//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "EhFrame.h" #include "LinkerScript.h" #include "Memory.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "Threads.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type, uint64_t Flags) : Name(Name) { this->Type = Type; this->Flags = Flags; this->Addralign = 1; } uint32_t OutputSectionBase::getPhdrFlags() const { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } template void OutputSectionBase::writeHeaderTo(typename ELFT::Shdr *Shdr) { Shdr->sh_entsize = Entsize; Shdr->sh_addralign = Addralign; Shdr->sh_type = Type; Shdr->sh_offset = Offset; Shdr->sh_flags = Flags; Shdr->sh_info = Info; Shdr->sh_link = Link; Shdr->sh_addr = Addr; Shdr->sh_size = Size; Shdr->sh_name = ShName; } template static uint64_t getEntsize(uint32_t Type) { switch (Type) { case SHT_RELA: return sizeof(typename ELFT::Rela); case SHT_REL: return sizeof(typename ELFT::Rel); case SHT_MIPS_REGINFO: return sizeof(Elf_Mips_RegInfo); case SHT_MIPS_OPTIONS: return sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); case SHT_MIPS_ABIFLAGS: return sizeof(Elf_Mips_ABIFlags); default: return 0; } } template OutputSection::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) : OutputSectionBase(Name, Type, Flags) { this->Entsize = getEntsize(Type); } template static bool compareByFilePosition(InputSection *A, InputSection *B) { // Synthetic doesn't have link order dependecy, stable_sort will keep it last if (A->kind() == InputSectionData::Synthetic || B->kind() == InputSectionData::Synthetic) return false; auto *LA = cast>(A->getLinkOrderDep()); auto *LB = cast>(B->getLinkOrderDep()); OutputSectionBase *AOut = LA->OutSec; OutputSectionBase *BOut = LB->OutSec; if (AOut != BOut) return AOut->SectionIndex < BOut->SectionIndex; return LA->OutSecOff < LB->OutSecOff; } template void OutputSection::finalize() { if ((this->Flags & SHF_LINK_ORDER) && !this->Sections.empty()) { std::sort(Sections.begin(), Sections.end(), compareByFilePosition); Size = 0; assignOffsets(); // We must preserve the link order dependency of sections with the // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We // need to translate the InputSection sh_link to the OutputSection sh_link, // all InputSections in the OutputSection have the same dependency. if (auto *D = this->Sections.front()->getLinkOrderDep()) this->Link = D->OutSec->SectionIndex; } uint32_t Type = this->Type; if (!Config->Relocatable || (Type != SHT_RELA && Type != SHT_REL)) return; this->Link = In::SymTab->OutSec->SectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *S = Sections[0]->getRelocatedSection(); this->Info = S->OutSec->SectionIndex; } template void OutputSection::addSection(InputSectionData *C) { assert(C->Live); auto *S = cast>(C); Sections.push_back(S); S->OutSec = this; this->updateAlignment(S->Alignment); // Keep sh_entsize value of the input section to be able to perform merging // later during a final linking using the generated relocatable object. if (Config->Relocatable && (S->Flags & SHF_MERGE)) this->Entsize = S->Entsize; } // This function is called after we sort input sections // and scan relocations to setup sections' offsets. template void OutputSection::assignOffsets() { uintX_t Off = this->Size; for (InputSection *S : Sections) { Off = alignTo(Off, S->Alignment); S->OutSecOff = Off; Off += S->getSize(); } this->Size = Off; } template void OutputSection::sort( std::function *S)> Order) { typedef std::pair *> Pair; auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; std::vector V; for (InputSection *S : Sections) V.push_back({Order(S), S}); std::stable_sort(V.begin(), V.end(), Comp); Sections.clear(); for (Pair &P : V) Sections.push_back(P.second); } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. template void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSection *S) { return getPriority(S->Name); }); } // Returns true if S matches /Filename.?\.o$/. static bool isCrtBeginEnd(StringRef S, StringRef Filename) { if (!S.endswith(".o")) return false; S = S.drop_back(2); if (S.endswith(Filename)) return true; return !S.empty() && S.drop_back().endswith(Filename); } static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. template static bool compCtors(const InputSection *A, const InputSection *B) { bool BeginA = isCrtbegin(A->getFile()->getName()); bool BeginB = isCrtbegin(B->getFile()->getName()); if (BeginA != BeginB) return BeginA; bool EndA = isCrtend(A->getFile()->getName()); bool EndB = isCrtend(B->getFile()->getName()); if (EndA != EndB) return EndB; StringRef X = A->Name; StringRef Y = B->Name; assert(X.startswith(".ctors") || X.startswith(".dtors")); assert(Y.startswith(".ctors") || Y.startswith(".dtors")); X = X.substr(6); Y = Y.substr(6); if (X.empty() && Y.empty()) return false; return X < Y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. template void OutputSection::sortCtorsDtors() { std::stable_sort(Sections.begin(), Sections.end(), compCtors); } // Fill [Buf, Buf + Size) with Filler. Filler is written in big // endian order. This is used for linker script "=fillexp" command. void fill(uint8_t *Buf, size_t Size, uint32_t Filler) { uint8_t V[4]; write32be(V, Filler); size_t I = 0; for (; I + 4 < Size; I += 4) memcpy(Buf + I, V, 4); memcpy(Buf + I, V, Size - I); } template void OutputSection::writeTo(uint8_t *Buf) { Loc = Buf; if (uint32_t Filler = Script::X->getFiller(this->Name)) fill(Buf, this->Size, Filler); auto Fn = [=](InputSection *IS) { IS->writeTo(Buf); }; forEach(Sections.begin(), Sections.end(), Fn); // Linker scripts may have BYTE()-family commands with which you // can write arbitrary bytes to the output. Process them if any. Script::X->writeDataBytes(this->Name, Buf); } template EhOutputSection::EhOutputSection() : OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} // Search for an existing CIE record or create a new one. // CIE records from input object files are uniquified by their contents // and where their relocations point to. template template CieRecord *EhOutputSection::addCie(EhSectionPiece &Piece, ArrayRef Rels) { auto *Sec = cast>(Piece.ID); const endianness E = ELFT::TargetEndianness; if (read32(Piece.data().data() + 4) != 0) fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame"); SymbolBody *Personality = nullptr; unsigned FirstRelI = Piece.FirstRelocation; if (FirstRelI != (unsigned)-1) Personality = &Sec->getFile()->getRelocTargetSym(Rels[FirstRelI]); // Search for an existing CIE by CIE contents/relocation target pair. CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; // If not found, create a new one. if (Cie->Piece == nullptr) { Cie->Piece = &Piece; Cies.push_back(Cie); } return Cie; } // There is one FDE per function. Returns true if a given FDE // points to a live function. template template bool EhOutputSection::isFdeLive(EhSectionPiece &Piece, ArrayRef Rels) { auto *Sec = cast>(Piece.ID); unsigned FirstRelI = Piece.FirstRelocation; if (FirstRelI == (unsigned)-1) fatal(toString(Sec) + ": FDE doesn't reference another section"); const RelTy &Rel = Rels[FirstRelI]; SymbolBody &B = Sec->getFile()->getRelocTargetSym(Rel); auto *D = dyn_cast>(&B); if (!D || !D->Section) return false; InputSectionBase *Target = D->Section->Repl; return Target && Target->Live; } // .eh_frame is a sequence of CIE or FDE records. In general, there // is one CIE record per input object file which is followed by // a list of FDEs. This function searches an existing CIE or create a new // one and associates FDEs to the CIE. template template void EhOutputSection::addSectionAux(EhInputSection *Sec, ArrayRef Rels) { const endianness E = ELFT::TargetEndianness; DenseMap OffsetToCie; for (EhSectionPiece &Piece : Sec->Pieces) { // The empty record is the end marker. if (Piece.size() == 4) return; size_t Offset = Piece.InputOff; uint32_t ID = read32(Piece.data().data() + 4); if (ID == 0) { OffsetToCie[Offset] = addCie(Piece, Rels); continue; } uint32_t CieOffset = Offset + 4 - ID; CieRecord *Cie = OffsetToCie[CieOffset]; if (!Cie) fatal(toString(Sec) + ": invalid CIE reference"); if (!isFdeLive(Piece, Rels)) continue; Cie->FdePieces.push_back(&Piece); NumFdes++; } } template void EhOutputSection::addSection(InputSectionData *C) { auto *Sec = cast>(C); Sec->OutSec = this; this->updateAlignment(Sec->Alignment); Sections.push_back(Sec); // .eh_frame is a sequence of CIE or FDE records. This function // splits it into pieces so that we can call // SplitInputSection::getSectionPiece on the section. Sec->split(); if (Sec->Pieces.empty()) return; if (Sec->NumRelocations) { if (Sec->AreRelocsRela) addSectionAux(Sec, Sec->relas()); else addSectionAux(Sec, Sec->rels()); return; } addSectionAux(Sec, makeArrayRef(nullptr, nullptr)); } template static void writeCieFde(uint8_t *Buf, ArrayRef D) { memcpy(Buf, D.data(), D.size()); // Fix the size field. -4 since size does not include the size field itself. const endianness E = ELFT::TargetEndianness; write32(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); } template void EhOutputSection::finalize() { if (this->Size) return; // Already finalized. size_t Off = 0; for (CieRecord *Cie : Cies) { Cie->Piece->OutputOff = Off; Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); for (EhSectionPiece *Fde : Cie->FdePieces) { Fde->OutputOff = Off; Off += alignTo(Fde->size(), sizeof(uintX_t)); } } this->Size = Off; } template static uint64_t readFdeAddr(uint8_t *Buf, int Size) { const endianness E = ELFT::TargetEndianness; switch (Size) { case DW_EH_PE_udata2: return read16(Buf); case DW_EH_PE_udata4: return read32(Buf); case DW_EH_PE_udata8: return read64(Buf); case DW_EH_PE_absptr: if (ELFT::Is64Bits) return read64(Buf); return read32(Buf); } fatal("unknown FDE size encoding"); } // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. // We need it to create .eh_frame_hdr section. template typename ELFT::uint EhOutputSection::getFdePc(uint8_t *Buf, size_t FdeOff, uint8_t Enc) { // The starting address to which this FDE applies is // stored at FDE + 8 byte. size_t Off = FdeOff + 8; uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0x7); if ((Enc & 0x70) == DW_EH_PE_absptr) return Addr; if ((Enc & 0x70) == DW_EH_PE_pcrel) return Addr + this->Addr + Off; fatal("unknown FDE size relative encoding"); } template void EhOutputSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; for (CieRecord *Cie : Cies) { size_t CieOffset = Cie->Piece->OutputOff; writeCieFde(Buf + CieOffset, Cie->Piece->data()); for (EhSectionPiece *Fde : Cie->FdePieces) { size_t Off = Fde->OutputOff; writeCieFde(Buf + Off, Fde->data()); // FDE's second word should have the offset to an associated CIE. // Write it. write32(Buf + Off + 4, Off + 4 - CieOffset); } } for (EhInputSection *S : Sections) S->relocate(Buf, nullptr); // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table // to get a FDE from an address to which FDE is applied. So here // we obtain two addresses and pass them to EhFrameHdr object. if (In::EhFrameHdr) { for (CieRecord *Cie : Cies) { uint8_t Enc = getFdeEncoding(Cie->Piece); for (SectionPiece *Fde : Cie->FdePieces) { uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); uintX_t FdeVA = this->Addr + Fde->OutputOff; In::EhFrameHdr->addFde(Pc, FdeVA); } } } } template MergeOutputSection::MergeOutputSection(StringRef Name, uint32_t Type, uintX_t Flags, uintX_t Alignment) : OutputSectionBase(Name, Type, Flags), Builder(StringTableBuilder::RAW, Alignment) {} template void MergeOutputSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } template void MergeOutputSection::addSection(InputSectionData *C) { auto *Sec = cast>(C); Sec->OutSec = this; this->updateAlignment(Sec->Alignment); this->Entsize = Sec->Entsize; Sections.push_back(Sec); } template bool MergeOutputSection::shouldTailMerge() const { return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2; } template void MergeOutputSection::finalizeTailMerge() { // Add all string pieces to the string table builder to create section // contents. for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Builder.add(Sec->getData(I)); // Fix the string table content. After this, the contents will never change. Builder.finalize(); this->Size = Builder.getSize(); // finalize() fixed tail-optimized strings, so we can now get // offsets of strings. Get an offset for each string and save it // to a corresponding StringPiece for easy access. for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I)); } template void MergeOutputSection::finalizeNoTailMerge() { // Add all string pieces to the string table builder to create section // contents. Because we are not tail-optimizing, offsets of strings are // fixed when they are added to the builder (string table builder contains // a hash table from strings to offsets). for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff = Builder.add(Sec->getData(I)); Builder.finalizeInOrder(); this->Size = Builder.getSize(); } template void MergeOutputSection::finalize() { if (shouldTailMerge()) finalizeTailMerge(); else finalizeNoTailMerge(); } template static typename ELFT::uint getOutFlags(InputSectionBase *S) { return S->Flags & ~SHF_GROUP & ~SHF_COMPRESSED; } namespace llvm { template <> struct DenseMapInfo { static lld::elf::SectionKey getEmptyKey(); static lld::elf::SectionKey getTombstoneKey(); static unsigned getHashValue(const lld::elf::SectionKey &Val); static bool isEqual(const lld::elf::SectionKey &LHS, const lld::elf::SectionKey &RHS); }; } template static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) { // The ELF spec just says // ---------------------------------------------------------------- // In the first phase, input sections that match in name, type and // attribute flags should be concatenated into single sections. // ---------------------------------------------------------------- // // However, it is clear that at least some flags have to be ignored for // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be // ignored. We should not have two output .text sections just because one was // in a group and another was not for example. // // It also seems that that wording was a late addition and didn't get the // necessary scrutiny. // // Merging sections with different flags is expected by some users. One // reason is that if one file has // // int *const bar __attribute__((section(".foo"))) = (int *)0; // // gcc with -fPIC will produce a read only .foo section. But if another // file has // // int zed; // int *const bar __attribute__((section(".foo"))) = (int *)&zed; // // gcc with -fPIC will produce a read write section. // // Last but not least, when using linker script the merge rules are forced by // the script. Unfortunately, linker scripts are name based. This means that // expressions like *(.foo*) can refer to multiple input sections with // different flags. We cannot put them in different output sections or we // would produce wrong results for // // start = .; *(.foo.*) end = .; *(.bar) // // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to // another. The problem is that there is no way to layout those output // sections such that the .foo sections are the only thing between the start // and end symbols. // // Given the above issues, we instead merge sections by name and error on // incompatible types and flags. // // The exception being SHF_MERGE, where we create different output sections // for each alignment. This makes each output section simple. In case of // relocatable object generation we do not try to perform merging and treat // SHF_MERGE sections as regular ones, but also create different output // sections for them to allow merging at final linking stage. // // Fortunately, creating symbols in the middle of a merge section is not // supported by bfd or gold, so the SHF_MERGE exception should not cause // problems with most linker scripts. typedef typename ELFT::uint uintX_t; uintX_t Flags = C->Flags & (SHF_MERGE | SHF_STRINGS); uintX_t Alignment = 0; if (isa>(C) || (Config->Relocatable && (C->Flags & SHF_MERGE))) Alignment = std::max(C->Alignment, C->Entsize); return SectionKey{OutsecName, Flags, Alignment}; } template OutputSectionFactory::OutputSectionFactory() {} template OutputSectionFactory::~OutputSectionFactory() {} template std::pair OutputSectionFactory::create(InputSectionBase *C, StringRef OutsecName) { SectionKey Key = createKey(C, OutsecName); return create(Key, C); } static uint64_t getIncompatibleFlags(uint64_t Flags) { return Flags & (SHF_ALLOC | SHF_TLS); } template std::pair OutputSectionFactory::create(const SectionKey &Key, InputSectionBase *C) { uintX_t Flags = getOutFlags(C); OutputSectionBase *&Sec = Map[Key]; if (Sec) { if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(C->Flags)) error("Section has flags incompatible with others with the same name " + toString(C)); // Convert notbits to progbits if they are mixed. This happens is some // linker scripts. if (Sec->Type == SHT_NOBITS && C->Type == SHT_PROGBITS) Sec->Type = SHT_PROGBITS; if (Sec->Type != C->Type && !(Sec->Type == SHT_PROGBITS && C->Type == SHT_NOBITS)) error("Section has different type from others with the same name " + toString(C)); Sec->Flags |= Flags; return {Sec, false}; } uint32_t Type = C->Type; switch (C->kind()) { case InputSectionBase::Regular: case InputSectionBase::Synthetic: Sec = make>(Key.Name, Type, Flags); break; case InputSectionBase::EHFrame: return {Out::EhFrame, false}; case InputSectionBase::Merge: Sec = make>(Key.Name, Type, Flags, Key.Alignment); break; } return {Sec, true}; } SectionKey DenseMapInfo::getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0}; } SectionKey DenseMapInfo::getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0}; } unsigned DenseMapInfo::getHashValue(const SectionKey &Val) { return hash_combine(Val.Name, Val.Flags, Val.Alignment); } bool DenseMapInfo::isEqual(const SectionKey &LHS, const SectionKey &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } namespace lld { namespace elf { template void OutputSectionBase::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSectionBase::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSectionBase::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSectionBase::writeHeaderTo(ELF64BE::Shdr *Shdr); template class OutputSection; template class OutputSection; template class OutputSection; template class OutputSection; template class EhOutputSection; template class EhOutputSection; template class EhOutputSection; template class EhOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class OutputSectionFactory; template class OutputSectionFactory; template class OutputSectionFactory; template class OutputSectionFactory; } }