//===- Relocations.cpp ----------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains platform-independent functions to process relocations. // I'll describe the overview of this file here. // // Simple relocations are easy to handle for the linker. For example, // for R_X86_64_PC64 relocs, the linker just has to fix up locations // with the relative offsets to the target symbols. It would just be // reading records from relocation sections and applying them to output. // // But not all relocations are that easy to handle. For example, for // R_386_GOTOFF relocs, the linker has to create new GOT entries for // symbols if they don't exist, and fix up locations with GOT entry // offsets from the beginning of GOT section. So there is more than // fixing addresses in relocation processing. // // ELF defines a large number of complex relocations. // // The functions in this file analyze relocations and do whatever needs // to be done. It includes, but not limited to, the following. // // - create GOT/PLT entries // - create new relocations in .dynsym to let the dynamic linker resolve // them at runtime (since ELF supports dynamic linking, not all // relocations can be resolved at link-time) // - create COPY relocs and reserve space in .bss // - replace expensive relocs (in terms of runtime cost) with cheap ones // - error out infeasible combinations such as PIC and non-relative relocs // // Note that the functions in this file don't actually apply relocations // because it doesn't know about the output file nor the output file buffer. // It instead stores Relocation objects to InputSection's Relocations // vector to let it apply later in InputSection::writeTo. // //===----------------------------------------------------------------------===// #include "Relocations.h" #include "Config.h" #include "LinkerScript.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Thunks.h" #include "lld/Common/Memory.h" #include "llvm/Support/Endian.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; // Construct a message in the following format. // // >>> defined in /home/alice/src/foo.o // >>> referenced by bar.c:12 (/home/alice/src/bar.c:12) // >>> /home/alice/src/bar.o:(.text+0x1) static std::string getLocation(InputSectionBase &S, const Symbol &Sym, uint64_t Off) { std::string Msg = "\n>>> defined in " + toString(Sym.File) + "\n>>> referenced by "; std::string Src = S.getSrcMsg(Sym, Off); if (!Src.empty()) Msg += Src + "\n>>> "; return Msg + S.getObjMsg(Off); } // This is a MIPS-specific rule. // // In case of MIPS GP-relative relocations always resolve to a definition // in a regular input file, ignoring the one-definition rule. So we, // for example, should not attempt to create a dynamic relocation even // if the target symbol is preemptible. There are two two MIPS GP-relative // relocations R_MIPS_GPREL16 and R_MIPS_GPREL32. But only R_MIPS_GPREL16 // can be against a preemptible symbol. // // To get MIPS relocation type we apply 0xff mask. In case of O32 ABI all // relocation types occupy eight bit. In case of N64 ABI we extract first // relocation from 3-in-1 packet because only the first relocation can // be against a real symbol. static bool isMipsGprel(RelType Type) { if (Config->EMachine != EM_MIPS) return false; Type &= 0xff; return Type == R_MIPS_GPREL16 || Type == R_MICROMIPS_GPREL16 || Type == R_MICROMIPS_GPREL7_S2; } // This function is similar to the `handleTlsRelocation`. MIPS does not // support any relaxations for TLS relocations so by factoring out MIPS // handling in to the separate function we can simplify the code and do not // pollute other `handleTlsRelocation` by MIPS `ifs` statements. // Mips has a custom MipsGotSection that handles the writing of GOT entries // without dynamic relocations. template static unsigned handleMipsTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, uint64_t Offset, int64_t Addend, RelExpr Expr) { if (Expr == R_MIPS_TLSLD) { if (InX::MipsGot->addTlsIndex() && Config->Pic) InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::MipsGot, InX::MipsGot->getTlsIndexOff(), false, nullptr, 0}); C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } if (Expr == R_MIPS_TLSGD) { if (InX::MipsGot->addDynTlsEntry(Sym) && Sym.IsPreemptible) { uint64_t Off = InX::MipsGot->getGlobalDynOffset(Sym); InX::RelaDyn->addReloc( {Target->TlsModuleIndexRel, InX::MipsGot, Off, false, &Sym, 0}); if (Sym.IsPreemptible) InX::RelaDyn->addReloc({Target->TlsOffsetRel, InX::MipsGot, Off + Config->Wordsize, false, &Sym, 0}); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } return 0; } // This function is similar to the `handleMipsTlsRelocation`. ARM also does not // support any relaxations for TLS relocations. ARM is logically similar to Mips // in how it handles TLS, but Mips uses its own custom GOT which handles some // of the cases that ARM uses GOT relocations for. // // We look for TLS global dynamic and local dynamic relocations, these may // require the generation of a pair of GOT entries that have associated // dynamic relocations. When the results of the dynamic relocations can be // resolved at static link time we do so. This is necessary for static linking // as there will be no dynamic loader to resolve them at load-time. // // The pair of GOT entries created are of the form // GOT[e0] Module Index (Used to find pointer to TLS block at run-time) // GOT[e1] Offset of symbol in TLS block template static unsigned handleARMTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, uint64_t Offset, int64_t Addend, RelExpr Expr) { // The Dynamic TLS Module Index Relocation for a symbol defined in an // executable is always 1. If the target Symbol is not preemptible then // we know the offset into the TLS block at static link time. bool NeedDynId = Sym.IsPreemptible || Config->Shared; bool NeedDynOff = Sym.IsPreemptible; auto AddTlsReloc = [&](uint64_t Off, RelType Type, Symbol *Dest, bool Dyn) { if (Dyn) InX::RelaDyn->addReloc({Type, InX::Got, Off, false, Dest, 0}); else InX::Got->Relocations.push_back({R_ABS, Type, Off, 0, Dest}); }; // Local Dynamic is for access to module local TLS variables, while still // being suitable for being dynamically loaded via dlopen. // GOT[e0] is the module index, with a special value of 0 for the current // module. GOT[e1] is unused. There only needs to be one module index entry. if (Expr == R_TLSLD_PC && InX::Got->addTlsIndex()) { AddTlsReloc(InX::Got->getTlsIndexOff(), Target->TlsModuleIndexRel, NeedDynId ? nullptr : &Sym, NeedDynId); C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } // Global Dynamic is the most general purpose access model. When we know // the module index and offset of symbol in TLS block we can fill these in // using static GOT relocations. if (Expr == R_TLSGD_PC) { if (InX::Got->addDynTlsEntry(Sym)) { uint64_t Off = InX::Got->getGlobalDynOffset(Sym); AddTlsReloc(Off, Target->TlsModuleIndexRel, &Sym, NeedDynId); AddTlsReloc(Off + Config->Wordsize, Target->TlsOffsetRel, &Sym, NeedDynOff); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } return 0; } // Returns the number of relocations processed. template static unsigned handleTlsRelocation(RelType Type, Symbol &Sym, InputSectionBase &C, typename ELFT::uint Offset, int64_t Addend, RelExpr Expr) { if (!(C.Flags & SHF_ALLOC)) return 0; if (!Sym.isTls()) return 0; if (Config->EMachine == EM_ARM) return handleARMTlsRelocation(Type, Sym, C, Offset, Addend, Expr); if (Config->EMachine == EM_MIPS) return handleMipsTlsRelocation(Type, Sym, C, Offset, Addend, Expr); if (isRelExprOneOf(Expr) && Config->Shared) { if (InX::Got->addDynTlsEntry(Sym)) { uint64_t Off = InX::Got->getGlobalDynOffset(Sym); InX::RelaDyn->addReloc( {Target->TlsDescRel, InX::Got, Off, !Sym.IsPreemptible, &Sym, 0}); } if (Expr != R_TLSDESC_CALL) C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } if (isRelExprOneOf(Expr)) { // Local-Dynamic relocs can be relaxed to Local-Exec. if (!Config->Shared) { C.Relocations.push_back( {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); return 2; } if (InX::Got->addTlsIndex()) InX::RelaDyn->addReloc({Target->TlsModuleIndexRel, InX::Got, InX::Got->getTlsIndexOff(), false, nullptr, 0}); C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } // Local-Dynamic relocs can be relaxed to Local-Exec. if (isRelExprOneOf(Expr) && !Config->Shared) { C.Relocations.push_back({R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Sym}); return 1; } if (isRelExprOneOf(Expr)) { if (Config->Shared) { if (InX::Got->addDynTlsEntry(Sym)) { uint64_t Off = InX::Got->getGlobalDynOffset(Sym); InX::RelaDyn->addReloc( {Target->TlsModuleIndexRel, InX::Got, Off, false, &Sym, 0}); // If the symbol is preemptible we need the dynamic linker to write // the offset too. uint64_t OffsetOff = Off + Config->Wordsize; if (Sym.IsPreemptible) InX::RelaDyn->addReloc( {Target->TlsOffsetRel, InX::Got, OffsetOff, false, &Sym, 0}); else InX::Got->Relocations.push_back( {R_ABS, Target->TlsOffsetRel, OffsetOff, 0, &Sym}); } C.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); return 1; } // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec // depending on the symbol being locally defined or not. if (Sym.IsPreemptible) { C.Relocations.push_back( {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_IE), Type, Offset, Addend, &Sym}); if (!Sym.isInGot()) { InX::Got->addEntry(Sym); InX::RelaDyn->addReloc( {Target->TlsGotRel, InX::Got, Sym.getGotOffset(), false, &Sym, 0}); } } else { C.Relocations.push_back( {Target->adjustRelaxExpr(Type, nullptr, R_RELAX_TLS_GD_TO_LE), Type, Offset, Addend, &Sym}); } return Target->TlsGdRelaxSkip; } // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally // defined. if (isRelExprOneOf(Expr) && !Config->Shared && !Sym.IsPreemptible) { C.Relocations.push_back({R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Sym}); return 1; } if (Expr == R_TLSDESC_CALL) return 1; return 0; } static RelType getMipsPairType(RelType Type, bool IsLocal) { switch (Type) { case R_MIPS_HI16: return R_MIPS_LO16; case R_MIPS_GOT16: // In case of global symbol, the R_MIPS_GOT16 relocation does not // have a pair. Each global symbol has a unique entry in the GOT // and a corresponding instruction with help of the R_MIPS_GOT16 // relocation loads an address of the symbol. In case of local // symbol, the R_MIPS_GOT16 relocation creates a GOT entry to hold // the high 16 bits of the symbol's value. A paired R_MIPS_LO16 // relocations handle low 16 bits of the address. That allows // to allocate only one GOT entry for every 64 KBytes of local data. return IsLocal ? R_MIPS_LO16 : R_MIPS_NONE; case R_MICROMIPS_GOT16: return IsLocal ? R_MICROMIPS_LO16 : R_MIPS_NONE; case R_MIPS_PCHI16: return R_MIPS_PCLO16; case R_MICROMIPS_HI16: return R_MICROMIPS_LO16; default: return R_MIPS_NONE; } } // True if non-preemptable symbol always has the same value regardless of where // the DSO is loaded. static bool isAbsolute(const Symbol &Sym) { if (Sym.isUndefWeak()) return true; if (const auto *DR = dyn_cast(&Sym)) return DR->Section == nullptr; // Absolute symbol. return false; } static bool isAbsoluteValue(const Symbol &Sym) { return isAbsolute(Sym) || Sym.isTls(); } // Returns true if Expr refers a PLT entry. static bool needsPlt(RelExpr Expr) { return isRelExprOneOf(Expr); } // Returns true if Expr refers a GOT entry. Note that this function // returns false for TLS variables even though they need GOT, because // TLS variables uses GOT differently than the regular variables. static bool needsGot(RelExpr Expr) { return isRelExprOneOf(Expr); } // True if this expression is of the form Sym - X, where X is a position in the // file (PC, or GOT for example). static bool isRelExpr(RelExpr Expr) { return isRelExprOneOf(Expr); } // Returns true if a given relocation can be computed at link-time. // // For instance, we know the offset from a relocation to its target at // link-time if the relocation is PC-relative and refers a // non-interposable function in the same executable. This function // will return true for such relocation. // // If this function returns false, that means we need to emit a // dynamic relocation so that the relocation will be fixed at load-time. static bool isStaticLinkTimeConstant(RelExpr E, RelType Type, const Symbol &Sym, InputSectionBase &S, uint64_t RelOff) { // These expressions always compute a constant if (isRelExprOneOf(E)) return true; if (Sym.isGnuIFunc() && Config->ZIfuncnoplt) return false; // These never do, except if the entire file is position dependent or if // only the low bits are used. if (E == R_GOT || E == R_PLT || E == R_TLSDESC) return Target->usesOnlyLowPageBits(Type) || !Config->Pic; if (Sym.IsPreemptible) return false; if (!Config->Pic) return true; // The size of a non preemptible symbol is a constant. if (E == R_SIZE) return true; // For the target and the relocation, we want to know if they are // absolute or relative. bool AbsVal = isAbsoluteValue(Sym); bool RelE = isRelExpr(E); if (AbsVal && !RelE) return true; if (!AbsVal && RelE) return true; if (!AbsVal && !RelE) return Target->usesOnlyLowPageBits(Type); // Relative relocation to an absolute value. This is normally unrepresentable, // but if the relocation refers to a weak undefined symbol, we allow it to // resolve to the image base. This is a little strange, but it allows us to // link function calls to such symbols. Normally such a call will be guarded // with a comparison, which will load a zero from the GOT. // Another special case is MIPS _gp_disp symbol which represents offset // between start of a function and '_gp' value and defined as absolute just // to simplify the code. assert(AbsVal && RelE); if (Sym.isUndefWeak()) return true; error("relocation " + toString(Type) + " cannot refer to absolute symbol: " + toString(Sym) + getLocation(S, Sym, RelOff)); return true; } static RelExpr toPlt(RelExpr Expr) { if (Expr == R_PPC_OPD) return R_PPC_PLT_OPD; if (Expr == R_PC) return R_PLT_PC; if (Expr == R_PAGE_PC) return R_PLT_PAGE_PC; if (Expr == R_ABS) return R_PLT; return Expr; } static RelExpr fromPlt(RelExpr Expr) { // We decided not to use a plt. Optimize a reference to the plt to a // reference to the symbol itself. if (Expr == R_PLT_PC) return R_PC; if (Expr == R_PPC_PLT_OPD) return R_PPC_OPD; if (Expr == R_PLT) return R_ABS; return Expr; } // Returns true if a given shared symbol is in a read-only segment in a DSO. template static bool isReadOnly(SharedSymbol *SS) { typedef typename ELFT::Phdr Elf_Phdr; // Determine if the symbol is read-only by scanning the DSO's program headers. const SharedFile &File = SS->getFile(); for (const Elf_Phdr &Phdr : check(File.getObj().program_headers())) if ((Phdr.p_type == ELF::PT_LOAD || Phdr.p_type == ELF::PT_GNU_RELRO) && !(Phdr.p_flags & ELF::PF_W) && SS->Value >= Phdr.p_vaddr && SS->Value < Phdr.p_vaddr + Phdr.p_memsz) return true; return false; } // Returns symbols at the same offset as a given symbol, including SS itself. // // If two or more symbols are at the same offset, and at least one of // them are copied by a copy relocation, all of them need to be copied. // Otherwise, they would refer different places at runtime. template static std::vector getSymbolsAt(SharedSymbol *SS) { typedef typename ELFT::Sym Elf_Sym; SharedFile &File = SS->getFile(); std::vector Ret; for (const Elf_Sym &S : File.getGlobalELFSyms()) { if (S.st_shndx == SHN_UNDEF || S.st_shndx == SHN_ABS || S.st_value != SS->Value) continue; StringRef Name = check(S.getName(File.getStringTable())); Symbol *Sym = Symtab->find(Name); if (auto *Alias = dyn_cast_or_null(Sym)) Ret.push_back(Alias); } return Ret; } // Reserve space in .bss or .bss.rel.ro for copy relocation. // // The copy relocation is pretty much a hack. If you use a copy relocation // in your program, not only the symbol name but the symbol's size, RW/RO // bit and alignment become part of the ABI. In addition to that, if the // symbol has aliases, the aliases become part of the ABI. That's subtle, // but if you violate that implicit ABI, that can cause very counter- // intuitive consequences. // // So, what is the copy relocation? It's for linking non-position // independent code to DSOs. In an ideal world, all references to data // exported by DSOs should go indirectly through GOT. But if object files // are compiled as non-PIC, all data references are direct. There is no // way for the linker to transform the code to use GOT, as machine // instructions are already set in stone in object files. This is where // the copy relocation takes a role. // // A copy relocation instructs the dynamic linker to copy data from a DSO // to a specified address (which is usually in .bss) at load-time. If the // static linker (that's us) finds a direct data reference to a DSO // symbol, it creates a copy relocation, so that the symbol can be // resolved as if it were in .bss rather than in a DSO. // // As you can see in this function, we create a copy relocation for the // dynamic linker, and the relocation contains not only symbol name but // various other informtion about the symbol. So, such attributes become a // part of the ABI. // // Note for application developers: I can give you a piece of advice if // you are writing a shared library. You probably should export only // functions from your library. You shouldn't export variables. // // As an example what can happen when you export variables without knowing // the semantics of copy relocations, assume that you have an exported // variable of type T. It is an ABI-breaking change to add new members at // end of T even though doing that doesn't change the layout of the // existing members. That's because the space for the new members are not // reserved in .bss unless you recompile the main program. That means they // are likely to overlap with other data that happens to be laid out next // to the variable in .bss. This kind of issue is sometimes very hard to // debug. What's a solution? Instead of exporting a varaible V from a DSO, // define an accessor getV(). template static void addCopyRelSymbol(SharedSymbol *SS) { // Copy relocation against zero-sized symbol doesn't make sense. uint64_t SymSize = SS->getSize(); if (SymSize == 0) fatal("cannot create a copy relocation for symbol " + toString(*SS)); // See if this symbol is in a read-only segment. If so, preserve the symbol's // memory protection by reserving space in the .bss.rel.ro section. bool IsReadOnly = isReadOnly(SS); BssSection *Sec = make(IsReadOnly ? ".bss.rel.ro" : ".bss", SymSize, SS->Alignment); if (IsReadOnly) InX::BssRelRo->getParent()->addSection(Sec); else InX::Bss->getParent()->addSection(Sec); // Look through the DSO's dynamic symbol table for aliases and create a // dynamic symbol for each one. This causes the copy relocation to correctly // interpose any aliases. for (SharedSymbol *Sym : getSymbolsAt(SS)) { Sym->CopyRelSec = Sec; Sym->IsPreemptible = false; Sym->IsUsedInRegularObj = true; Sym->Used = true; } InX::RelaDyn->addReloc({Target->CopyRel, Sec, 0, false, SS, 0}); } static void errorOrWarn(const Twine &Msg) { if (!Config->NoinhibitExec) error(Msg); else warn(Msg); } // Returns PLT relocation expression. // // This handles a non PIC program call to function in a shared library. In // an ideal world, we could just report an error saying the relocation can // overflow at runtime. In the real world with glibc, crt1.o has a // R_X86_64_PC32 pointing to libc.so. // // The general idea on how to handle such cases is to create a PLT entry and // use that as the function value. // // For the static linking part, we just return a plt expr and everything // else will use the the PLT entry as the address. // // The remaining problem is making sure pointer equality still works. We // need the help of the dynamic linker for that. We let it know that we have // a direct reference to a so symbol by creating an undefined symbol with a // non zero st_value. Seeing that, the dynamic linker resolves the symbol to // the value of the symbol we created. This is true even for got entries, so // pointer equality is maintained. To avoid an infinite loop, the only entry // that points to the real function is a dedicated got entry used by the // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, // R_386_JMP_SLOT, etc). static RelExpr getPltExpr(Symbol &Sym, RelExpr Expr, bool &IsConstant) { Sym.NeedsPltAddr = true; Sym.IsPreemptible = false; IsConstant = true; return toPlt(Expr); } // This modifies the expression if we can use a copy relocation or point the // symbol to the PLT. template static RelExpr adjustExpr(Symbol &Sym, RelExpr Expr, RelType Type, InputSectionBase &S, uint64_t RelOff, bool &IsConstant) { // If a relocation can be applied at link-time, we don't need to // create a dynamic relocation in the first place. if (IsConstant) return Expr; // We can create any dynamic relocation supported by the dynamic linker if a // section is writable or we are passed -z notext. bool CanWrite = (S.Flags & SHF_WRITE) || !Config->ZText; if (CanWrite && Target->isPicRel(Type)) return Expr; // If the relocation is to a weak undef, and we are producing // executable, give up on it and produce a non preemptible 0. if (!Config->Shared && Sym.isUndefWeak()) { Sym.IsPreemptible = false; IsConstant = true; return Expr; } // If we got here we know that this relocation would require the dynamic // linker to write a value to read only memory or use an unsupported // relocation. // We can hack around it if we are producing an executable and // the refered symbol can be preemepted to refer to the executable. if (!CanWrite && (Config->Shared || (Config->Pic && !isRelExpr(Expr)))) { error( "can't create dynamic relocation " + toString(Type) + " against " + (Sym.getName().empty() ? "local symbol" : "symbol: " + toString(Sym)) + " in readonly segment; recompile object files with -fPIC" + getLocation(S, Sym, RelOff)); return Expr; } // Copy relocations are only possible if we are creating an executable and the // symbol is shared. if (!Sym.isShared() || Config->Shared) return Expr; if (Sym.getVisibility() != STV_DEFAULT) { error("cannot preempt symbol: " + toString(Sym) + getLocation(S, Sym, RelOff)); return Expr; } if (Sym.isObject()) { // Produce a copy relocation. auto *B = dyn_cast(&Sym); if (B && !B->CopyRelSec) { if (Config->ZNocopyreloc) error("unresolvable relocation " + toString(Type) + " against symbol '" + toString(*B) + "'; recompile with -fPIC or remove '-z nocopyreloc'" + getLocation(S, Sym, RelOff)); addCopyRelSymbol(B); } IsConstant = true; return Expr; } if (Sym.isFunc()) return getPltExpr(Sym, Expr, IsConstant); errorOrWarn("symbol '" + toString(Sym) + "' defined in " + toString(Sym.File) + " has no type"); return Expr; } // MIPS has an odd notion of "paired" relocations to calculate addends. // For example, if a relocation is of R_MIPS_HI16, there must be a // R_MIPS_LO16 relocation after that, and an addend is calculated using // the two relocations. template static int64_t computeMipsAddend(const RelTy &Rel, const RelTy *End, InputSectionBase &Sec, RelExpr Expr, bool IsLocal) { if (Expr == R_MIPS_GOTREL && IsLocal) return Sec.getFile()->MipsGp0; // The ABI says that the paired relocation is used only for REL. // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (RelTy::IsRela) return 0; RelType Type = Rel.getType(Config->IsMips64EL); uint32_t PairTy = getMipsPairType(Type, IsLocal); if (PairTy == R_MIPS_NONE) return 0; const uint8_t *Buf = Sec.Data.data(); uint32_t SymIndex = Rel.getSymbol(Config->IsMips64EL); // To make things worse, paired relocations might not be contiguous in // the relocation table, so we need to do linear search. *sigh* for (const RelTy *RI = &Rel; RI != End; ++RI) if (RI->getType(Config->IsMips64EL) == PairTy && RI->getSymbol(Config->IsMips64EL) == SymIndex) return Target->getImplicitAddend(Buf + RI->r_offset, PairTy); warn("can't find matching " + toString(PairTy) + " relocation for " + toString(Type)); return 0; } // Returns an addend of a given relocation. If it is RELA, an addend // is in a relocation itself. If it is REL, we need to read it from an // input section. template static int64_t computeAddend(const RelTy &Rel, const RelTy *End, InputSectionBase &Sec, RelExpr Expr, bool IsLocal) { int64_t Addend; RelType Type = Rel.getType(Config->IsMips64EL); if (RelTy::IsRela) { Addend = getAddend(Rel); } else { const uint8_t *Buf = Sec.Data.data(); Addend = Target->getImplicitAddend(Buf + Rel.r_offset, Type); } if (Config->EMachine == EM_PPC64 && Config->Pic && Type == R_PPC64_TOC) Addend += getPPC64TocBase(); if (Config->EMachine == EM_MIPS) Addend += computeMipsAddend(Rel, End, Sec, Expr, IsLocal); return Addend; } // Report an undefined symbol if necessary. // Returns true if this function printed out an error message. static bool maybeReportUndefined(Symbol &Sym, InputSectionBase &Sec, uint64_t Offset) { if (Config->UnresolvedSymbols == UnresolvedPolicy::IgnoreAll) return false; if (Sym.isLocal() || !Sym.isUndefined() || Sym.isWeak()) return false; bool CanBeExternal = Sym.computeBinding() != STB_LOCAL && Sym.getVisibility() == STV_DEFAULT; if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore && CanBeExternal) return false; std::string Msg = "undefined symbol: " + toString(Sym) + "\n>>> referenced by "; std::string Src = Sec.getSrcMsg(Sym, Offset); if (!Src.empty()) Msg += Src + "\n>>> "; Msg += Sec.getObjMsg(Offset); if ((Config->UnresolvedSymbols == UnresolvedPolicy::Warn && CanBeExternal) || Config->NoinhibitExec) { warn(Msg); return false; } error(Msg); return true; } // MIPS N32 ABI treats series of successive relocations with the same offset // as a single relocation. The similar approach used by N64 ABI, but this ABI // packs all relocations into the single relocation record. Here we emulate // this for the N32 ABI. Iterate over relocation with the same offset and put // theirs types into the single bit-set. template static RelType getMipsN32RelType(RelTy *&Rel, RelTy *End) { RelType Type = Rel->getType(Config->IsMips64EL); uint64_t Offset = Rel->r_offset; int N = 0; while (Rel + 1 != End && (Rel + 1)->r_offset == Offset) Type |= (++Rel)->getType(Config->IsMips64EL) << (8 * ++N); return Type; } // .eh_frame sections are mergeable input sections, so their input // offsets are not linearly mapped to output section. For each input // offset, we need to find a section piece containing the offset and // add the piece's base address to the input offset to compute the // output offset. That isn't cheap. // // This class is to speed up the offset computation. When we process // relocations, we access offsets in the monotonically increasing // order. So we can optimize for that access pattern. // // For sections other than .eh_frame, this class doesn't do anything. namespace { class OffsetGetter { public: explicit OffsetGetter(InputSectionBase &Sec) { if (auto *Eh = dyn_cast(&Sec)) Pieces = Eh->Pieces; } // Translates offsets in input sections to offsets in output sections. // Given offset must increase monotonically. We assume that Piece is // sorted by InputOff. uint64_t get(uint64_t Off) { if (Pieces.empty()) return Off; while (I != Pieces.size() && Pieces[I].InputOff + Pieces[I].Size <= Off) ++I; if (I == Pieces.size()) return Off; // Pieces must be contiguous, so there must be no holes in between. assert(Pieces[I].InputOff <= Off && "Relocation not in any piece"); // Offset -1 means that the piece is dead (i.e. garbage collected). if (Pieces[I].OutputOff == -1) return -1; return Pieces[I].OutputOff + Off - Pieces[I].InputOff; } private: ArrayRef Pieces; size_t I = 0; }; } // namespace template static void addPltEntry(PltSection *Plt, GotPltSection *GotPlt, RelocationBaseSection *Rel, RelType Type, Symbol &Sym, bool UseSymVA) { Plt->addEntry(Sym); GotPlt->addEntry(Sym); Rel->addReloc({Type, GotPlt, Sym.getGotPltOffset(), UseSymVA, &Sym, 0}); } template static void addGotEntry(Symbol &Sym, bool Preemptible) { InX::Got->addEntry(Sym); RelExpr Expr = Sym.isTls() ? R_TLS : R_ABS; uint64_t Off = Sym.getGotOffset(); // If a GOT slot value can be calculated at link-time, which is now, // we can just fill that out. // // (We don't actually write a value to a GOT slot right now, but we // add a static relocation to a Relocations vector so that // InputSection::relocate will do the work for us. We may be able // to just write a value now, but it is a TODO.) bool IsLinkTimeConstant = !Preemptible && (!Config->Pic || isAbsolute(Sym)); if (IsLinkTimeConstant) { InX::Got->Relocations.push_back({Expr, Target->GotRel, Off, 0, &Sym}); return; } // Otherwise, we emit a dynamic relocation to .rel[a].dyn so that // the GOT slot will be fixed at load-time. RelType Type; if (Sym.isTls()) Type = Target->TlsGotRel; else if (!Preemptible && Config->Pic && !isAbsolute(Sym)) Type = Target->RelativeRel; else Type = Target->GotRel; InX::RelaDyn->addReloc({Type, InX::Got, Off, !Preemptible, &Sym, 0}); // REL type relocations don't have addend fields unlike RELAs, and // their addends are stored to the section to which they are applied. // So, store addends if we need to. // // This is ugly -- the difference between REL and RELA should be // handled in a better way. It's a TODO. if (!Config->IsRela && !Preemptible) InX::Got->Relocations.push_back({R_ABS, Target->GotRel, Off, 0, &Sym}); } // The reason we have to do this early scan is as follows // * To mmap the output file, we need to know the size // * For that, we need to know how many dynamic relocs we will have. // It might be possible to avoid this by outputting the file with write: // * Write the allocated output sections, computing addresses. // * Apply relocations, recording which ones require a dynamic reloc. // * Write the dynamic relocations. // * Write the rest of the file. // This would have some drawbacks. For example, we would only know if .rela.dyn // is needed after applying relocations. If it is, it will go after rw and rx // sections. Given that it is ro, we will need an extra PT_LOAD. This // complicates things for the dynamic linker and means we would have to reserve // space for the extra PT_LOAD even if we end up not using it. template static void scanRelocs(InputSectionBase &Sec, ArrayRef Rels) { OffsetGetter GetOffset(Sec); // Not all relocations end up in Sec.Relocations, but a lot do. Sec.Relocations.reserve(Rels.size()); for (auto I = Rels.begin(), End = Rels.end(); I != End; ++I) { const RelTy &Rel = *I; Symbol &Sym = Sec.getFile()->getRelocTargetSym(Rel); RelType Type = Rel.getType(Config->IsMips64EL); // Deal with MIPS oddity. if (Config->MipsN32Abi) Type = getMipsN32RelType(I, End); // Get an offset in an output section this relocation is applied to. uint64_t Offset = GetOffset.get(Rel.r_offset); if (Offset == uint64_t(-1)) continue; // Skip if the target symbol is an erroneous undefined symbol. if (maybeReportUndefined(Sym, Sec, Rel.r_offset)) continue; RelExpr Expr = Target->getRelExpr(Type, Sym, Sec.Data.begin() + Rel.r_offset); // Ignore "hint" relocations because they are only markers for relaxation. if (isRelExprOneOf(Expr)) continue; // Handle yet another MIPS-ness. if (isMipsGprel(Type)) { int64_t Addend = computeAddend(Rel, End, Sec, Expr, Sym.isLocal()); Sec.Relocations.push_back({R_MIPS_GOTREL, Type, Offset, Addend, &Sym}); continue; } bool Preemptible = Sym.IsPreemptible; // Strenghten or relax a PLT access. // // GNU ifunc symbols must be accessed via PLT because their addresses // are determined by runtime. If the -z ifunc-noplt option is specified, // we permit the optimization of ifunc calls by omitting the PLT entry // and preserving relocations at ifunc call sites. // // On the other hand, if we know that a PLT entry will be resolved within // the same ELF module, we can skip PLT access and directly jump to the // destination function. For example, if we are linking a main exectuable, // all dynamic symbols that can be resolved within the executable will // actually be resolved that way at runtime, because the main exectuable // is always at the beginning of a search list. We can leverage that fact. if (Sym.isGnuIFunc() && !Config->ZIfuncnoplt) Expr = toPlt(Expr); else if (!Preemptible && Expr == R_GOT_PC && !isAbsoluteValue(Sym)) Expr = Target->adjustRelaxExpr(Type, Sec.Data.data() + Rel.r_offset, Expr); else if (!Preemptible) Expr = fromPlt(Expr); bool IsConstant = isStaticLinkTimeConstant(Expr, Type, Sym, Sec, Rel.r_offset); Expr = adjustExpr(Sym, Expr, Type, Sec, Rel.r_offset, IsConstant); if (errorCount()) continue; // This relocation does not require got entry, but it is relative to got and // needs it to be created. Here we request for that. if (isRelExprOneOf(Expr)) InX::Got->HasGotOffRel = true; // Read an addend. int64_t Addend = computeAddend(Rel, End, Sec, Expr, Sym.isLocal()); // Process some TLS relocations, including relaxing TLS relocations. // Note that this function does not handle all TLS relocations. if (unsigned Processed = handleTlsRelocation(Type, Sym, Sec, Offset, Addend, Expr)) { I += (Processed - 1); continue; } // If a relocation needs PLT, we create PLT and GOTPLT slots for the symbol. if (needsPlt(Expr) && !Sym.isInPlt()) { if (Sym.isGnuIFunc() && !Preemptible) addPltEntry(InX::Iplt, InX::IgotPlt, InX::RelaIplt, Target->IRelativeRel, Sym, true); else addPltEntry(InX::Plt, InX::GotPlt, InX::RelaPlt, Target->PltRel, Sym, !Preemptible); } // Create a GOT slot if a relocation needs GOT. if (needsGot(Expr)) { if (Config->EMachine == EM_MIPS) { // MIPS ABI has special rules to process GOT entries and doesn't // require relocation entries for them. A special case is TLS // relocations. In that case dynamic loader applies dynamic // relocations to initialize TLS GOT entries. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf InX::MipsGot->addEntry(Sym, Addend, Expr); if (Sym.isTls() && Sym.IsPreemptible) InX::RelaDyn->addReloc({Target->TlsGotRel, InX::MipsGot, Sym.getGotOffset(), false, &Sym, 0}); } else if (!Sym.isInGot()) { addGotEntry(Sym, Preemptible); } } if (!needsPlt(Expr) && !needsGot(Expr) && Sym.IsPreemptible) { // We don't know anything about the finaly symbol. Just ask the dynamic // linker to handle the relocation for us. if (!Target->isPicRel(Type)) errorOrWarn( "relocation " + toString(Type) + " cannot be used against shared object; recompile with -fPIC" + getLocation(Sec, Sym, Offset)); InX::RelaDyn->addReloc( {Target->getDynRel(Type), &Sec, Offset, false, &Sym, Addend}); // MIPS ABI turns using of GOT and dynamic relocations inside out. // While regular ABI uses dynamic relocations to fill up GOT entries // MIPS ABI requires dynamic linker to fills up GOT entries using // specially sorted dynamic symbol table. This affects even dynamic // relocations against symbols which do not require GOT entries // creation explicitly, i.e. do not have any GOT-relocations. So if // a preemptible symbol has a dynamic relocation we anyway have // to create a GOT entry for it. // If a non-preemptible symbol has a dynamic relocation against it, // dynamic linker takes it st_value, adds offset and writes down // result of the dynamic relocation. In case of preemptible symbol // dynamic linker performs symbol resolution, writes the symbol value // to the GOT entry and reads the GOT entry when it needs to perform // a dynamic relocation. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 if (Config->EMachine == EM_MIPS) InX::MipsGot->addEntry(Sym, Addend, Expr); continue; } // The size is not going to change, so we fold it in here. if (Expr == R_SIZE) Addend += Sym.getSize(); // If the produced value is a constant, we just remember to write it // when outputting this section. We also have to do it if the format // uses Elf_Rel, since in that case the written value is the addend. if (IsConstant) { Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); continue; } // Preserve relocations against ifuncs if we were asked to do so. if (Sym.isGnuIFunc() && Config->ZIfuncnoplt) { if (Config->IsRela) InX::RelaDyn->addReloc({Type, &Sec, Offset, false, &Sym, Addend}); else // Preserve the existing addend. InX::RelaDyn->addReloc({Type, &Sec, Offset, false, &Sym, 0}); continue; } // If the output being produced is position independent, the final value // is still not known. In that case we still need some help from the // dynamic linker. We can however do better than just copying the incoming // relocation. We can process some of it and and just ask the dynamic // linker to add the load address. if (Config->IsRela) { InX::RelaDyn->addReloc( {Target->RelativeRel, &Sec, Offset, true, &Sym, Addend}); } else { // In REL, addends are stored to the target section. InX::RelaDyn->addReloc( {Target->RelativeRel, &Sec, Offset, true, &Sym, 0}); Sec.Relocations.push_back({Expr, Type, Offset, Addend, &Sym}); } } } template void elf::scanRelocations(InputSectionBase &S) { if (S.AreRelocsRela) scanRelocs(S, S.relas()); else scanRelocs(S, S.rels()); } // Thunk Implementation // // Thunks (sometimes called stubs, veneers or branch islands) are small pieces // of code that the linker inserts inbetween a caller and a callee. The thunks // are added at link time rather than compile time as the decision on whether // a thunk is needed, such as the caller and callee being out of range, can only // be made at link time. // // It is straightforward to tell given the current state of the program when a // thunk is needed for a particular call. The more difficult part is that // the thunk needs to be placed in the program such that the caller can reach // the thunk and the thunk can reach the callee; furthermore, adding thunks to // the program alters addresses, which can mean more thunks etc. // // In lld we have a synthetic ThunkSection that can hold many Thunks. // The decision to have a ThunkSection act as a container means that we can // more easily handle the most common case of a single block of contiguous // Thunks by inserting just a single ThunkSection. // // The implementation of Thunks in lld is split across these areas // Relocations.cpp : Framework for creating and placing thunks // Thunks.cpp : The code generated for each supported thunk // Target.cpp : Target specific hooks that the framework uses to decide when // a thunk is used // Synthetic.cpp : Implementation of ThunkSection // Writer.cpp : Iteratively call framework until no more Thunks added // // Thunk placement requirements: // Mips LA25 thunks. These must be placed immediately before the callee section // We can assume that the caller is in range of the Thunk. These are modelled // by Thunks that return the section they must precede with // getTargetInputSection(). // // ARM interworking and range extension thunks. These thunks must be placed // within range of the caller. All implemented ARM thunks can always reach the // callee as they use an indirect jump via a register that has no range // restrictions. // // Thunk placement algorithm: // For Mips LA25 ThunkSections; the placement is explicit, it has to be before // getTargetInputSection(). // // For thunks that must be placed within range of the caller there are many // possible choices given that the maximum range from the caller is usually // much larger than the average InputSection size. Desirable properties include: // - Maximize reuse of thunks by multiple callers // - Minimize number of ThunkSections to simplify insertion // - Handle impact of already added Thunks on addresses // - Simple to understand and implement // // In lld for the first pass, we pre-create one or more ThunkSections per // InputSectionDescription at Target specific intervals. A ThunkSection is // placed so that the estimated end of the ThunkSection is within range of the // start of the InputSectionDescription or the previous ThunkSection. For // example: // InputSectionDescription // Section 0 // ... // Section N // ThunkSection 0 // Section N + 1 // ... // Section N + K // Thunk Section 1 // // The intention is that we can add a Thunk to a ThunkSection that is well // spaced enough to service a number of callers without having to do a lot // of work. An important principle is that it is not an error if a Thunk cannot // be placed in a pre-created ThunkSection; when this happens we create a new // ThunkSection placed next to the caller. This allows us to handle the vast // majority of thunks simply, but also handle rare cases where the branch range // is smaller than the target specific spacing. // // The algorithm is expected to create all the thunks that are needed in a // single pass, with a small number of programs needing a second pass due to // the insertion of thunks in the first pass increasing the offset between // callers and callees that were only just in range. // // A consequence of allowing new ThunkSections to be created outside of the // pre-created ThunkSections is that in rare cases calls to Thunks that were in // range in pass K, are out of range in some pass > K due to the insertion of // more Thunks in between the caller and callee. When this happens we retarget // the relocation back to the original target and create another Thunk. // Remove ThunkSections that are empty, this should only be the initial set // precreated on pass 0. // Insert the Thunks for OutputSection OS into their designated place // in the Sections vector, and recalculate the InputSection output section // offsets. // This may invalidate any output section offsets stored outside of InputSection void ThunkCreator::mergeThunks(ArrayRef OutputSections) { forEachInputSectionDescription( OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { if (ISD->ThunkSections.empty()) return; // Remove any zero sized precreated Thunks. llvm::erase_if(ISD->ThunkSections, [](const std::pair &TS) { return TS.first->getSize() == 0; }); // ISD->ThunkSections contains all created ThunkSections, including // those inserted in previous passes. Extract the Thunks created this // pass and order them in ascending OutSecOff. std::vector NewThunks; for (const std::pair TS : ISD->ThunkSections) if (TS.second == Pass) NewThunks.push_back(TS.first); std::stable_sort(NewThunks.begin(), NewThunks.end(), [](const ThunkSection *A, const ThunkSection *B) { return A->OutSecOff < B->OutSecOff; }); // Merge sorted vectors of Thunks and InputSections by OutSecOff std::vector Tmp; Tmp.reserve(ISD->Sections.size() + NewThunks.size()); auto MergeCmp = [](const InputSection *A, const InputSection *B) { // std::merge requires a strict weak ordering. if (A->OutSecOff < B->OutSecOff) return true; if (A->OutSecOff == B->OutSecOff) { auto *TA = dyn_cast(A); auto *TB = dyn_cast(B); // Check if Thunk is immediately before any specific Target // InputSection for example Mips LA25 Thunks. if (TA && TA->getTargetInputSection() == B) return true; if (TA && !TB && !TA->getTargetInputSection()) // Place Thunk Sections without specific targets before // non-Thunk Sections. return true; } return false; }; std::merge(ISD->Sections.begin(), ISD->Sections.end(), NewThunks.begin(), NewThunks.end(), std::back_inserter(Tmp), MergeCmp); ISD->Sections = std::move(Tmp); }); } // Find or create a ThunkSection within the InputSectionDescription (ISD) that // is in range of Src. An ISD maps to a range of InputSections described by a // linker script section pattern such as { .text .text.* }. ThunkSection *ThunkCreator::getISDThunkSec(OutputSection *OS, InputSection *IS, InputSectionDescription *ISD, uint32_t Type, uint64_t Src) { for (std::pair TP : ISD->ThunkSections) { ThunkSection *TS = TP.first; uint64_t TSBase = OS->Addr + TS->OutSecOff; uint64_t TSLimit = TSBase + TS->getSize(); if (Target->inBranchRange(Type, Src, (Src > TSLimit) ? TSBase : TSLimit)) return TS; } // No suitable ThunkSection exists. This can happen when there is a branch // with lower range than the ThunkSection spacing or when there are too // many Thunks. Create a new ThunkSection as close to the InputSection as // possible. Error if InputSection is so large we cannot place ThunkSection // anywhere in Range. uint64_t ThunkSecOff = IS->OutSecOff; if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) { ThunkSecOff = IS->OutSecOff + IS->getSize(); if (!Target->inBranchRange(Type, Src, OS->Addr + ThunkSecOff)) fatal("InputSection too large for range extension thunk " + IS->getObjMsg(Src - (OS->Addr + IS->OutSecOff))); } return addThunkSection(OS, ISD, ThunkSecOff); } // Add a Thunk that needs to be placed in a ThunkSection that immediately // precedes its Target. ThunkSection *ThunkCreator::getISThunkSec(InputSection *IS) { ThunkSection *TS = ThunkedSections.lookup(IS); if (TS) return TS; // Find InputSectionRange within Target Output Section (TOS) that the // InputSection (IS) that we need to precede is in. OutputSection *TOS = IS->getParent(); for (BaseCommand *BC : TOS->SectionCommands) if (auto *ISD = dyn_cast(BC)) { if (ISD->Sections.empty()) continue; InputSection *first = ISD->Sections.front(); InputSection *last = ISD->Sections.back(); if (IS->OutSecOff >= first->OutSecOff && IS->OutSecOff <= last->OutSecOff) { TS = addThunkSection(TOS, ISD, IS->OutSecOff); ThunkedSections[IS] = TS; break; } } return TS; } // Create one or more ThunkSections per OS that can be used to place Thunks. // We attempt to place the ThunkSections using the following desirable // properties: // - Within range of the maximum number of callers // - Minimise the number of ThunkSections // // We follow a simple but conservative heuristic to place ThunkSections at // offsets that are multiples of a Target specific branch range. // For an InputSectionRange that is smaller than the range, a single // ThunkSection at the end of the range will do. void ThunkCreator::createInitialThunkSections( ArrayRef OutputSections) { forEachInputSectionDescription( OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { if (ISD->Sections.empty()) return; uint32_t ISLimit; uint32_t PrevISLimit = ISD->Sections.front()->OutSecOff; uint32_t ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing; for (const InputSection *IS : ISD->Sections) { ISLimit = IS->OutSecOff + IS->getSize(); if (ISLimit > ThunkUpperBound) { addThunkSection(OS, ISD, PrevISLimit); ThunkUpperBound = PrevISLimit + Target->ThunkSectionSpacing; } PrevISLimit = ISLimit; } addThunkSection(OS, ISD, ISLimit); }); } ThunkSection *ThunkCreator::addThunkSection(OutputSection *OS, InputSectionDescription *ISD, uint64_t Off) { auto *TS = make(OS, Off); ISD->ThunkSections.push_back(std::make_pair(TS, Pass)); return TS; } std::pair ThunkCreator::getThunk(Symbol &Sym, RelType Type, uint64_t Src) { auto Res = ThunkedSymbols.insert({&Sym, std::vector()}); if (!Res.second) { // Check existing Thunks for Sym to see if they can be reused for (Thunk *ET : Res.first->second) if (ET->isCompatibleWith(Type) && Target->inBranchRange(Type, Src, ET->ThunkSym->getVA())) return std::make_pair(ET, false); } // No existing compatible Thunk in range, create a new one Thunk *T = addThunk(Type, Sym); Res.first->second.push_back(T); return std::make_pair(T, true); } // Call Fn on every executable InputSection accessed via the linker script // InputSectionDescription::Sections. void ThunkCreator::forEachInputSectionDescription( ArrayRef OutputSections, std::function Fn) { for (OutputSection *OS : OutputSections) { if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR)) continue; for (BaseCommand *BC : OS->SectionCommands) if (auto *ISD = dyn_cast(BC)) Fn(OS, ISD); } } // Return true if the relocation target is an in range Thunk. // Return false if the relocation is not to a Thunk. If the relocation target // was originally to a Thunk, but is no longer in range we revert the // relocation back to its original non-Thunk target. bool ThunkCreator::normalizeExistingThunk(Relocation &Rel, uint64_t Src) { if (Thunk *ET = Thunks.lookup(Rel.Sym)) { if (Target->inBranchRange(Rel.Type, Src, Rel.Sym->getVA())) return true; Rel.Sym = &ET->Destination; if (Rel.Sym->isInPlt()) Rel.Expr = toPlt(Rel.Expr); } return false; } // Process all relocations from the InputSections that have been assigned // to InputSectionDescriptions and redirect through Thunks if needed. The // function should be called iteratively until it returns false. // // PreConditions: // All InputSections that may need a Thunk are reachable from // OutputSectionCommands. // // All OutputSections have an address and all InputSections have an offset // within the OutputSection. // // The offsets between caller (relocation place) and callee // (relocation target) will not be modified outside of createThunks(). // // PostConditions: // If return value is true then ThunkSections have been inserted into // OutputSections. All relocations that needed a Thunk based on the information // available to createThunks() on entry have been redirected to a Thunk. Note // that adding Thunks changes offsets between caller and callee so more Thunks // may be required. // // If return value is false then no more Thunks are needed, and createThunks has // made no changes. If the target requires range extension thunks, currently // ARM, then any future change in offset between caller and callee risks a // relocation out of range error. bool ThunkCreator::createThunks(ArrayRef OutputSections) { bool AddressesChanged = false; if (Pass == 0 && Target->ThunkSectionSpacing) createInitialThunkSections(OutputSections); else if (Pass == 10) // With Thunk Size much smaller than branch range we expect to // converge quickly; if we get to 10 something has gone wrong. fatal("thunk creation not converged"); // Create all the Thunks and insert them into synthetic ThunkSections. The // ThunkSections are later inserted back into InputSectionDescriptions. // We separate the creation of ThunkSections from the insertion of the // ThunkSections as ThunkSections are not always inserted into the same // InputSectionDescription as the caller. forEachInputSectionDescription( OutputSections, [&](OutputSection *OS, InputSectionDescription *ISD) { for (InputSection *IS : ISD->Sections) for (Relocation &Rel : IS->Relocations) { uint64_t Src = OS->Addr + IS->OutSecOff + Rel.Offset; // If we are a relocation to an existing Thunk, check if it is // still in range. If not then Rel will be altered to point to its // original target so another Thunk can be generated. if (Pass > 0 && normalizeExistingThunk(Rel, Src)) continue; if (!Target->needsThunk(Rel.Expr, Rel.Type, IS->File, Src, *Rel.Sym)) continue; Thunk *T; bool IsNew; std::tie(T, IsNew) = getThunk(*Rel.Sym, Rel.Type, Src); if (IsNew) { AddressesChanged = true; // Find or create a ThunkSection for the new Thunk ThunkSection *TS; if (auto *TIS = T->getTargetInputSection()) TS = getISThunkSec(TIS); else TS = getISDThunkSec(OS, IS, ISD, Rel.Type, Src); TS->addThunk(T); Thunks[T->ThunkSym] = T; } // Redirect relocation to Thunk, we never go via the PLT to a Thunk Rel.Sym = T->ThunkSym; Rel.Expr = fromPlt(Rel.Expr); } }); // Merge all created synthetic ThunkSections back into OutputSection mergeThunks(OutputSections); ++Pass; return AddressesChanged; } template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &); template void elf::scanRelocations(InputSectionBase &);