//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "EhFrame.h" #include "LinkerScript.h" #include "Strings.h" #include "SymbolTable.h" #include "Target.h" #include "lld/Core/Parallel.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" #include using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; template OutputSectionBase::OutputSectionBase(StringRef Name, uint32_t Type, uintX_t Flags) : Name(Name) { memset(&Header, 0, sizeof(Elf_Shdr)); Header.sh_type = Type; Header.sh_flags = Flags; Header.sh_addralign = 1; } template void OutputSectionBase::writeHeaderTo(Elf_Shdr *Shdr) { *Shdr = Header; } template GotPltSection::GotPltSection() : OutputSectionBase(".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { this->Header.sh_addralign = Target->GotPltEntrySize; } template void GotPltSection::addEntry(SymbolBody &Sym) { Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); Entries.push_back(&Sym); } template bool GotPltSection::empty() const { return Entries.empty(); } template void GotPltSection::finalize() { this->Header.sh_size = (Target->GotPltHeaderEntriesNum + Entries.size()) * Target->GotPltEntrySize; } template void GotPltSection::writeTo(uint8_t *Buf) { Target->writeGotPltHeader(Buf); Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; for (const SymbolBody *B : Entries) { Target->writeGotPlt(Buf, *B); Buf += sizeof(uintX_t); } } template GotSection::GotSection() : OutputSectionBase(".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE) { if (Config->EMachine == EM_MIPS) this->Header.sh_flags |= SHF_MIPS_GPREL; this->Header.sh_addralign = Target->GotEntrySize; } template void GotSection::addEntry(SymbolBody &Sym) { Sym.GotIndex = Entries.size(); Entries.push_back(&Sym); } template void GotSection::addMipsEntry(SymbolBody &Sym, uintX_t Addend, RelExpr Expr) { // For "true" local symbols which can be referenced from the same module // only compiler creates two instructions for address loading: // // lw $8, 0($gp) # R_MIPS_GOT16 // addi $8, $8, 0 # R_MIPS_LO16 // // The first instruction loads high 16 bits of the symbol address while // the second adds an offset. That allows to reduce number of required // GOT entries because only one global offset table entry is necessary // for every 64 KBytes of local data. So for local symbols we need to // allocate number of GOT entries to hold all required "page" addresses. // // All global symbols (hidden and regular) considered by compiler uniformly. // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation // to load address of the symbol. So for each such symbol we need to // allocate dedicated GOT entry to store its address. // // If a symbol is preemptible we need help of dynamic linker to get its // final address. The corresponding GOT entries are allocated in the // "global" part of GOT. Entries for non preemptible global symbol allocated // in the "local" part of GOT. // // See "Global Offset Table" in Chapter 5: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Expr == R_MIPS_GOT_LOCAL_PAGE) { // At this point we do not know final symbol value so to reduce number // of allocated GOT entries do the following trick. Save all output // sections referenced by GOT relocations. Then later in the `finalize` // method calculate number of "pages" required to cover all saved output // section and allocate appropriate number of GOT entries. auto *OutSec = cast>(&Sym)->Section->OutSec; MipsOutSections.insert(OutSec); return; } if (Sym.isTls()) { // GOT entries created for MIPS TLS relocations behave like // almost GOT entries from other ABIs. They go to the end // of the global offset table. Sym.GotIndex = Entries.size(); Entries.push_back(&Sym); return; } auto AddEntry = [&](SymbolBody &S, uintX_t A, MipsGotEntries &Items) { if (S.isInGot() && !A) return; size_t NewIndex = Items.size(); if (!MipsGotMap.insert({{&S, A}, NewIndex}).second) return; Items.emplace_back(&S, A); if (!A) S.GotIndex = NewIndex; }; if (Sym.isPreemptible()) { // Ignore addends for preemptible symbols. They got single GOT entry anyway. AddEntry(Sym, 0, MipsGlobal); Sym.IsInGlobalMipsGot = true; } else AddEntry(Sym, Addend, MipsLocal); } template bool GotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = Entries.size(); // Global Dynamic TLS entries take two GOT slots. Entries.push_back(nullptr); Entries.push_back(&Sym); return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool GotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = Entries.size() * sizeof(uintX_t); Entries.push_back(nullptr); Entries.push_back(nullptr); return true; } template typename GotSection::uintX_t GotSection::getMipsLocalPageOffset(uintX_t EntryValue) { // Initialize the entry by the %hi(EntryValue) expression // but without right-shifting. EntryValue = (EntryValue + 0x8000) & ~0xffff; // Take into account MIPS GOT header. // See comment in the GotSection::writeTo. size_t NewIndex = MipsLocalGotPos.size() + 2; auto P = MipsLocalGotPos.insert(std::make_pair(EntryValue, NewIndex)); assert(!P.second || MipsLocalGotPos.size() <= MipsPageEntries); return (uintX_t)P.first->second * sizeof(uintX_t) - MipsGPOffset; } template typename GotSection::uintX_t GotSection::getMipsGotOffset(const SymbolBody &B, uintX_t Addend) const { uintX_t Off = MipsPageEntries; if (B.isTls()) Off += MipsLocal.size() + MipsGlobal.size() + B.GotIndex; else if (B.IsInGlobalMipsGot) Off += MipsLocal.size() + B.GotIndex; else if (B.isInGot()) Off += B.GotIndex; else { auto It = MipsGotMap.find({&B, Addend}); assert(It != MipsGotMap.end()); Off += It->second; } return Off * sizeof(uintX_t) - MipsGPOffset; } template typename GotSection::uintX_t GotSection::getMipsTlsOffset() { return (MipsPageEntries + MipsLocal.size() + MipsGlobal.size()) * sizeof(uintX_t); } template typename GotSection::uintX_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); } template typename GotSection::uintX_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * sizeof(uintX_t); } template const SymbolBody *GotSection::getMipsFirstGlobalEntry() const { return MipsGlobal.empty() ? nullptr : MipsGlobal.front().first; } template unsigned GotSection::getMipsLocalEntriesNum() const { return MipsPageEntries + MipsLocal.size(); } template void GotSection::finalize() { size_t EntriesNum = Entries.size(); if (Config->EMachine == EM_MIPS) { // Take into account MIPS GOT header. // See comment in the GotSection::writeTo. MipsPageEntries += 2; for (const OutputSectionBase *OutSec : MipsOutSections) { // Calculate an upper bound of MIPS GOT entries required to store page // addresses of local symbols. We assume the worst case - each 64kb // page of the output section has at least one GOT relocation against it. // Add 0x8000 to the section's size because the page address stored // in the GOT entry is calculated as (value + 0x8000) & ~0xffff. MipsPageEntries += (OutSec->getSize() + 0x8000 + 0xfffe) / 0xffff; } EntriesNum += MipsPageEntries + MipsLocal.size() + MipsGlobal.size(); } this->Header.sh_size = EntriesNum * sizeof(uintX_t); } template void GotSection::writeMipsGot(uint8_t *&Buf) { // Set the MSB of the second GOT slot. This is not required by any // MIPS ABI documentation, though. // // There is a comment in glibc saying that "The MSB of got[1] of a // gnu object is set to identify gnu objects," and in GNU gold it // says "the second entry will be used by some runtime loaders". // But how this field is being used is unclear. // // We are not really willing to mimic other linkers behaviors // without understanding why they do that, but because all files // generated by GNU tools have this special GOT value, and because // we've been doing this for years, it is probably a safe bet to // keep doing this for now. We really need to revisit this to see // if we had to do this. auto *P = reinterpret_cast(Buf); P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); // Write 'page address' entries to the local part of the GOT. for (std::pair &L : MipsLocalGotPos) { uint8_t *Entry = Buf + L.second * sizeof(uintX_t); write(Entry, L.first); } Buf += MipsPageEntries * sizeof(uintX_t); auto AddEntry = [&](const MipsGotEntry &SA) { uint8_t *Entry = Buf; Buf += sizeof(uintX_t); const SymbolBody* Body = SA.first; uintX_t VA = Body->template getVA(SA.second); write(Entry, VA); }; std::for_each(std::begin(MipsLocal), std::end(MipsLocal), AddEntry); std::for_each(std::begin(MipsGlobal), std::end(MipsGlobal), AddEntry); } template void GotSection::writeTo(uint8_t *Buf) { if (Config->EMachine == EM_MIPS) writeMipsGot(Buf); for (const SymbolBody *B : Entries) { uint8_t *Entry = Buf; Buf += sizeof(uintX_t); if (!B) continue; if (B->isPreemptible()) continue; // The dynamic linker will take care of it. uintX_t VA = B->getVA(); write(Entry, VA); } } template PltSection::PltSection() : OutputSectionBase(".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR) { this->Header.sh_addralign = 16; } template void PltSection::writeTo(uint8_t *Buf) { // At beginning of PLT, we have code to call the dynamic linker // to resolve dynsyms at runtime. Write such code. Target->writePltHeader(Buf); size_t Off = Target->PltHeaderSize; for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second; uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); unsigned RelOff = Out::RelaPlt->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } template void PltSection::finalize() { this->Header.sh_size = Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; } template RelocationSection::RelocationSection(StringRef Name, bool Sort) : OutputSectionBase(Name, Config->Rela ? SHT_RELA : SHT_REL, SHF_ALLOC), Sort(Sort) { this->Header.sh_entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); this->Header.sh_addralign = sizeof(uintX_t); } template void RelocationSection::addReloc(const DynamicReloc &Reloc) { Relocs.push_back(Reloc); } template static bool compRelocations(const RelTy &A, const RelTy &B) { return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); } template void RelocationSection::writeTo(uint8_t *Buf) { uint8_t *BufBegin = Buf; for (const DynamicReloc &Rel : Relocs) { auto *P = reinterpret_cast(Buf); Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); if (Config->Rela) P->r_addend = Rel.getAddend(); P->r_offset = Rel.getOffset(); if (Config->EMachine == EM_MIPS && Rel.getOutputSec() == Out::Got) // Dynamic relocation against MIPS GOT section make deal TLS entries // allocated in the end of the GOT. We need to adjust the offset to take // in account 'local' and 'global' GOT entries. P->r_offset += Out::Got->getMipsTlsOffset(); P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); } if (Sort) { if (Config->Rela) std::stable_sort((Elf_Rela *)BufBegin, (Elf_Rela *)BufBegin + Relocs.size(), compRelocations); else std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), compRelocations); } } template unsigned RelocationSection::getRelocOffset() { return this->Header.sh_entsize * Relocs.size(); } template void RelocationSection::finalize() { this->Header.sh_link = Static ? Out::SymTab->SectionIndex : Out::DynSymTab->SectionIndex; this->Header.sh_size = Relocs.size() * this->Header.sh_entsize; } template InterpSection::InterpSection() : OutputSectionBase(".interp", SHT_PROGBITS, SHF_ALLOC) { this->Header.sh_size = Config->DynamicLinker.size() + 1; } template void InterpSection::writeTo(uint8_t *Buf) { StringRef S = Config->DynamicLinker; memcpy(Buf, S.data(), S.size()); } template HashTableSection::HashTableSection() : OutputSectionBase(".hash", SHT_HASH, SHF_ALLOC) { this->Header.sh_entsize = sizeof(Elf_Word); this->Header.sh_addralign = sizeof(Elf_Word); } static uint32_t hashSysv(StringRef Name) { uint32_t H = 0; for (char C : Name) { H = (H << 4) + C; uint32_t G = H & 0xf0000000; if (G) H ^= G >> 24; H &= ~G; } return H; } template void HashTableSection::finalize() { this->Header.sh_link = Out::DynSymTab->SectionIndex; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += Out::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. // FIXME: This is simplistic. We can try to optimize it, but implementing // support for SHT_GNU_HASH is probably even more profitable. NumEntries += Out::DynSymTab->getNumSymbols(); this->Header.sh_size = NumEntries * sizeof(Elf_Word); } template void HashTableSection::writeTo(uint8_t *Buf) { unsigned NumSymbols = Out::DynSymTab->getNumSymbols(); auto *P = reinterpret_cast(Buf); *P++ = NumSymbols; // nbucket *P++ = NumSymbols; // nchain Elf_Word *Buckets = P; Elf_Word *Chains = P + NumSymbols; for (const std::pair &P : Out::DynSymTab->getSymbols()) { SymbolBody *Body = P.first; StringRef Name = Body->getName(); unsigned I = Body->DynsymIndex; uint32_t Hash = hashSysv(Name) % NumSymbols; Chains[I] = Buckets[Hash]; Buckets[Hash] = I; } } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } template GnuHashTableSection::GnuHashTableSection() : OutputSectionBase(".gnu.hash", SHT_GNU_HASH, SHF_ALLOC) { this->Header.sh_entsize = ELFT::Is64Bits ? 0 : 4; this->Header.sh_addralign = sizeof(uintX_t); } template unsigned GnuHashTableSection::calcNBuckets(unsigned NumHashed) { if (!NumHashed) return 0; // These values are prime numbers which are not greater than 2^(N-1) + 1. // In result, for any particular NumHashed we return a prime number // which is not greater than NumHashed. static const unsigned Primes[] = { 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; return Primes[std::min(Log2_32_Ceil(NumHashed), array_lengthof(Primes) - 1)]; } // Bloom filter estimation: at least 8 bits for each hashed symbol. // GNU Hash table requirement: it should be a power of 2, // the minimum value is 1, even for an empty table. // Expected results for a 32-bit target: // calcMaskWords(0..4) = 1 // calcMaskWords(5..8) = 2 // calcMaskWords(9..16) = 4 // For a 64-bit target: // calcMaskWords(0..8) = 1 // calcMaskWords(9..16) = 2 // calcMaskWords(17..32) = 4 template unsigned GnuHashTableSection::calcMaskWords(unsigned NumHashed) { if (!NumHashed) return 1; return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); } template void GnuHashTableSection::finalize() { unsigned NumHashed = Symbols.size(); NBuckets = calcNBuckets(NumHashed); MaskWords = calcMaskWords(NumHashed); // Second hash shift estimation: just predefined values. Shift2 = ELFT::Is64Bits ? 6 : 5; this->Header.sh_link = Out::DynSymTab->SectionIndex; this->Header.sh_size = sizeof(Elf_Word) * 4 // Header + sizeof(Elf_Off) * MaskWords // Bloom Filter + sizeof(Elf_Word) * NBuckets // Hash Buckets + sizeof(Elf_Word) * NumHashed; // Hash Values } template void GnuHashTableSection::writeTo(uint8_t *Buf) { writeHeader(Buf); if (Symbols.empty()) return; writeBloomFilter(Buf); writeHashTable(Buf); } template void GnuHashTableSection::writeHeader(uint8_t *&Buf) { auto *P = reinterpret_cast(Buf); *P++ = NBuckets; *P++ = Out::DynSymTab->getNumSymbols() - Symbols.size(); *P++ = MaskWords; *P++ = Shift2; Buf = reinterpret_cast(P); } template void GnuHashTableSection::writeBloomFilter(uint8_t *&Buf) { unsigned C = sizeof(Elf_Off) * 8; auto *Masks = reinterpret_cast(Buf); for (const SymbolData &Sym : Symbols) { size_t Pos = (Sym.Hash / C) & (MaskWords - 1); uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); Masks[Pos] |= V; } Buf += sizeof(Elf_Off) * MaskWords; } template void GnuHashTableSection::writeHashTable(uint8_t *Buf) { Elf_Word *Buckets = reinterpret_cast(Buf); Elf_Word *Values = Buckets + NBuckets; int PrevBucket = -1; int I = 0; for (const SymbolData &Sym : Symbols) { int Bucket = Sym.Hash % NBuckets; assert(PrevBucket <= Bucket); if (Bucket != PrevBucket) { Buckets[Bucket] = Sym.Body->DynsymIndex; PrevBucket = Bucket; if (I > 0) Values[I - 1] |= 1; } Values[I] = Sym.Hash & ~1; ++I; } if (I > 0) Values[I - 1] |= 1; } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. template void GnuHashTableSection::addSymbols( std::vector> &V) { // Ideally this will just be 'auto' but GCC 6.1 is not able // to deduce it correctly. std::vector>::iterator Mid = std::stable_partition(V.begin(), V.end(), [](std::pair &P) { return P.first->isUndefined(); }); if (Mid == V.end()) return; for (auto I = Mid, E = V.end(); I != E; ++I) { SymbolBody *B = I->first; size_t StrOff = I->second; Symbols.push_back({B, StrOff, hashGnu(B->getName())}); } unsigned NBuckets = calcNBuckets(Symbols.size()); std::stable_sort(Symbols.begin(), Symbols.end(), [&](const SymbolData &L, const SymbolData &R) { return L.Hash % NBuckets < R.Hash % NBuckets; }); V.erase(Mid, V.end()); for (const SymbolData &Sym : Symbols) V.push_back({Sym.Body, Sym.STName}); } // Returns the number of version definition entries. Because the first entry // is for the version definition itself, it is the number of versioned symbols // plus one. Note that we don't support multiple versions yet. static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } template DynamicSection::DynamicSection() : OutputSectionBase(".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE) { Elf_Shdr &Header = this->Header; Header.sh_addralign = sizeof(uintX_t); Header.sh_entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS) Header.sh_flags = SHF_ALLOC; } template void DynamicSection::finalize() { if (this->Header.sh_size) return; // Already finalized. Elf_Shdr &Header = this->Header; Header.sh_link = Out::DynStrTab->SectionIndex; auto Add = [=](Entry E) { Entries.push_back(E); }; // Add strings. We know that these are the last strings to be added to // DynStrTab and doing this here allows this function to set DT_STRSZ. if (!Config->RPath.empty()) Add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, Out::DynStrTab->addString(Config->RPath)}); for (const std::unique_ptr> &F : Symtab::X->getSharedFiles()) if (F->isNeeded()) Add({DT_NEEDED, Out::DynStrTab->addString(F->getSoName())}); if (!Config->SoName.empty()) Add({DT_SONAME, Out::DynStrTab->addString(Config->SoName)}); Out::DynStrTab->finalize(); if (Out::RelaDyn->hasRelocs()) { bool IsRela = Config->Rela; Add({IsRela ? DT_RELA : DT_REL, Out::RelaDyn}); Add({IsRela ? DT_RELASZ : DT_RELSZ, Out::RelaDyn->getSize()}); Add({IsRela ? DT_RELAENT : DT_RELENT, uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); } if (Out::RelaPlt && Out::RelaPlt->hasRelocs()) { Add({DT_JMPREL, Out::RelaPlt}); Add({DT_PLTRELSZ, Out::RelaPlt->getSize()}); Add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, Out::GotPlt}); Add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); } Add({DT_SYMTAB, Out::DynSymTab}); Add({DT_SYMENT, sizeof(Elf_Sym)}); Add({DT_STRTAB, Out::DynStrTab}); Add({DT_STRSZ, Out::DynStrTab->getSize()}); if (Out::GnuHashTab) Add({DT_GNU_HASH, Out::GnuHashTab}); if (Out::HashTab) Add({DT_HASH, Out::HashTab}); if (PreInitArraySec) { Add({DT_PREINIT_ARRAY, PreInitArraySec}); Add({DT_PREINIT_ARRAYSZ, PreInitArraySec->getSize()}); } if (InitArraySec) { Add({DT_INIT_ARRAY, InitArraySec}); Add({DT_INIT_ARRAYSZ, (uintX_t)InitArraySec->getSize()}); } if (FiniArraySec) { Add({DT_FINI_ARRAY, FiniArraySec}); Add({DT_FINI_ARRAYSZ, (uintX_t)FiniArraySec->getSize()}); } if (SymbolBody *B = Symtab::X->find(Config->Init)) Add({DT_INIT, B}); if (SymbolBody *B = Symtab::X->find(Config->Fini)) Add({DT_FINI, B}); uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (DtFlags) Add({DT_FLAGS, DtFlags}); if (DtFlags1) Add({DT_FLAGS_1, DtFlags1}); if (!Config->Entry.empty()) Add({DT_DEBUG, (uint64_t)0}); bool HasVerNeed = Out::VerNeed->getNeedNum() != 0; if (HasVerNeed || Out::VerDef) Add({DT_VERSYM, Out::VerSym}); if (Out::VerDef) { Add({DT_VERDEF, Out::VerDef}); Add({DT_VERDEFNUM, getVerDefNum()}); } if (HasVerNeed) { Add({DT_VERNEED, Out::VerNeed}); Add({DT_VERNEEDNUM, Out::VerNeed->getNeedNum()}); } if (Config->EMachine == EM_MIPS) { Add({DT_MIPS_RLD_VERSION, 1}); Add({DT_MIPS_FLAGS, RHF_NOTPOT}); Add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); Add({DT_MIPS_SYMTABNO, Out::DynSymTab->getNumSymbols()}); Add({DT_MIPS_LOCAL_GOTNO, Out::Got->getMipsLocalEntriesNum()}); if (const SymbolBody *B = Out::Got->getMipsFirstGlobalEntry()) Add({DT_MIPS_GOTSYM, B->DynsymIndex}); else Add({DT_MIPS_GOTSYM, Out::DynSymTab->getNumSymbols()}); Add({DT_PLTGOT, Out::Got}); if (Out::MipsRldMap) Add({DT_MIPS_RLD_MAP, Out::MipsRldMap}); } // +1 for DT_NULL Header.sh_size = (Entries.size() + 1) * Header.sh_entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (const Entry &E : Entries) { P->d_tag = E.Tag; switch (E.Kind) { case Entry::SecAddr: P->d_un.d_ptr = E.OutSec->getVA(); break; case Entry::SymAddr: P->d_un.d_ptr = E.Sym->template getVA(); break; case Entry::PlainInt: P->d_un.d_val = E.Val; break; } ++P; } } template EhFrameHeader::EhFrameHeader() : OutputSectionBase(".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC) {} // .eh_frame_hdr contains a binary search table of pointers to FDEs. // Each entry of the search table consists of two values, // the starting PC from where FDEs covers, and the FDE's address. // It is sorted by PC. template void EhFrameHeader::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; // Sort the FDE list by their PC and uniqueify. Usually there is only // one FDE for a PC (i.e. function), but if ICF merges two functions // into one, there can be more than one FDEs pointing to the address. auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; std::stable_sort(Fdes.begin(), Fdes.end(), Less); auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); Buf[0] = 1; Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; Buf[2] = DW_EH_PE_udata4; Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; write32(Buf + 4, Out::EhFrame->getVA() - this->getVA() - 4); write32(Buf + 8, Fdes.size()); Buf += 12; uintX_t VA = this->getVA(); for (FdeData &Fde : Fdes) { write32(Buf, Fde.Pc - VA); write32(Buf + 4, Fde.FdeVA - VA); Buf += 8; } } template void EhFrameHeader::finalize() { // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. this->Header.sh_size = 12 + Out::EhFrame->NumFdes * 8; } template void EhFrameHeader::addFde(uint32_t Pc, uint32_t FdeVA) { Fdes.push_back({Pc, FdeVA}); } template OutputSection::OutputSection(StringRef Name, uint32_t Type, uintX_t Flags) : OutputSectionBase(Name, Type, Flags) { if (Type == SHT_RELA) this->Header.sh_entsize = sizeof(Elf_Rela); else if (Type == SHT_REL) this->Header.sh_entsize = sizeof(Elf_Rel); } template void OutputSection::finalize() { uint32_t Type = this->Header.sh_type; if (Type != SHT_RELA && Type != SHT_REL) return; this->Header.sh_link = Out::SymTab->SectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *S = Sections[0]->getRelocatedSection(); this->Header.sh_info = S->OutSec->SectionIndex; } template void OutputSection::addSection(InputSectionBase *C) { assert(C->Live); auto *S = cast>(C); Sections.push_back(S); S->OutSec = this; this->updateAlignment(S->Alignment); } // If an input string is in the form of "foo.N" where N is a number, // return N. Otherwise, returns 65536, which is one greater than the // lowest priority. static int getPriority(StringRef S) { size_t Pos = S.rfind('.'); if (Pos == StringRef::npos) return 65536; int V; if (S.substr(Pos + 1).getAsInteger(10, V)) return 65536; return V; } // This function is called after we sort input sections // and scan relocations to setup sections' offsets. template void OutputSection::assignOffsets() { uintX_t Off = this->Header.sh_size; for (InputSection *S : Sections) { Off = alignTo(Off, S->Alignment); S->OutSecOff = Off; Off += S->getSize(); } this->Header.sh_size = Off; } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. template void OutputSection::sortInitFini() { // Sort sections by priority. typedef std::pair *> Pair; auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; std::vector V; for (InputSection *S : Sections) V.push_back({getPriority(S->getSectionName()), S}); std::stable_sort(V.begin(), V.end(), Comp); Sections.clear(); for (Pair &P : V) Sections.push_back(P.second); } // Returns true if S matches /Filename.?\.o$/. static bool isCrtBeginEnd(StringRef S, StringRef Filename) { if (!S.endswith(".o")) return false; S = S.drop_back(2); if (S.endswith(Filename)) return true; return !S.empty() && S.drop_back().endswith(Filename); } static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. template static bool compCtors(const InputSection *A, const InputSection *B) { bool BeginA = isCrtbegin(A->getFile()->getName()); bool BeginB = isCrtbegin(B->getFile()->getName()); if (BeginA != BeginB) return BeginA; bool EndA = isCrtend(A->getFile()->getName()); bool EndB = isCrtend(B->getFile()->getName()); if (EndA != EndB) return EndB; StringRef X = A->getSectionName(); StringRef Y = B->getSectionName(); assert(X.startswith(".ctors") || X.startswith(".dtors")); assert(Y.startswith(".ctors") || Y.startswith(".dtors")); X = X.substr(6); Y = Y.substr(6); if (X.empty() && Y.empty()) return false; return X < Y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. template void OutputSection::sortCtorsDtors() { std::stable_sort(Sections.begin(), Sections.end(), compCtors); } static void fill(uint8_t *Buf, size_t Size, ArrayRef A) { size_t I = 0; for (; I + A.size() < Size; I += A.size()) memcpy(Buf + I, A.data(), A.size()); memcpy(Buf + I, A.data(), Size - I); } template void OutputSection::writeTo(uint8_t *Buf) { ArrayRef Filler = Script::X->getFiller(this->Name); if (!Filler.empty()) fill(Buf, this->getSize(), Filler); if (Config->Threads) { parallel_for_each(Sections.begin(), Sections.end(), [=](InputSection *C) { C->writeTo(Buf); }); } else { for (InputSection *C : Sections) C->writeTo(Buf); } } template EhOutputSection::EhOutputSection() : OutputSectionBase(".eh_frame", SHT_PROGBITS, SHF_ALLOC) {} // Returns the first relocation that points to a region // between Begin and Begin+Size. template static const RelTy *getReloc(IntTy Begin, IntTy Size, ArrayRef &Rels) { for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { if (I->r_offset < Begin) continue; // Truncate Rels for fast access. That means we expect that the // relocations are sorted and we are looking up symbols in // sequential order. It is naturally satisfied for .eh_frame. Rels = Rels.slice(I - Rels.begin()); if (I->r_offset < Begin + Size) return I; return nullptr; } Rels = ArrayRef(); return nullptr; } // Search for an existing CIE record or create a new one. // CIE records from input object files are uniquified by their contents // and where their relocations point to. template template CieRecord *EhOutputSection::addCie(SectionPiece &Piece, EhInputSection *Sec, ArrayRef &Rels) { const endianness E = ELFT::TargetEndianness; if (read32(Piece.data().data() + 4) != 0) fatal("CIE expected at beginning of .eh_frame: " + Sec->getSectionName()); SymbolBody *Personality = nullptr; if (const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels)) Personality = &Sec->getFile()->getRelocTargetSym(*Rel); // Search for an existing CIE by CIE contents/relocation target pair. CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; // If not found, create a new one. if (Cie->Piece == nullptr) { Cie->Piece = &Piece; Cies.push_back(Cie); } return Cie; } // There is one FDE per function. Returns true if a given FDE // points to a live function. template template bool EhOutputSection::isFdeLive(SectionPiece &Piece, EhInputSection *Sec, ArrayRef &Rels) { const RelTy *Rel = getReloc(Piece.InputOff, Piece.size(), Rels); if (!Rel) fatal("FDE doesn't reference another section"); SymbolBody &B = Sec->getFile()->getRelocTargetSym(*Rel); auto *D = dyn_cast>(&B); if (!D || !D->Section) return false; InputSectionBase *Target = D->Section->Repl; return Target && Target->Live; } // .eh_frame is a sequence of CIE or FDE records. In general, there // is one CIE record per input object file which is followed by // a list of FDEs. This function searches an existing CIE or create a new // one and associates FDEs to the CIE. template template void EhOutputSection::addSectionAux(EhInputSection *Sec, ArrayRef Rels) { const endianness E = ELFT::TargetEndianness; DenseMap OffsetToCie; for (SectionPiece &Piece : Sec->Pieces) { // The empty record is the end marker. if (Piece.size() == 4) return; size_t Offset = Piece.InputOff; uint32_t ID = read32(Piece.data().data() + 4); if (ID == 0) { OffsetToCie[Offset] = addCie(Piece, Sec, Rels); continue; } uint32_t CieOffset = Offset + 4 - ID; CieRecord *Cie = OffsetToCie[CieOffset]; if (!Cie) fatal("invalid CIE reference"); if (!isFdeLive(Piece, Sec, Rels)) continue; Cie->FdePieces.push_back(&Piece); NumFdes++; } } template void EhOutputSection::addSection(InputSectionBase *C) { auto *Sec = cast>(C); Sec->OutSec = this; this->updateAlignment(Sec->Alignment); Sections.push_back(Sec); // .eh_frame is a sequence of CIE or FDE records. This function // splits it into pieces so that we can call // SplitInputSection::getSectionPiece on the section. Sec->split(); if (Sec->Pieces.empty()) return; if (const Elf_Shdr *RelSec = Sec->RelocSection) { ELFFile &Obj = Sec->getFile()->getObj(); if (RelSec->sh_type == SHT_RELA) addSectionAux(Sec, Obj.relas(RelSec)); else addSectionAux(Sec, Obj.rels(RelSec)); return; } addSectionAux(Sec, makeArrayRef(nullptr, nullptr)); } template static void writeCieFde(uint8_t *Buf, ArrayRef D) { memcpy(Buf, D.data(), D.size()); // Fix the size field. -4 since size does not include the size field itself. const endianness E = ELFT::TargetEndianness; write32(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); } template void EhOutputSection::finalize() { if (this->Header.sh_size) return; // Already finalized. size_t Off = 0; for (CieRecord *Cie : Cies) { Cie->Piece->OutputOff = Off; Off += alignTo(Cie->Piece->size(), sizeof(uintX_t)); for (SectionPiece *Fde : Cie->FdePieces) { Fde->OutputOff = Off; Off += alignTo(Fde->size(), sizeof(uintX_t)); } } this->Header.sh_size = Off; } template static uint64_t readFdeAddr(uint8_t *Buf, int Size) { const endianness E = ELFT::TargetEndianness; switch (Size) { case DW_EH_PE_udata2: return read16(Buf); case DW_EH_PE_udata4: return read32(Buf); case DW_EH_PE_udata8: return read64(Buf); case DW_EH_PE_absptr: if (ELFT::Is64Bits) return read64(Buf); return read32(Buf); } fatal("unknown FDE size encoding"); } // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. // We need it to create .eh_frame_hdr section. template typename ELFT::uint EhOutputSection::getFdePc(uint8_t *Buf, size_t FdeOff, uint8_t Enc) { // The starting address to which this FDE applies is // stored at FDE + 8 byte. size_t Off = FdeOff + 8; uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0x7); if ((Enc & 0x70) == DW_EH_PE_absptr) return Addr; if ((Enc & 0x70) == DW_EH_PE_pcrel) return Addr + this->getVA() + Off; fatal("unknown FDE size relative encoding"); } template void EhOutputSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; for (CieRecord *Cie : Cies) { size_t CieOffset = Cie->Piece->OutputOff; writeCieFde(Buf + CieOffset, Cie->Piece->data()); for (SectionPiece *Fde : Cie->FdePieces) { size_t Off = Fde->OutputOff; writeCieFde(Buf + Off, Fde->data()); // FDE's second word should have the offset to an associated CIE. // Write it. write32(Buf + Off + 4, Off + 4 - CieOffset); } } for (EhInputSection *S : Sections) S->relocate(Buf, nullptr); // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table // to get a FDE from an address to which FDE is applied. So here // we obtain two addresses and pass them to EhFrameHdr object. if (Out::EhFrameHdr) { for (CieRecord *Cie : Cies) { uint8_t Enc = getFdeEncoding(Cie->Piece->data()); for (SectionPiece *Fde : Cie->FdePieces) { uintX_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); uintX_t FdeVA = this->getVA() + Fde->OutputOff; Out::EhFrameHdr->addFde(Pc, FdeVA); } } } } template MergeOutputSection::MergeOutputSection(StringRef Name, uint32_t Type, uintX_t Flags, uintX_t Alignment) : OutputSectionBase(Name, Type, Flags), Builder(StringTableBuilder::RAW, Alignment) {} template void MergeOutputSection::writeTo(uint8_t *Buf) { if (shouldTailMerge()) { StringRef Data = Builder.data(); memcpy(Buf, Data.data(), Data.size()); return; } for (const std::pair, size_t> &P : Builder.getMap()) { StringRef Data = P.first.Val; memcpy(Buf + P.second, Data.data(), Data.size()); } } static StringRef toStringRef(ArrayRef A) { return {(const char *)A.data(), A.size()}; } template void MergeOutputSection::addSection(InputSectionBase *C) { auto *Sec = cast>(C); Sec->OutSec = this; this->updateAlignment(Sec->Alignment); this->Header.sh_entsize = Sec->getSectionHdr()->sh_entsize; Sections.push_back(Sec); bool IsString = this->Header.sh_flags & SHF_STRINGS; for (SectionPiece &Piece : Sec->Pieces) { if (!Piece.Live) continue; uintX_t OutputOffset = Builder.add(toStringRef(Piece.data())); if (!IsString || !shouldTailMerge()) Piece.OutputOff = OutputOffset; } } template unsigned MergeOutputSection::getOffset(StringRef Val) { return Builder.getOffset(Val); } template bool MergeOutputSection::shouldTailMerge() const { return Config->Optimize >= 2 && this->Header.sh_flags & SHF_STRINGS; } template void MergeOutputSection::finalize() { if (shouldTailMerge()) Builder.finalize(); this->Header.sh_size = Builder.getSize(); } template void MergeOutputSection::finalizePieces() { for (MergeInputSection *Sec : Sections) Sec->finalizePieces(); } template StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : OutputSectionBase(Name, SHT_STRTAB, Dynamic ? (uintX_t)SHF_ALLOC : 0), Dynamic(Dynamic) {} // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. template unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, Size)); if (!R.second) return R.first->second; } unsigned Ret = Size; Size += S.size() + 1; Strings.push_back(S); return Ret; } template void StringTableSection::writeTo(uint8_t *Buf) { // ELF string tables start with NUL byte, so advance the pointer by one. ++Buf; for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf += S.size() + 1; } } template typename ELFT::uint DynamicReloc::getOffset() const { if (OutputSec) return OutputSec->getVA() + OffsetInSec; return InputSec->OutSec->getVA() + InputSec->getOffset(OffsetInSec); } template typename ELFT::uint DynamicReloc::getAddend() const { if (UseSymVA) return Sym->getVA(Addend); return Addend; } template uint32_t DynamicReloc::getSymIndex() const { if (Sym && !UseSymVA) return Sym->DynsymIndex; return 0; } template SymbolTableSection::SymbolTableSection( StringTableSection &StrTabSec) : OutputSectionBase(StrTabSec.isDynamic() ? ".dynsym" : ".symtab", StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0), StrTabSec(StrTabSec) { this->Header.sh_entsize = sizeof(Elf_Sym); this->Header.sh_addralign = sizeof(uintX_t); } // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const std::pair &L, const std::pair &R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the first part of GOT in arbitrary order. bool LIsInLocalGot = !L.first->IsInGlobalMipsGot; bool RIsInLocalGot = !R.first->IsInGlobalMipsGot; if (LIsInLocalGot || RIsInLocalGot) return !RIsInLocalGot; return L.first->GotIndex < R.first->GotIndex; } static uint8_t getSymbolBinding(SymbolBody *Body) { Symbol *S = Body->symbol(); uint8_t Visibility = S->Visibility; if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) return STB_LOCAL; if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) return STB_GLOBAL; return S->Binding; } template void SymbolTableSection::finalize() { if (this->Header.sh_size) return; // Already finalized. this->Header.sh_size = getNumSymbols() * sizeof(Elf_Sym); this->Header.sh_link = StrTabSec.SectionIndex; this->Header.sh_info = NumLocals + 1; if (Config->Relocatable) { size_t I = NumLocals; for (const std::pair &P : Symbols) P.first->DynsymIndex = ++I; return; } if (!StrTabSec.isDynamic()) { std::stable_sort(Symbols.begin(), Symbols.end(), [](const std::pair &L, const std::pair &R) { return getSymbolBinding(L.first) == STB_LOCAL && getSymbolBinding(R.first) != STB_LOCAL; }); return; } if (Out::GnuHashTab) // NB: It also sorts Symbols to meet the GNU hash table requirements. Out::GnuHashTab->addSymbols(Symbols); else if (Config->EMachine == EM_MIPS) std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); size_t I = 0; for (const std::pair &P : Symbols) P.first->DynsymIndex = ++I; } template void SymbolTableSection::addSymbol(SymbolBody *B) { Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); } template void SymbolTableSection::writeTo(uint8_t *Buf) { Buf += sizeof(Elf_Sym); // All symbols with STB_LOCAL binding precede the weak and global symbols. // .dynsym only contains global symbols. if (!Config->DiscardAll && !StrTabSec.isDynamic()) writeLocalSymbols(Buf); writeGlobalSymbols(Buf); } template void SymbolTableSection::writeLocalSymbols(uint8_t *&Buf) { // Iterate over all input object files to copy their local symbols // to the output symbol table pointed by Buf. for (const std::unique_ptr> &File : Symtab::X->getObjectFiles()) { for (const std::pair *, size_t> &P : File->KeptLocalSyms) { const DefinedRegular &Body = *P.first; InputSectionBase *Section = Body.Section; auto *ESym = reinterpret_cast(Buf); if (!Section) { ESym->st_shndx = SHN_ABS; ESym->st_value = Body.Value; } else { const OutputSectionBase *OutSec = Section->OutSec; ESym->st_shndx = OutSec->SectionIndex; ESym->st_value = OutSec->getVA() + Section->getOffset(Body); } ESym->st_name = P.second; ESym->st_size = Body.template getSize(); ESym->setBindingAndType(STB_LOCAL, Body.Type); Buf += sizeof(*ESym); } } } template void SymbolTableSection::writeGlobalSymbols(uint8_t *Buf) { // Write the internal symbol table contents to the output symbol table // pointed by Buf. auto *ESym = reinterpret_cast(Buf); for (const std::pair &P : Symbols) { SymbolBody *Body = P.first; size_t StrOff = P.second; uint8_t Type = Body->Type; uintX_t Size = Body->getSize(); ESym->setBindingAndType(getSymbolBinding(Body), Type); ESym->st_size = Size; ESym->st_name = StrOff; ESym->setVisibility(Body->symbol()->Visibility); ESym->st_value = Body->getVA(); if (const OutputSectionBase *OutSec = getOutputSection(Body)) ESym->st_shndx = OutSec->SectionIndex; else if (isa>(Body)) ESym->st_shndx = SHN_ABS; // On MIPS we need to mark symbol which has a PLT entry and requires pointer // equality by STO_MIPS_PLT flag. That is necessary to help dynamic linker // distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Config->EMachine == EM_MIPS && Body->isInPlt() && Body->NeedsCopyOrPltAddr) ESym->st_other |= STO_MIPS_PLT; ++ESym; } } template const OutputSectionBase * SymbolTableSection::getOutputSection(SymbolBody *Sym) { switch (Sym->kind()) { case SymbolBody::DefinedSyntheticKind: return cast>(Sym)->Section; case SymbolBody::DefinedRegularKind: { auto &D = cast>(*Sym); if (D.Section) return D.Section->OutSec; break; } case SymbolBody::DefinedCommonKind: return Out::Bss; case SymbolBody::SharedKind: if (cast>(Sym)->needsCopy()) return Out::Bss; break; case SymbolBody::UndefinedKind: case SymbolBody::LazyArchiveKind: case SymbolBody::LazyObjectKind: break; case SymbolBody::DefinedBitcodeKind: llvm_unreachable("should have been replaced"); } return nullptr; } template VersionDefinitionSection::VersionDefinitionSection() : OutputSectionBase(".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC) { this->Header.sh_addralign = sizeof(uint32_t); } static StringRef getFileDefName() { if (!Config->SoName.empty()) return Config->SoName; return Config->OutputFile; } template void VersionDefinitionSection::finalize() { FileDefNameOff = Out::DynStrTab->addString(getFileDefName()); for (VersionDefinition &V : Config->VersionDefinitions) V.NameOff = Out::DynStrTab->addString(V.Name); this->Header.sh_size = (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); this->Header.sh_link = Out::DynStrTab->SectionIndex; // sh_info should be set to the number of definitions. This fact is missed in // documentation, but confirmed by binutils community: // https://sourceware.org/ml/binutils/2014-11/msg00355.html this->Header.sh_info = getVerDefNum(); } template void VersionDefinitionSection::writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff) { auto *Verdef = reinterpret_cast(Buf); Verdef->vd_version = 1; Verdef->vd_cnt = 1; Verdef->vd_aux = sizeof(Elf_Verdef); Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); Verdef->vd_ndx = Index; Verdef->vd_hash = hashSysv(Name); auto *Verdaux = reinterpret_cast(Buf + sizeof(Elf_Verdef)); Verdaux->vda_name = NameOff; Verdaux->vda_next = 0; } template void VersionDefinitionSection::writeTo(uint8_t *Buf) { writeOne(Buf, 1, getFileDefName(), FileDefNameOff); for (VersionDefinition &V : Config->VersionDefinitions) { Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); writeOne(Buf, V.Id, V.Name, V.NameOff); } // Need to terminate the last version definition. Elf_Verdef *Verdef = reinterpret_cast(Buf); Verdef->vd_next = 0; } template VersionTableSection::VersionTableSection() : OutputSectionBase(".gnu.version", SHT_GNU_versym, SHF_ALLOC) { this->Header.sh_addralign = sizeof(uint16_t); } template void VersionTableSection::finalize() { this->Header.sh_size = sizeof(Elf_Versym) * (Out::DynSymTab->getSymbols().size() + 1); this->Header.sh_entsize = sizeof(Elf_Versym); // At the moment of june 2016 GNU docs does not mention that sh_link field // should be set, but Sun docs do. Also readelf relies on this field. this->Header.sh_link = Out::DynSymTab->SectionIndex; } template void VersionTableSection::writeTo(uint8_t *Buf) { auto *OutVersym = reinterpret_cast(Buf) + 1; for (const std::pair &P : Out::DynSymTab->getSymbols()) { OutVersym->vs_index = P.first->symbol()->VersionId; ++OutVersym; } } template VersionNeedSection::VersionNeedSection() : OutputSectionBase(".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC) { this->Header.sh_addralign = sizeof(uint32_t); // Identifiers in verneed section start at 2 because 0 and 1 are reserved // for VER_NDX_LOCAL and VER_NDX_GLOBAL. // First identifiers are reserved by verdef section if it exist. NextIndex = getVerDefNum() + 1; } template void VersionNeedSection::addSymbol(SharedSymbol *SS) { if (!SS->Verdef) { SS->symbol()->VersionId = VER_NDX_GLOBAL; return; } SharedFile *F = SS->file(); // If we don't already know that we need an Elf_Verneed for this DSO, prepare // to create one by adding it to our needed list and creating a dynstr entry // for the soname. if (F->VerdefMap.empty()) Needed.push_back({F, Out::DynStrTab->addString(F->getSoName())}); typename SharedFile::NeededVer &NV = F->VerdefMap[SS->Verdef]; // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, // prepare to create one by allocating a version identifier and creating a // dynstr entry for the version name. if (NV.Index == 0) { NV.StrTab = Out::DynStrTab->addString( SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name); NV.Index = NextIndex++; } SS->symbol()->VersionId = NV.Index; } template void VersionNeedSection::writeTo(uint8_t *Buf) { // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. auto *Verneed = reinterpret_cast(Buf); auto *Vernaux = reinterpret_cast(Verneed + Needed.size()); for (std::pair *, size_t> &P : Needed) { // Create an Elf_Verneed for this DSO. Verneed->vn_version = 1; Verneed->vn_cnt = P.first->VerdefMap.size(); Verneed->vn_file = P.second; Verneed->vn_aux = reinterpret_cast(Vernaux) - reinterpret_cast(Verneed); Verneed->vn_next = sizeof(Elf_Verneed); ++Verneed; // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over // VerdefMap, which will only contain references to needed version // definitions. Each Elf_Vernaux is based on the information contained in // the Elf_Verdef in the source DSO. This loop iterates over a std::map of // pointers, but is deterministic because the pointers refer to Elf_Verdef // data structures within a single input file. for (auto &NV : P.first->VerdefMap) { Vernaux->vna_hash = NV.first->vd_hash; Vernaux->vna_flags = 0; Vernaux->vna_other = NV.second.Index; Vernaux->vna_name = NV.second.StrTab; Vernaux->vna_next = sizeof(Elf_Vernaux); ++Vernaux; } Vernaux[-1].vna_next = 0; } Verneed[-1].vn_next = 0; } template void VersionNeedSection::finalize() { this->Header.sh_link = Out::DynStrTab->SectionIndex; this->Header.sh_info = Needed.size(); unsigned Size = Needed.size() * sizeof(Elf_Verneed); for (std::pair *, size_t> &P : Needed) Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); this->Header.sh_size = Size; } template BuildIdSection::BuildIdSection(size_t HashSize) : OutputSectionBase(".note.gnu.build-id", SHT_NOTE, SHF_ALLOC), HashSize(HashSize) { // 16 bytes for the note section header. this->Header.sh_size = 16 + HashSize; } template void BuildIdSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; write32(Buf, 4); // Name size write32(Buf + 4, HashSize); // Content size write32(Buf + 8, NT_GNU_BUILD_ID); // Type memcpy(Buf + 12, "GNU", 4); // Name string HashBuf = Buf + 16; } template void BuildIdFnv1::writeBuildId(ArrayRef> Bufs) { const endianness E = ELFT::TargetEndianness; // 64-bit FNV-1 hash uint64_t Hash = 0xcbf29ce484222325; for (ArrayRef Buf : Bufs) { for (uint8_t B : Buf) { Hash *= 0x100000001b3; Hash ^= B; } } write64(this->HashBuf, Hash); } template void BuildIdMd5::writeBuildId(ArrayRef> Bufs) { MD5 Hash; for (ArrayRef Buf : Bufs) Hash.update(Buf); MD5::MD5Result Res; Hash.final(Res); memcpy(this->HashBuf, Res, 16); } template void BuildIdSha1::writeBuildId(ArrayRef> Bufs) { SHA1 Hash; for (ArrayRef Buf : Bufs) Hash.update(Buf); memcpy(this->HashBuf, Hash.final().data(), 20); } template BuildIdHexstring::BuildIdHexstring() : BuildIdSection(Config->BuildIdVector.size()) {} template void BuildIdHexstring::writeBuildId(ArrayRef> Bufs) { memcpy(this->HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); } template MipsReginfoOutputSection::MipsReginfoOutputSection() : OutputSectionBase(".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC) { this->Header.sh_addralign = 4; this->Header.sh_entsize = sizeof(Elf_Mips_RegInfo); this->Header.sh_size = sizeof(Elf_Mips_RegInfo); } template void MipsReginfoOutputSection::writeTo(uint8_t *Buf) { auto *R = reinterpret_cast(Buf); R->ri_gp_value = Out::Got->getVA() + MipsGPOffset; R->ri_gprmask = GprMask; } template void MipsReginfoOutputSection::addSection(InputSectionBase *C) { // Copy input object file's .reginfo gprmask to output. auto *S = cast>(C); GprMask |= S->Reginfo->ri_gprmask; S->OutSec = this; } template MipsOptionsOutputSection::MipsOptionsOutputSection() : OutputSectionBase(".MIPS.options", SHT_MIPS_OPTIONS, SHF_ALLOC | SHF_MIPS_NOSTRIP) { this->Header.sh_addralign = 8; this->Header.sh_entsize = 1; this->Header.sh_size = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); } template void MipsOptionsOutputSection::writeTo(uint8_t *Buf) { auto *Opt = reinterpret_cast(Buf); Opt->kind = ODK_REGINFO; Opt->size = this->Header.sh_size; Opt->section = 0; Opt->info = 0; auto *Reg = reinterpret_cast(Buf + sizeof(*Opt)); Reg->ri_gp_value = Out::Got->getVA() + MipsGPOffset; Reg->ri_gprmask = GprMask; } template void MipsOptionsOutputSection::addSection(InputSectionBase *C) { auto *S = cast>(C); if (S->Reginfo) GprMask |= S->Reginfo->ri_gprmask; S->OutSec = this; } template std::pair *, bool> OutputSectionFactory::create(InputSectionBase *C, StringRef OutsecName) { SectionKey Key = createKey(C, OutsecName); OutputSectionBase *&Sec = Map[Key]; if (Sec) return {Sec, false}; switch (C->SectionKind) { case InputSectionBase::Regular: Sec = new OutputSection(Key.Name, Key.Type, Key.Flags); break; case InputSectionBase::EHFrame: return {Out::EhFrame, false}; case InputSectionBase::Merge: Sec = new MergeOutputSection(Key.Name, Key.Type, Key.Flags, Key.Alignment); break; case InputSectionBase::MipsReginfo: Sec = new MipsReginfoOutputSection(); break; case InputSectionBase::MipsOptions: Sec = new MipsOptionsOutputSection(); break; } return {Sec, true}; } template OutputSectionBase *OutputSectionFactory::lookup(StringRef Name, uint32_t Type, uintX_t Flags) { return Map.lookup({Name, Type, Flags, 0}); } template SectionKey OutputSectionFactory::createKey(InputSectionBase *C, StringRef OutsecName) { const Elf_Shdr *H = C->getSectionHdr(); uintX_t Flags = H->sh_flags & ~SHF_GROUP & ~SHF_COMPRESSED; // For SHF_MERGE we create different output sections for each alignment. // This makes each output section simple and keeps a single level mapping from // input to output. uintX_t Alignment = 0; if (isa>(C)) Alignment = std::max(H->sh_addralign, H->sh_entsize); uint32_t Type = H->sh_type; return SectionKey{OutsecName, Type, Flags, Alignment}; } template typename lld::elf::SectionKey DenseMapInfo>::getEmptyKey() { return SectionKey{DenseMapInfo::getEmptyKey(), 0, 0, 0}; } template typename lld::elf::SectionKey DenseMapInfo>::getTombstoneKey() { return SectionKey{DenseMapInfo::getTombstoneKey(), 0, 0, 0}; } template unsigned DenseMapInfo>::getHashValue(const Key &Val) { return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); } template bool DenseMapInfo>::isEqual(const Key &LHS, const Key &RHS) { return DenseMapInfo::isEqual(LHS.Name, RHS.Name) && LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; } namespace llvm { template struct DenseMapInfo>; template struct DenseMapInfo>; } namespace lld { namespace elf { template class OutputSectionBase; template class OutputSectionBase; template class OutputSectionBase; template class OutputSectionBase; template class EhFrameHeader; template class EhFrameHeader; template class EhFrameHeader; template class EhFrameHeader; template class GotPltSection; template class GotPltSection; template class GotPltSection; template class GotPltSection; template class GotSection; template class GotSection; template class GotSection; template class GotSection; template class PltSection; template class PltSection; template class PltSection; template class PltSection; template class RelocationSection; template class RelocationSection; template class RelocationSection; template class RelocationSection; template class InterpSection; template class InterpSection; template class InterpSection; template class InterpSection; template class GnuHashTableSection; template class GnuHashTableSection; template class GnuHashTableSection; template class GnuHashTableSection; template class HashTableSection; template class HashTableSection; template class HashTableSection; template class HashTableSection; template class DynamicSection; template class DynamicSection; template class DynamicSection; template class DynamicSection; template class OutputSection; template class OutputSection; template class OutputSection; template class OutputSection; template class EhOutputSection; template class EhOutputSection; template class EhOutputSection; template class EhOutputSection; template class MipsReginfoOutputSection; template class MipsReginfoOutputSection; template class MipsReginfoOutputSection; template class MipsReginfoOutputSection; template class MipsOptionsOutputSection; template class MipsOptionsOutputSection; template class MipsOptionsOutputSection; template class MipsOptionsOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class MergeOutputSection; template class StringTableSection; template class StringTableSection; template class StringTableSection; template class StringTableSection; template class SymbolTableSection; template class SymbolTableSection; template class SymbolTableSection; template class SymbolTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionTableSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionNeedSection; template class VersionDefinitionSection; template class VersionDefinitionSection; template class VersionDefinitionSection; template class VersionDefinitionSection; template class BuildIdSection; template class BuildIdSection; template class BuildIdSection; template class BuildIdSection; template class BuildIdFnv1; template class BuildIdFnv1; template class BuildIdFnv1; template class BuildIdFnv1; template class BuildIdMd5; template class BuildIdMd5; template class BuildIdMd5; template class BuildIdMd5; template class BuildIdSha1; template class BuildIdSha1; template class BuildIdSha1; template class BuildIdSha1; template class BuildIdHexstring; template class BuildIdHexstring; template class BuildIdHexstring; template class BuildIdHexstring; template class OutputSectionFactory; template class OutputSectionFactory; template class OutputSectionFactory; template class OutputSectionFactory; } }