//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "LinkerScript.h" #include "Memory.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "Threads.h" #include "llvm/Support/Compression.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; uint8_t Out::First; OutputSection *Out::Opd; uint8_t *Out::OpdBuf; PhdrEntry *Out::TlsPhdr; OutputSection *Out::DebugInfo; OutputSection *Out::ElfHeader; OutputSection *Out::ProgramHeaders; OutputSection *Out::PreinitArray; OutputSection *Out::InitArray; OutputSection *Out::FiniArray; uint32_t OutputSection::getPhdrFlags() const { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } template void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) { Shdr->sh_entsize = Entsize; Shdr->sh_addralign = Alignment; Shdr->sh_type = Type; Shdr->sh_offset = Offset; Shdr->sh_flags = Flags; Shdr->sh_info = Info; Shdr->sh_link = Link; Shdr->sh_addr = Addr; Shdr->sh_size = Size; Shdr->sh_name = ShName; } OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags) : SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type, /*Info*/ 0, /*Link*/ 0), SectionIndex(INT_MAX) {} static bool compareByFilePosition(InputSection *A, InputSection *B) { // Synthetic doesn't have link order dependecy, stable_sort will keep it last if (A->kind() == InputSectionBase::Synthetic || B->kind() == InputSectionBase::Synthetic) return false; auto *LA = cast(A->getLinkOrderDep()); auto *LB = cast(B->getLinkOrderDep()); OutputSection *AOut = LA->OutSec; OutputSection *BOut = LB->OutSec; if (AOut != BOut) return AOut->SectionIndex < BOut->SectionIndex; return LA->OutSecOff < LB->OutSecOff; } // Compress section contents if this section contains debug info. template void OutputSection::maybeCompress() { typedef typename ELFT::Chdr Elf_Chdr; // Compress only DWARF debug sections. if (!Config->CompressDebugSections || (Flags & SHF_ALLOC) || !Name.startswith(".debug_")) return; // Create a section header. ZDebugHeader.resize(sizeof(Elf_Chdr)); auto *Hdr = reinterpret_cast(ZDebugHeader.data()); Hdr->ch_type = ELFCOMPRESS_ZLIB; Hdr->ch_size = Size; Hdr->ch_addralign = Alignment; // Write section contents to a temporary buffer and compress it. std::vector Buf(Size); writeTo(Buf.data()); if (Error E = zlib::compress(toStringRef(Buf), CompressedData)) fatal("compress failed: " + llvm::toString(std::move(E))); // Update section headers. Size = sizeof(Elf_Chdr) + CompressedData.size(); Flags |= SHF_COMPRESSED; } template void OutputSection::finalize() { if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) { std::sort(Sections.begin(), Sections.end(), compareByFilePosition); assignOffsets(); // We must preserve the link order dependency of sections with the // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We // need to translate the InputSection sh_link to the OutputSection sh_link, // all InputSections in the OutputSection have the same dependency. if (auto *D = this->Sections.front()->getLinkOrderDep()) this->Link = D->OutSec->SectionIndex; } uint32_t Type = this->Type; if (!Config->CopyRelocs || (Type != SHT_RELA && Type != SHT_REL)) return; InputSection *First = Sections[0]; if (isa(First)) return; this->Link = InX::SymTab->OutSec->SectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *S = First->getRelocatedSection(); this->Info = S->OutSec->SectionIndex; } static uint64_t updateOffset(uint64_t Off, InputSection *S) { Off = alignTo(Off, S->Alignment); S->OutSecOff = Off; return Off + S->getSize(); } void OutputSection::addSection(InputSection *S) { assert(S->Live); Sections.push_back(S); S->OutSec = this; this->updateAlignment(S->Alignment); // The actual offsets will be computed by assignAddresses. For now, use // crude approximation so that it is at least easy for other code to know the // section order. It is also used to calculate the output section size early // for compressed debug sections. this->Size = updateOffset(Size, S); // If this section contains a table of fixed-size entries, sh_entsize // holds the element size. Consequently, if this contains two or more // input sections, all of them must have the same sh_entsize. However, // you can put different types of input sections into one output // sectin by using linker scripts. I don't know what to do here. // Probably we sholuld handle that as an error. But for now we just // pick the largest sh_entsize. this->Entsize = std::max(this->Entsize, S->Entsize); } // This function is called after we sort input sections // and scan relocations to setup sections' offsets. void OutputSection::assignOffsets() { uint64_t Off = 0; for (InputSection *S : Sections) Off = updateOffset(Off, S); this->Size = Off; } void OutputSection::sort(std::function Order) { typedef std::pair Pair; auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; std::vector V; for (InputSection *S : Sections) V.push_back({Order(S), S}); std::stable_sort(V.begin(), V.end(), Comp); Sections.clear(); for (Pair &P : V) Sections.push_back(P.second); } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSectionBase *S) { return getPriority(S->Name); }); } // Returns true if S matches /Filename.?\.o$/. static bool isCrtBeginEnd(StringRef S, StringRef Filename) { if (!S.endswith(".o")) return false; S = S.drop_back(2); if (S.endswith(Filename)) return true; return !S.empty() && S.drop_back().endswith(Filename); } static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. static bool compCtors(const InputSection *A, const InputSection *B) { bool BeginA = isCrtbegin(A->File->getName()); bool BeginB = isCrtbegin(B->File->getName()); if (BeginA != BeginB) return BeginA; bool EndA = isCrtend(A->File->getName()); bool EndB = isCrtend(B->File->getName()); if (EndA != EndB) return EndB; StringRef X = A->Name; StringRef Y = B->Name; assert(X.startswith(".ctors") || X.startswith(".dtors")); assert(Y.startswith(".ctors") || Y.startswith(".dtors")); X = X.substr(6); Y = Y.substr(6); if (X.empty() && Y.empty()) return false; return X < Y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. void OutputSection::sortCtorsDtors() { std::stable_sort(Sections.begin(), Sections.end(), compCtors); } // Fill [Buf, Buf + Size) with Filler. // This is used for linker script "=fillexp" command. static void fill(uint8_t *Buf, size_t Size, uint32_t Filler) { size_t I = 0; for (; I + 4 < Size; I += 4) memcpy(Buf + I, &Filler, 4); memcpy(Buf + I, &Filler, Size - I); } uint32_t OutputSection::getFiller() { // Determine what to fill gaps between InputSections with, as specified by the // linker script. If nothing is specified and this is an executable section, // fall back to trap instructions to prevent bad diassembly and detect invalid // jumps to padding. if (Optional Filler = Script->getFiller(this)) return *Filler; if (Flags & SHF_EXECINSTR) return Target->TrapInstr; return 0; } template void OutputSection::writeTo(uint8_t *Buf) { Loc = Buf; // We may have already rendered compressed content when using // -compress-debug-sections option. Write it together with header. if (!CompressedData.empty()) { memcpy(Buf, ZDebugHeader.data(), ZDebugHeader.size()); memcpy(Buf + ZDebugHeader.size(), CompressedData.data(), CompressedData.size()); return; } // Write leading padding. uint32_t Filler = getFiller(); if (Filler) fill(Buf, Sections.empty() ? Size : Sections[0]->OutSecOff, Filler); parallelForEachN(0, Sections.size(), [=](size_t I) { InputSection *Sec = Sections[I]; Sec->writeTo(Buf); // Fill gaps between sections. if (Filler) { uint8_t *Start = Buf + Sec->OutSecOff + Sec->getSize(); uint8_t *End; if (I + 1 == Sections.size()) End = Buf + Size; else End = Buf + Sections[I + 1]->OutSecOff; fill(Start, End - Start, Filler); } }); // Linker scripts may have BYTE()-family commands with which you // can write arbitrary bytes to the output. Process them if any. Script->writeDataBytes(this, Buf); } static uint64_t getOutFlags(InputSectionBase *S) { return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED; } static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) { // The ELF spec just says // ---------------------------------------------------------------- // In the first phase, input sections that match in name, type and // attribute flags should be concatenated into single sections. // ---------------------------------------------------------------- // // However, it is clear that at least some flags have to be ignored for // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be // ignored. We should not have two output .text sections just because one was // in a group and another was not for example. // // It also seems that that wording was a late addition and didn't get the // necessary scrutiny. // // Merging sections with different flags is expected by some users. One // reason is that if one file has // // int *const bar __attribute__((section(".foo"))) = (int *)0; // // gcc with -fPIC will produce a read only .foo section. But if another // file has // // int zed; // int *const bar __attribute__((section(".foo"))) = (int *)&zed; // // gcc with -fPIC will produce a read write section. // // Last but not least, when using linker script the merge rules are forced by // the script. Unfortunately, linker scripts are name based. This means that // expressions like *(.foo*) can refer to multiple input sections with // different flags. We cannot put them in different output sections or we // would produce wrong results for // // start = .; *(.foo.*) end = .; *(.bar) // // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to // another. The problem is that there is no way to layout those output // sections such that the .foo sections are the only thing between the start // and end symbols. // // Given the above issues, we instead merge sections by name and error on // incompatible types and flags. uint32_t Alignment = 0; uint64_t Flags = 0; if (Config->Relocatable && (C->Flags & SHF_MERGE)) { Alignment = std::max(C->Alignment, C->Entsize); Flags = C->Flags & (SHF_MERGE | SHF_STRINGS); } return SectionKey{OutsecName, Flags, Alignment}; } OutputSectionFactory::OutputSectionFactory( std::vector &OutputSections) : OutputSections(OutputSections) {} static uint64_t getIncompatibleFlags(uint64_t Flags) { return Flags & (SHF_ALLOC | SHF_TLS); } // We allow sections of types listed below to merged into a // single progbits section. This is typically done by linker // scripts. Merging nobits and progbits will force disk space // to be allocated for nobits sections. Other ones don't require // any special treatment on top of progbits, so there doesn't // seem to be a harm in merging them. static bool canMergeToProgbits(unsigned Type) { return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY || Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_NOTE; } static void reportDiscarded(InputSectionBase *IS) { if (!Config->PrintGcSections) return; message("removing unused section from '" + IS->Name + "' in file '" + IS->File->getName()); } void OutputSectionFactory::addInputSec(InputSectionBase *IS, StringRef OutsecName) { SectionKey Key = createKey(IS, OutsecName); OutputSection *&Sec = Map[Key]; return addInputSec(IS, OutsecName, Sec); } void OutputSectionFactory::addInputSec(InputSectionBase *IS, StringRef OutsecName, OutputSection *&Sec) { if (!IS->Live) { reportDiscarded(IS); return; } uint64_t Flags = getOutFlags(IS); if (Sec) { if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags)) error("incompatible section flags for " + Sec->Name + "\n>>> " + toString(IS) + ": 0x" + utohexstr(IS->Flags) + "\n>>> output section " + Sec->Name + ": 0x" + utohexstr(Sec->Flags)); if (Sec->Type != IS->Type) { if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type)) Sec->Type = SHT_PROGBITS; else error("section type mismatch for " + IS->Name + "\n>>> " + toString(IS) + ": " + getELFSectionTypeName(Config->EMachine, IS->Type) + "\n>>> output section " + Sec->Name + ": " + getELFSectionTypeName(Config->EMachine, Sec->Type)); } Sec->Flags |= Flags; } else { Sec = make(OutsecName, IS->Type, Flags); OutputSections.push_back(Sec); } Sec->addSection(cast(IS)); } OutputSectionFactory::~OutputSectionFactory() {} SectionKey DenseMapInfo::getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0}; } SectionKey DenseMapInfo::getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0}; } unsigned DenseMapInfo::getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Flags, Val.Alignment); } bool DenseMapInfo::isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } uint64_t elf::getHeaderSize() { if (Config->OFormatBinary) return 0; return Out::ElfHeader->Size + Out::ProgramHeaders->Size; } template void OutputSection::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64BE::Shdr *Shdr); template void OutputSection::finalize(); template void OutputSection::finalize(); template void OutputSection::finalize(); template void OutputSection::finalize(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf);