Header, Name, InputSectionBase::EHFrame) {} SyntheticSection *EhInputSection::getParent() const { return cast_or_null(Parent); } // Returns the index of the first relocation that points to a region between // Begin and Begin+Size. template static unsigned getReloc(IntTy Begin, IntTy Size, const ArrayRef &Rels, unsigned &RelocI) { // Start search from RelocI for fast access. That works because the // relocations are sorted in .eh_frame. for (unsigned N = Rels.size(); RelocI < N; ++RelocI) { const RelTy &Rel = Rels[RelocI]; if (Rel.r_offset < Begin) continue; if (Rel.r_offset < Begin + Size) return RelocI; return -1; } return -1; } // .eh_frame is a sequence of CIE or FDE records. // This function splits an input section into records and returns them. template void EhInputSection::split() { // Early exit if already split. if (!this->Pieces.empty()) return; if (this->AreRelocsRela) split(this->relas()); else split(this->rels()); } template void EhInputSection::split(ArrayRef Rels) { ArrayRef Data = this->Data; unsigned RelI = 0; for (size_t Off = 0, End = Data.size(); Off != End;) { size_t Size = readEhRecordSize(this, Off); this->Pieces.emplace_back(Off, this, Size, getReloc(Off, Size, Rels, RelI)); // The empty record is the end marker. if (Size == 4) break; Off += Size; } } static size_t findNull(StringRef S, size_t EntSize) { // Optimize the common case. if (EntSize == 1) return S.find(0); for (unsigned I = 0, N = S.size(); I != N; I += EntSize) { const char *B = S.begin() + I; if (std::all_of(B, B + EntSize, [](char C) { return C == 0; })) return I; } return StringRef::npos; } SyntheticSection *MergeInputSection::getParent() const { return cast_or_null(Parent); } // Split SHF_STRINGS section. Such section is a sequence of // null-terminated strings. void MergeInputSection::splitStrings(ArrayRef Data, size_t EntSize) { size_t Off = 0; bool IsAlloc = this->Flags & SHF_ALLOC; StringRef S = toStringRef(Data); while (!S.empty()) { size_t End = findNull(S, EntSize); if (End == StringRef::npos) fatal(toString(this) + ": string is not null terminated"); size_t Size = End + EntSize; Pieces.emplace_back(Off, xxHash64(S.substr(0, Size)), !IsAlloc); S = S.substr(Size); Off += Size; } } // Split non-SHF_STRINGS section. Such section is a sequence of // fixed size records. void MergeInputSection::splitNonStrings(ArrayRef Data, size_t EntSize) { size_t Size = Data.size(); assert((Size % EntSize) == 0); bool IsAlloc = this->Flags & SHF_ALLOC; for (size_t I = 0; I != Size; I += EntSize) Pieces.emplace_back(I, xxHash64(toStringRef(Data.slice(I, EntSize))), !IsAlloc); } template MergeInputSection::MergeInputSection(ObjFile *F, const typename ELFT::Shdr *Header, StringRef Name) : InputSectionBase(F, Header, Name, InputSectionBase::Merge) { // In order to reduce memory allocation, we assume that mergeable // sections are smaller than 4 GiB, which is not an unreasonable // assumption as of 2017. if (Data.size() > UINT32_MAX) error(toString(this) + ": section too large"); } // This function is called after we obtain a complete list of input sections // that need to be linked. This is responsible to split section contents // into small chunks for further processing. // // Note that this function is called from parallelForEach. This must be // thread-safe (i.e. no memory allocation from the pools). void MergeInputSection::splitIntoPieces() { assert(Pieces.empty()); if (this->Flags & SHF_STRINGS) splitStrings(Data, Entsize); else splitNonStrings(Data, Entsize); if (Config->GcSections && (this->Flags & SHF_ALLOC)) for (uint64_t Off : LiveOffsets) this->getSectionPiece(Off)->Live = true; } // Do binary search to get a section piece at a given input offset. SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) { auto *This = static_cast(this); return const_cast(This->getSectionPiece(Offset)); } template static It fastUpperBound(It First, It Last, const T &Value, Compare Comp) { size_t Size = std::distance(First, Last); assert(Size != 0); while (Size != 1) { size_t H = Size / 2; const It MI = First + H; Size -= H; First = Comp(Value, *MI) ? First : First + H; } return Comp(Value, *First) ? First : First + 1; } const SectionPiece *MergeInputSection::getSectionPiece(uint64_t Offset) const { if (Data.size() <= Offset) fatal(toString(this) + ": entry is past the end of the section"); // Find the element this offset points to. auto I = fastUpperBound( Pieces.begin(), Pieces.end(), Offset, [](const uint64_t &A, const SectionPiece &B) { return A < B.InputOff; }); --I; return &*I; } // Returns the offset in an output section for a given input offset. // Because contents of a mergeable section is not contiguous in output, // it is not just an addition to a base output offset. uint64_t MergeInputSection::getOffset(uint64_t Offset) const { if (!Live) return 0; // Initialize OffsetMap lazily. llvm::call_once(InitOffsetMap, [&] { OffsetMap.reserve(Pieces.size()); for (size_t I = 0; I < Pieces.size(); ++I) OffsetMap[Pieces[I].InputOff] = I; }); // Find a string starting at a given offset. auto It = OffsetMap.find(Offset); if (It != OffsetMap.end()) return Pieces[It->second].OutputOff; // If Offset is not at beginning of a section piece, it is not in the map. // In that case we need to search from the original section piece vector. const SectionPiece &Piece = *this->getSectionPiece(Offset); if (!Piece.Live) return 0; uint64_t Addend = Offset - Piece.InputOff; return Piece.OutputOff + Addend; } template InputSection::InputSection(ObjFile *, const ELF32LE::Shdr *, StringRef); template InputSection::InputSection(ObjFile *, const ELF32BE::Shdr *, StringRef); template InputSection::InputSection(ObjFile *, const ELF64LE::Shdr *, StringRef); template InputSection::InputSection(ObjFile *, const ELF64BE::Shdr *, StringRef); template std::string InputSectionBase::getLocation(uint64_t); template std::string InputSectionBase::getLocation(uint64_t); template std::string InputSectionBase::getLocation(uint64_t); template std::string InputSectionBase::getLocation(uint64_t); template std::string InputSectionBase::getSrcMsg(const Symbol &, uint64_t); template std::string InputSectionBase::getSrcMsg(const Symbol &, uint64_t); template std::string InputSectionBase::getSrcMsg(const Symbol &, uint64_t); template std::string InputSectionBase::getSrcMsg(const Symbol &, uint64_t); template void InputSection::writeTo(uint8_t *); template void InputSection::writeTo(uint8_t *); template void InputSection::writeTo(uint8_t *); template void InputSection::writeTo(uint8_t *); template MergeInputSection::MergeInputSection(ObjFile *, const ELF32LE::Shdr *, StringRef); template MergeInputSection::MergeInputSection(ObjFile *, const ELF32BE::Shdr *, StringRef); template MergeInputSection::MergeInputSection(ObjFile *, const ELF64LE::Shdr *, StringRef); template MergeInputSection::MergeInputSection(ObjFile *, const ELF64BE::Shdr *, StringRef); template EhInputSection::EhInputSection(ObjFile *, const ELF32LE::Shdr *, StringRef); template EhInputSection::EhInputSection(ObjFile *, const ELF32BE::Shdr *, StringRef); template EhInputSection::EhInputSection(ObjFile *, const ELF64LE::Shdr *, StringRef); template EhInputSection::EhInputSection(ObjFile *, const ELF64BE::Shdr *, StringRef); template void EhInputSection::split(); template void EhInputSection::split(); template void EhInputSection::split(); template void EhInputSection::split();