//===- OutputSections.cpp -------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "OutputSections.h" #include "Config.h" #include "LinkerScript.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/Memory.h" #include "lld/Common/Threads.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Support/Compression.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/SHA1.h" using namespace llvm; using namespace llvm::dwarf; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; using namespace lld; using namespace lld::elf; uint8_t Out::First; OutputSection *Out::Opd; uint8_t *Out::OpdBuf; PhdrEntry *Out::TlsPhdr; OutputSection *Out::DebugInfo; OutputSection *Out::ElfHeader; OutputSection *Out::ProgramHeaders; OutputSection *Out::PreinitArray; OutputSection *Out::InitArray; OutputSection *Out::FiniArray; std::vector elf::OutputSections; uint32_t OutputSection::getPhdrFlags() const { uint32_t Ret = PF_R; if (Flags & SHF_WRITE) Ret |= PF_W; if (Flags & SHF_EXECINSTR) Ret |= PF_X; return Ret; } template void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) { Shdr->sh_entsize = Entsize; Shdr->sh_addralign = Alignment; Shdr->sh_type = Type; Shdr->sh_offset = Offset; Shdr->sh_flags = Flags; Shdr->sh_info = Info; Shdr->sh_link = Link; Shdr->sh_addr = Addr; Shdr->sh_size = Size; Shdr->sh_name = ShName; } OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags) : BaseCommand(OutputSectionKind), SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type, /*Info*/ 0, /*Link*/ 0), SectionIndex(INT_MAX) { Live = false; } // We allow sections of types listed below to merged into a // single progbits section. This is typically done by linker // scripts. Merging nobits and progbits will force disk space // to be allocated for nobits sections. Other ones don't require // any special treatment on top of progbits, so there doesn't // seem to be a harm in merging them. static bool canMergeToProgbits(unsigned Type) { return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY || Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_NOTE; } void OutputSection::addSection(InputSection *IS) { if (!Live) { // If IS is the first section to be added to this section, // initialize Type and Entsize from IS. Live = true; Type = IS->Type; Entsize = IS->Entsize; } else { // Otherwise, check if new type or flags are compatible with existing ones. if ((Flags & (SHF_ALLOC | SHF_TLS)) != (IS->Flags & (SHF_ALLOC | SHF_TLS))) error("incompatible section flags for " + Name + "\n>>> " + toString(IS) + ": 0x" + utohexstr(IS->Flags) + "\n>>> output section " + Name + ": 0x" + utohexstr(Flags)); if (Type != IS->Type) { if (!canMergeToProgbits(Type) || !canMergeToProgbits(IS->Type)) error("section type mismatch for " + IS->Name + "\n>>> " + toString(IS) + ": " + getELFSectionTypeName(Config->EMachine, IS->Type) + "\n>>> output section " + Name + ": " + getELFSectionTypeName(Config->EMachine, Type)); Type = SHT_PROGBITS; } } IS->Parent = this; Flags |= IS->Flags; Alignment = std::max(Alignment, IS->Alignment); IS->OutSecOff = Size++; // If this section contains a table of fixed-size entries, sh_entsize // holds the element size. If it contains elements of different size we // set sh_entsize to 0. if (Entsize != IS->Entsize) Entsize = 0; if (!IS->Assigned) { IS->Assigned = true; if (SectionCommands.empty() || !isa(SectionCommands.back())) SectionCommands.push_back(make("")); auto *ISD = cast(SectionCommands.back()); ISD->Sections.push_back(IS); } } void elf::sortByOrder(MutableArrayRef In, std::function Order) { typedef std::pair Pair; auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; std::vector V; for (InputSection *S : In) V.push_back({Order(S), S}); std::stable_sort(V.begin(), V.end(), Comp); for (size_t I = 0; I < V.size(); ++I) In[I] = V[I].second; } uint64_t elf::getHeaderSize() { if (Config->OFormatBinary) return 0; return Out::ElfHeader->Size + Out::ProgramHeaders->Size; } bool OutputSection::classof(const BaseCommand *C) { return C->Kind == OutputSectionKind; } void OutputSection::sort(std::function Order) { assert(Live); assert(SectionCommands.size() == 1); sortByOrder(cast(SectionCommands[0])->Sections, Order); } // Fill [Buf, Buf + Size) with Filler. // This is used for linker script "=fillexp" command. static void fill(uint8_t *Buf, size_t Size, uint32_t Filler) { size_t I = 0; for (; I + 4 < Size; I += 4) memcpy(Buf + I, &Filler, 4); memcpy(Buf + I, &Filler, Size - I); } // Compress section contents if this section contains debug info. template void OutputSection::maybeCompress() { typedef typename ELFT::Chdr Elf_Chdr; // Compress only DWARF debug sections. if (!Config->CompressDebugSections || (Flags & SHF_ALLOC) || !Name.startswith(".debug_")) return; // Create a section header. ZDebugHeader.resize(sizeof(Elf_Chdr)); auto *Hdr = reinterpret_cast(ZDebugHeader.data()); Hdr->ch_type = ELFCOMPRESS_ZLIB; Hdr->ch_size = Size; Hdr->ch_addralign = Alignment; // Write section contents to a temporary buffer and compress it. std::vector Buf(Size); writeTo(Buf.data()); if (Error E = zlib::compress(toStringRef(Buf), CompressedData)) fatal("compress failed: " + llvm::toString(std::move(E))); // Update section headers. Size = sizeof(Elf_Chdr) + CompressedData.size(); Flags |= SHF_COMPRESSED; } static void writeInt(uint8_t *Buf, uint64_t Data, uint64_t Size) { if (Size == 1) *Buf = Data; else if (Size == 2) write16(Buf, Data, Config->Endianness); else if (Size == 4) write32(Buf, Data, Config->Endianness); else if (Size == 8) write64(Buf, Data, Config->Endianness); else llvm_unreachable("unsupported Size argument"); } template void OutputSection::writeTo(uint8_t *Buf) { if (Type == SHT_NOBITS) return; Loc = Buf; // If -compress-debug-section is specified and if this is a debug seciton, // we've already compressed section contents. If that's the case, // just write it down. if (!CompressedData.empty()) { memcpy(Buf, ZDebugHeader.data(), ZDebugHeader.size()); memcpy(Buf + ZDebugHeader.size(), CompressedData.data(), CompressedData.size()); return; } // Write leading padding. std::vector Sections; for (BaseCommand *Cmd : SectionCommands) if (auto *ISD = dyn_cast(Cmd)) for (InputSection *IS : ISD->Sections) if (IS->Live) Sections.push_back(IS); uint32_t Filler = getFiller(); if (Filler) fill(Buf, Sections.empty() ? Size : Sections[0]->OutSecOff, Filler); parallelForEachN(0, Sections.size(), [&](size_t I) { InputSection *IS = Sections[I]; IS->writeTo(Buf); // Fill gaps between sections. if (Filler) { uint8_t *Start = Buf + IS->OutSecOff + IS->getSize(); uint8_t *End; if (I + 1 == Sections.size()) End = Buf + Size; else End = Buf + Sections[I + 1]->OutSecOff; fill(Start, End - Start, Filler); } }); // Linker scripts may have BYTE()-family commands with which you // can write arbitrary bytes to the output. Process them if any. for (BaseCommand *Base : SectionCommands) if (auto *Data = dyn_cast(Base)) writeInt(Buf + Data->Offset, Data->Expression().getValue(), Data->Size); } template static void finalizeShtGroup(OutputSection *OS, InputSection *Section) { assert(Config->Relocatable); // sh_link field for SHT_GROUP sections should contain the section index of // the symbol table. OS->Link = InX::SymTab->getParent()->SectionIndex; // sh_info then contain index of an entry in symbol table section which // provides signature of the section group. ObjFile *Obj = Section->getFile(); ArrayRef Symbols = Obj->getSymbols(); OS->Info = InX::SymTab->getSymbolIndex(Symbols[Section->Info]); } template void OutputSection::finalize() { InputSection *First = nullptr; for (BaseCommand *Base : SectionCommands) { if (auto *ISD = dyn_cast(Base)) { if (ISD->Sections.empty()) continue; if (First == nullptr) First = ISD->Sections.front(); } if (isa(Base) && Type == SHT_NOBITS) Type = SHT_PROGBITS; } if (Flags & SHF_LINK_ORDER) { // We must preserve the link order dependency of sections with the // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We // need to translate the InputSection sh_link to the OutputSection sh_link, // all InputSections in the OutputSection have the same dependency. if (auto *D = First->getLinkOrderDep()) Link = D->getParent()->SectionIndex; } if (Type == SHT_GROUP) { finalizeShtGroup(this, First); return; } if (!Config->CopyRelocs || (Type != SHT_RELA && Type != SHT_REL)) return; if (isa(First)) return; Link = InX::SymTab->getParent()->SectionIndex; // sh_info for SHT_REL[A] sections should contain the section header index of // the section to which the relocation applies. InputSectionBase *S = First->getRelocatedSection(); Info = S->getOutputSection()->SectionIndex; Flags |= SHF_INFO_LINK; } // Returns true if S matches /Filename.?\.o$/. static bool isCrtBeginEnd(StringRef S, StringRef Filename) { if (!S.endswith(".o")) return false; S = S.drop_back(2); if (S.endswith(Filename)) return true; return !S.empty() && S.drop_back().endswith(Filename); } static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } // .ctors and .dtors are sorted by this priority from highest to lowest. // // 1. The section was contained in crtbegin (crtbegin contains // some sentinel value in its .ctors and .dtors so that the runtime // can find the beginning of the sections.) // // 2. The section has an optional priority value in the form of ".ctors.N" // or ".dtors.N" where N is a number. Unlike .{init,fini}_array, // they are compared as string rather than number. // // 3. The section is just ".ctors" or ".dtors". // // 4. The section was contained in crtend, which contains an end marker. // // In an ideal world, we don't need this function because .init_array and // .ctors are duplicate features (and .init_array is newer.) However, there // are too many real-world use cases of .ctors, so we had no choice to // support that with this rather ad-hoc semantics. static bool compCtors(const InputSection *A, const InputSection *B) { bool BeginA = isCrtbegin(A->File->getName()); bool BeginB = isCrtbegin(B->File->getName()); if (BeginA != BeginB) return BeginA; bool EndA = isCrtend(A->File->getName()); bool EndB = isCrtend(B->File->getName()); if (EndA != EndB) return EndB; StringRef X = A->Name; StringRef Y = B->Name; assert(X.startswith(".ctors") || X.startswith(".dtors")); assert(Y.startswith(".ctors") || Y.startswith(".dtors")); X = X.substr(6); Y = Y.substr(6); if (X.empty() && Y.empty()) return false; return X < Y; } // Sorts input sections by the special rules for .ctors and .dtors. // Unfortunately, the rules are different from the one for .{init,fini}_array. // Read the comment above. void OutputSection::sortCtorsDtors() { assert(SectionCommands.size() == 1); auto *ISD = cast(SectionCommands[0]); std::stable_sort(ISD->Sections.begin(), ISD->Sections.end(), compCtors); } // If an input string is in the form of "foo.N" where N is a number, // return N. Otherwise, returns 65536, which is one greater than the // lowest priority. int elf::getPriority(StringRef S) { size_t Pos = S.rfind('.'); if (Pos == StringRef::npos) return 65536; int V; if (!to_integer(S.substr(Pos + 1), V, 10)) return 65536; return V; } // Sorts input sections by section name suffixes, so that .foo.N comes // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. // We want to keep the original order if the priorities are the same // because the compiler keeps the original initialization order in a // translation unit and we need to respect that. // For more detail, read the section of the GCC's manual about init_priority. void OutputSection::sortInitFini() { // Sort sections by priority. sort([](InputSectionBase *S) { return getPriority(S->Name); }); } uint32_t OutputSection::getFiller() { if (Filler) return *Filler; if (Flags & SHF_EXECINSTR) return Target->TrapInstr; return 0; } template void OutputSection::writeHeaderTo(ELF32LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF32BE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64LE::Shdr *Shdr); template void OutputSection::writeHeaderTo(ELF64BE::Shdr *Shdr); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::writeTo(uint8_t *Buf); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::maybeCompress(); template void OutputSection::finalize(); template void OutputSection::finalize(); template void OutputSection::finalize(); template void OutputSection::finalize();