//===- Symbols.h ------------------------------------------------*- C++ -*-===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // All symbols are handled as SymbolBodies regardless of their types. // This file defines various types of SymbolBodies. // //===----------------------------------------------------------------------===// #ifndef LLD_ELF_SYMBOLS_H #define LLD_ELF_SYMBOLS_H #include "InputSection.h" #include "Strings.h" #include "lld/Common/LLVM.h" #include "llvm/Object/Archive.h" #include "llvm/Object/ELF.h" namespace lld { namespace elf { class ArchiveFile; class BitcodeFile; class BssSection; class InputFile; class LazyObjFile; template class ObjFile; class OutputSection; template class SharedFile; // The base class for real symbol classes. class Symbol { public: enum Kind { DefinedKind, SharedKind, UndefinedKind, LazyArchiveKind, LazyObjectKind, }; Kind kind() const { return static_cast(SymbolKind); } // Symbol binding. This is not overwritten by replaceSymbol to track // changes during resolution. In particular: // - An undefined weak is still weak when it resolves to a shared library. // - An undefined weak will not fetch archive members, but we have to // remember it is weak. uint8_t Binding; // Version definition index. uint16_t VersionId; // Symbol visibility. This is the computed minimum visibility of all // observed non-DSO symbols. unsigned Visibility : 2; // True if the symbol was used for linking and thus need to be added to the // output file's symbol table. This is true for all symbols except for // unreferenced DSO symbols and bitcode symbols that are unreferenced except // by other bitcode objects. unsigned IsUsedInRegularObj : 1; // If this flag is true and the symbol has protected or default visibility, it // will appear in .dynsym. This flag is set by interposable DSO symbols in // executables, by most symbols in DSOs and executables built with // --export-dynamic, and by dynamic lists. unsigned ExportDynamic : 1; // False if LTO shouldn't inline whatever this symbol points to. If a symbol // is overwritten after LTO, LTO shouldn't inline the symbol because it // doesn't know the final contents of the symbol. unsigned CanInline : 1; // True if this symbol is specified by --trace-symbol option. unsigned Traced : 1; // This symbol version was found in a version script. unsigned InVersionScript : 1; // The file from which this symbol was created. InputFile *File; bool includeInDynsym() const; uint8_t computeBinding() const; bool isWeak() const { return Binding == llvm::ELF::STB_WEAK; } bool isUndefined() const { return SymbolKind == UndefinedKind; } bool isDefined() const { return SymbolKind == DefinedKind; } bool isShared() const { return SymbolKind == SharedKind; } bool isLocal() const { return Binding == llvm::ELF::STB_LOCAL; } bool isLazy() const { return SymbolKind == LazyArchiveKind || SymbolKind == LazyObjectKind; } // True is this is an undefined weak symbol. This only works once // all input files have been added. bool isUndefWeak() const { // See comment on Lazy the details. return isWeak() && (isUndefined() || isLazy()); } StringRef getName() const { return Name; } uint8_t getVisibility() const { return StOther & 0x3; } void parseSymbolVersion(); bool isInGot() const { return GotIndex != -1U; } bool isInPlt() const { return PltIndex != -1U; } uint64_t getVA(int64_t Addend = 0) const; uint64_t getGotOffset() const; uint64_t getGotVA() const; uint64_t getGotPltOffset() const; uint64_t getGotPltVA() const; uint64_t getPltVA() const; uint64_t getSize() const; OutputSection *getOutputSection() const; uint32_t DynsymIndex = 0; uint32_t GotIndex = -1; uint32_t GotPltIndex = -1; uint32_t PltIndex = -1; uint32_t GlobalDynIndex = -1; protected: Symbol(Kind K, InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther, uint8_t Type) : Binding(Binding), File(File), SymbolKind(K), NeedsPltAddr(false), IsInGlobalMipsGot(false), Is32BitMipsGot(false), IsInIplt(false), IsInIgot(false), IsPreemptible(false), Used(!Config->GcSections), Type(Type), StOther(StOther), Name(Name) {} const unsigned SymbolKind : 8; public: // True the symbol should point to its PLT entry. // For SharedSymbol only. unsigned NeedsPltAddr : 1; // True if this symbol has an entry in the global part of MIPS GOT. unsigned IsInGlobalMipsGot : 1; // True if this symbol is referenced by 32-bit GOT relocations. unsigned Is32BitMipsGot : 1; // True if this symbol is in the Iplt sub-section of the Plt. unsigned IsInIplt : 1; // True if this symbol is in the Igot sub-section of the .got.plt or .got. unsigned IsInIgot : 1; unsigned IsPreemptible : 1; // True if an undefined or shared symbol is used from a live section. unsigned Used : 1; // The following fields have the same meaning as the ELF symbol attributes. uint8_t Type; // symbol type uint8_t StOther; // st_other field value // The Type field may also have this value. It means that we have not yet seen // a non-Lazy symbol with this name, so we don't know what its type is. The // Type field is normally set to this value for Lazy symbols unless we saw a // weak undefined symbol first, in which case we need to remember the original // symbol's type in order to check for TLS mismatches. enum { UnknownType = 255 }; bool isSection() const { return Type == llvm::ELF::STT_SECTION; } bool isTls() const { return Type == llvm::ELF::STT_TLS; } bool isFunc() const { return Type == llvm::ELF::STT_FUNC; } bool isGnuIFunc() const { return Type == llvm::ELF::STT_GNU_IFUNC; } bool isObject() const { return Type == llvm::ELF::STT_OBJECT; } bool isFile() const { return Type == llvm::ELF::STT_FILE; } protected: StringRefZ Name; }; // Represents a symbol that is defined in the current output file. class Defined : public Symbol { public: Defined(InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther, uint8_t Type, uint64_t Value, uint64_t Size, SectionBase *Section) : Symbol(DefinedKind, File, Name, Binding, StOther, Type), Value(Value), Size(Size), Section(Section) {} static bool classof(const Symbol *S) { return S->isDefined(); } uint64_t Value; uint64_t Size; SectionBase *Section; }; class Undefined : public Symbol { public: Undefined(InputFile *File, StringRefZ Name, uint8_t Binding, uint8_t StOther, uint8_t Type) : Symbol(UndefinedKind, File, Name, Binding, StOther, Type) {} static bool classof(const Symbol *S) { return S->kind() == UndefinedKind; } }; class SharedSymbol : public Symbol { public: static bool classof(const Symbol *S) { return S->kind() == SharedKind; } SharedSymbol(InputFile &File, StringRef Name, uint8_t Binding, uint8_t StOther, uint8_t Type, uint64_t Value, uint64_t Size, uint32_t Alignment, uint32_t VerdefIndex) : Symbol(SharedKind, &File, Name, Binding, StOther, Type), Value(Value), Size(Size), VerdefIndex(VerdefIndex), Alignment(Alignment) { // GNU ifunc is a mechanism to allow user-supplied functions to // resolve PLT slot values at load-time. This is contrary to the // regular symbol resolution scheme in which symbols are resolved just // by name. Using this hook, you can program how symbols are solved // for you program. For example, you can make "memcpy" to be resolved // to a SSE-enabled version of memcpy only when a machine running the // program supports the SSE instruction set. // // Naturally, such symbols should always be called through their PLT // slots. What GNU ifunc symbols point to are resolver functions, and // calling them directly doesn't make sense (unless you are writing a // loader). // // For DSO symbols, we always call them through PLT slots anyway. // So there's no difference between GNU ifunc and regular function // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. if (this->Type == llvm::ELF::STT_GNU_IFUNC) this->Type = llvm::ELF::STT_FUNC; } template SharedFile &getFile() const { return *cast>(File); } // If not null, there is a copy relocation to this section. InputSection *CopyRelSec = nullptr; uint64_t Value; // st_value uint64_t Size; // st_size // This field is a index to the symbol's version definition. uint32_t VerdefIndex; uint32_t Alignment; }; // This represents a symbol that is not yet in the link, but we know where to // find it if needed. If the resolver finds both Undefined and Lazy for the same // name, it will ask the Lazy to load a file. // // A special complication is the handling of weak undefined symbols. They should // not load a file, but we have to remember we have seen both the weak undefined // and the lazy. We represent that with a lazy symbol with a weak binding. This // means that code looking for undefined symbols normally also has to take lazy // symbols into consideration. class Lazy : public Symbol { public: static bool classof(const Symbol *S) { return S->isLazy(); } // Returns an object file for this symbol, or a nullptr if the file // was already returned. InputFile *fetch(); protected: Lazy(Kind K, InputFile &File, StringRef Name, uint8_t Type) : Symbol(K, &File, Name, llvm::ELF::STB_GLOBAL, llvm::ELF::STV_DEFAULT, Type) {} }; // This class represents a symbol defined in an archive file. It is // created from an archive file header, and it knows how to load an // object file from an archive to replace itself with a defined // symbol. class LazyArchive : public Lazy { public: LazyArchive(InputFile &File, const llvm::object::Archive::Symbol S, uint8_t Type) : Lazy(LazyArchiveKind, File, S.getName(), Type), Sym(S) {} static bool classof(const Symbol *S) { return S->kind() == LazyArchiveKind; } ArchiveFile &getFile(); InputFile *fetch(); private: const llvm::object::Archive::Symbol Sym; }; // LazyObject symbols represents symbols in object files between // --start-lib and --end-lib options. class LazyObject : public Lazy { public: LazyObject(InputFile &File, StringRef Name, uint8_t Type) : Lazy(LazyObjectKind, File, Name, Type) {} static bool classof(const Symbol *S) { return S->kind() == LazyObjectKind; } LazyObjFile &getFile(); InputFile *fetch(); }; // Some linker-generated symbols need to be created as // Defined symbols. struct ElfSym { // __bss_start static Defined *Bss; // etext and _etext static Defined *Etext1; static Defined *Etext2; // edata and _edata static Defined *Edata1; static Defined *Edata2; // end and _end static Defined *End1; static Defined *End2; // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to // be at some offset from the base of the .got section, usually 0 or // the end of the .got. static Defined *GlobalOffsetTable; // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. static Defined *MipsGp; static Defined *MipsGpDisp; static Defined *MipsLocalGp; }; // A buffer class that is large enough to hold any Symbol-derived // object. We allocate memory using this class and instantiate a symbol // using the placement new. union SymbolUnion { alignas(Defined) char A[sizeof(Defined)]; alignas(Undefined) char C[sizeof(Undefined)]; alignas(SharedSymbol) char D[sizeof(SharedSymbol)]; alignas(LazyArchive) char E[sizeof(LazyArchive)]; alignas(LazyObject) char F[sizeof(LazyObject)]; }; void printTraceSymbol(Symbol *Sym); template void replaceSymbol(Symbol *S, ArgT &&... Arg) { static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small"); static_assert(alignof(T) <= alignof(SymbolUnion), "SymbolUnion not aligned enough"); assert(static_cast(static_cast(nullptr)) == nullptr && "Not a Symbol"); Symbol Sym = *S; new (S) T(std::forward(Arg)...); S->VersionId = Sym.VersionId; S->Visibility = Sym.Visibility; S->IsUsedInRegularObj = Sym.IsUsedInRegularObj; S->ExportDynamic = Sym.ExportDynamic; S->CanInline = Sym.CanInline; S->Traced = Sym.Traced; S->InVersionScript = Sym.InVersionScript; // Print out a log message if --trace-symbol was specified. // This is for debugging. if (S->Traced) printTraceSymbol(S); } } // namespace elf std::string toString(const elf::Symbol &B); } // namespace lld #endif