//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "LinkerScript.h" #include "Memory.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "Threads.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; uint8_t Out::First; OutputSection *Out::Opd; uint8_t *Out::OpdBuf; PhdrEntry *Out::TlsPhdr; OutputSection *Out::DebugInfo; OutputSection *Out::ElfHeader; OutputSection *Out::ProgramHeaders; OutputSection *Out::PreinitArray; OutputSection *Out::InitArray; OutputSection *Out::FiniArray; std::vector elf::OutputSections; std::vector elf::OutputSectionCommands; uint32_t OutputSection::getPhdrFlags() const { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } template void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) { Shdr->sh_entsize = Entsize; Shdr->sh_addralign = Alignment; Shdr->sh_type = Type; Shdr->sh_offset = Offset; Shdr->sh_flags = Flags; Shdr->sh_info = Info; Shdr->sh_link = Link; Shdr->sh_addr = Addr; Shdr->sh_size = Size; Shdr->sh_name = ShName; } OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags) : SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type, /*Info*/ 0, /*Link*/ 0), SectionIndex(INT_MAX) {} static uint64_t updateOffset(uint64_t Off, InputSection *S) { Off = alignTo(Off, S->Alignment); S->OutSecOff = Off; return Off + S->getSize(); } void OutputSection::addSection(InputSection *S) { assert(S->Live); Sections.push_back(S); S->Parent = this; this->updateAlignment(S->Alignment); // The actual offsets will be computed by assignAddresses. For now, use // crude approximation so that it is at least easy for other code to know the // section order. It is also used to calculate the output section size early // for compressed debug sections. this->Size = updateOffset(Size, S); // If this section contains a table of fixed-size entries, sh_entsize // holds the element size. Consequently, if this contains two or more // input sections, all of them must have the same sh_entsize. However, // you can put different types of input sections into one output // sectin by using linker scripts. I don't know what to do here. // Probably we sholuld handle that as an error. But for now we just // pick the largest sh_entsize. this->Entsize = std::max(this->Entsize, S->Entsize); } static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) { // The ELF spec just says // ---------------------------------------------------------------- // In the first phase, input sections that match in name, type and // attribute flags should be concatenated into single sections. // ---------------------------------------------------------------- // // However, it is clear that at least some flags have to be ignored for // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be // ignored. We should not have two output .text sections just because one was // in a group and another was not for example. // // It also seems that that wording was a late addition and didn't get the // necessary scrutiny. // // Merging sections with different flags is expected by some users. One // reason is that if one file has // // int *const bar __attribute__((section(".foo"))) = (int *)0; // // gcc with -fPIC will produce a read only .foo section. But if another // file has // // int zed; // int *const bar __attribute__((section(".foo"))) = (int *)&zed; // // gcc with -fPIC will produce a read write section. // // Last but not least, when using linker script the merge rules are forced by // the script. Unfortunately, linker scripts are name based. This means that // expressions like *(.foo*) can refer to multiple input sections with // different flags. We cannot put them in different output sections or we // would produce wrong results for // // start = .; *(.foo.*) end = .; *(.bar) // // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to // another. The problem is that there is no way to layout those output // sections such that the .foo sections are the only thing between the start // and end symbols. // // Given the above issues, we instead merge sections by name and error on // incompatible types and flags. uint32_t Alignment = 0; uint64_t Flags = 0; if (Config->Relocatable && (C->Flags & SHF_MERGE)) { Alignment = std::max(C->Alignment, C->Entsize); Flags = C->Flags & (SHF_MERGE | SHF_STRINGS); } return SectionKey{OutsecName, Flags, Alignment}; } OutputSectionFactory::OutputSectionFactory() {} static uint64_t getIncompatibleFlags(uint64_t Flags) { return Flags & (SHF_ALLOC | SHF_TLS); } // We allow sections of types listed below to merged into a // single progbits section. This is typically done by linker // scripts. Merging nobits and progbits will force disk space // to be allocated for nobits sections. Other ones don't require // any special treatment on top of progbits, so there doesn't // seem to be a harm in merging them. static bool canMergeToProgbits(unsigned Type) { return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY || Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_NOTE; } void elf::reportDiscarded(InputSectionBase *IS) { if (!Config->PrintGcSections) return; message("removing unused section from '" + IS->Name + "' in file '" + IS->File->getName() + "'"); } void OutputSectionFactory::addInputSec(InputSectionBase *IS, StringRef OutsecName) { // Sections with the SHT_GROUP attribute reach here only when the - r option // is given. Such sections define "section groups", and InputFiles.cpp has // dedup'ed section groups by their signatures. For the -r, we want to pass // through all SHT_GROUP sections without merging them because merging them // creates broken section contents. if (IS->Type == SHT_GROUP) { OutputSection *Out = nullptr; addInputSec(IS, OutsecName, Out); return; } // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have // relocation sections .rela.foo and .rela.bar for example. Most tools do // not allow multiple REL[A] sections for output section. Hence we // should combine these relocation sections into single output. // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any // other REL[A] sections created by linker itself. if (!isa(IS) && (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { auto *Sec = cast(IS); OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); addInputSec(IS, OutsecName, Out->RelocationSection); return; } SectionKey Key = createKey(IS, OutsecName); OutputSection *&Sec = Map[Key]; addInputSec(IS, OutsecName, Sec); } void OutputSectionFactory::addInputSec(InputSectionBase *IS, StringRef OutsecName, OutputSection *&Sec) { if (!IS->Live) { reportDiscarded(IS); return; } if (Sec) { if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags)) error("incompatible section flags for " + Sec->Name + "\n>>> " + toString(IS) + ": 0x" + utohexstr(IS->Flags) + "\n>>> output section " + Sec->Name + ": 0x" + utohexstr(Sec->Flags)); if (Sec->Type != IS->Type) { if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type)) Sec->Type = SHT_PROGBITS; else error("section type mismatch for " + IS->Name + "\n>>> " + toString(IS) + ": " + getELFSectionTypeName(Config->EMachine, IS->Type) + "\n>>> output section " + Sec->Name + ": " + getELFSectionTypeName(Config->EMachine, Sec->Type)); } Sec->Flags |= IS->Flags; } else { Sec = make(OutsecName, IS->Type, IS->Flags); OutputSections.push_back(Sec); } Sec->addSection(cast(IS)); } OutputSectionFactory::~OutputSectionFactory() {} SectionKey DenseMapInfo::getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0}; } SectionKey DenseMapInfo::getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0}; } unsigned DenseMapInfo::getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Flags, Val.Alignment); } bool DenseMapInfo::isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } uint64_t elf::getHeaderSize() { if (Config->OFormatBinary) return 0; return Out::ElfHeader->Size + Out::ProgramHeaders->Size; } template void OutputSection::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64BE::Shdr *Shdr);