//===- SyntheticSections.cpp ----------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains linker-synthesized sections. Currently, // synthetic sections are created either output sections or input sections, // but we are rewriting code so that all synthetic sections are created as // input sections. // //===----------------------------------------------------------------------===// #include "SyntheticSections.h" #include "Config.h" #include "Error.h" #include "InputFiles.h" #include "LinkerScript.h" #include "Memory.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "Target.h" #include "Threads.h" #include "Writer.h" #include "lld/Config/Version.h" #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MD5.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/xxhash.h" #include using namespace llvm; using namespace llvm::dwarf; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; uint64_t SyntheticSection::getVA() const { if (this->OutSec) return this->OutSec->Addr + this->OutSecOff; return 0; } template static std::vector getCommonSymbols() { std::vector V; for (Symbol *S : Symtab::X->getSymbols()) if (auto *B = dyn_cast(S->body())) V.push_back(B); return V; } // Find all common symbols and allocate space for them. template InputSection *elf::createCommonSection() { if (!Config->DefineCommon) return nullptr; // Sort the common symbols by alignment as an heuristic to pack them better. std::vector Syms = getCommonSymbols(); if (Syms.empty()) return nullptr; std::stable_sort(Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->Alignment > B->Alignment; }); BssSection *Sec = make("COMMON"); for (DefinedCommon *Sym : Syms) Sym->Offset = Sec->reserveSpace(Sym->Size, Sym->Alignment); return Sec; } // Returns an LLD version string. static ArrayRef getVersion() { // Check LLD_VERSION first for ease of testing. // You can get consitent output by using the environment variable. // This is only for testing. StringRef S = getenv("LLD_VERSION"); if (S.empty()) S = Saver.save(Twine("Linker: ") + getLLDVersion()); // +1 to include the terminating '\0'. return {(const uint8_t *)S.data(), S.size() + 1}; } // Creates a .comment section containing LLD version info. // With this feature, you can identify LLD-generated binaries easily // by "objdump -s -j .comment ". // The returned object is a mergeable string section. template MergeInputSection *elf::createCommentSection() { typename ELFT::Shdr Hdr = {}; Hdr.sh_flags = SHF_MERGE | SHF_STRINGS; Hdr.sh_type = SHT_PROGBITS; Hdr.sh_entsize = 1; Hdr.sh_addralign = 1; auto *Ret = make((ObjectFile *)nullptr, &Hdr, ".comment"); Ret->Data = getVersion(); Ret->splitIntoPieces(); return Ret; } // .MIPS.abiflags section. template MipsAbiFlagsSection::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags) : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), Flags(Flags) { this->Entsize = sizeof(Elf_Mips_ABIFlags); } template void MipsAbiFlagsSection::writeTo(uint8_t *Buf) { memcpy(Buf, &Flags, sizeof(Flags)); } template MipsAbiFlagsSection *MipsAbiFlagsSection::create() { Elf_Mips_ABIFlags Flags = {}; bool Create = false; for (InputSectionBase *Sec : InputSections) { if (Sec->Type != SHT_MIPS_ABIFLAGS) continue; Sec->Live = false; Create = true; std::string Filename = toString(Sec->getFile()); const size_t Size = Sec->Data.size(); // Older version of BFD (such as the default FreeBSD linker) concatenate // .MIPS.abiflags instead of merging. To allow for this case (or potential // zero padding) we ignore everything after the first Elf_Mips_ABIFlags if (Size < sizeof(Elf_Mips_ABIFlags)) { error(Filename + ": invalid size of .MIPS.abiflags section: got " + Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); return nullptr; } auto *S = reinterpret_cast(Sec->Data.data()); if (S->version != 0) { error(Filename + ": unexpected .MIPS.abiflags version " + Twine(S->version)); return nullptr; } // LLD checks ISA compatibility in getMipsEFlags(). Here we just // select the highest number of ISA/Rev/Ext. Flags.isa_level = std::max(Flags.isa_level, S->isa_level); Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); Flags.ases |= S->ases; Flags.flags1 |= S->flags1; Flags.flags2 |= S->flags2; Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename); }; if (Create) return make>(Flags); return nullptr; } // .MIPS.options section. template MipsOptionsSection::MipsOptionsSection(Elf_Mips_RegInfo Reginfo) : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), Reginfo(Reginfo) { this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); } template void MipsOptionsSection::writeTo(uint8_t *Buf) { auto *Options = reinterpret_cast(Buf); Options->kind = ODK_REGINFO; Options->size = getSize(); if (!Config->Relocatable) Reginfo.ri_gp_value = In::MipsGot->getGp(); memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo)); } template MipsOptionsSection *MipsOptionsSection::create() { // N64 ABI only. if (!ELFT::Is64Bits) return nullptr; Elf_Mips_RegInfo Reginfo = {}; bool Create = false; for (InputSectionBase *Sec : InputSections) { if (Sec->Type != SHT_MIPS_OPTIONS) continue; Sec->Live = false; Create = true; std::string Filename = toString(Sec->getFile()); ArrayRef D = Sec->Data; while (!D.empty()) { if (D.size() < sizeof(Elf_Mips_Options)) { error(Filename + ": invalid size of .MIPS.options section"); break; } auto *Opt = reinterpret_cast(D.data()); if (Opt->kind == ODK_REGINFO) { if (Config->Relocatable && Opt->getRegInfo().ri_gp_value) error(Filename + ": unsupported non-zero ri_gp_value"); Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask; Sec->getFile()->MipsGp0 = Opt->getRegInfo().ri_gp_value; break; } if (!Opt->size) fatal(Filename + ": zero option descriptor size"); D = D.slice(Opt->size); } }; if (Create) return make>(Reginfo); return nullptr; } // MIPS .reginfo section. template MipsReginfoSection::MipsReginfoSection(Elf_Mips_RegInfo Reginfo) : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), Reginfo(Reginfo) { this->Entsize = sizeof(Elf_Mips_RegInfo); } template void MipsReginfoSection::writeTo(uint8_t *Buf) { if (!Config->Relocatable) Reginfo.ri_gp_value = In::MipsGot->getGp(); memcpy(Buf, &Reginfo, sizeof(Reginfo)); } template MipsReginfoSection *MipsReginfoSection::create() { // Section should be alive for O32 and N32 ABIs only. if (ELFT::Is64Bits) return nullptr; Elf_Mips_RegInfo Reginfo = {}; bool Create = false; for (InputSectionBase *Sec : InputSections) { if (Sec->Type != SHT_MIPS_REGINFO) continue; Sec->Live = false; Create = true; if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) { error(toString(Sec->getFile()) + ": invalid size of .reginfo section"); return nullptr; } auto *R = reinterpret_cast(Sec->Data.data()); if (Config->Relocatable && R->ri_gp_value) error(toString(Sec->getFile()) + ": unsupported non-zero ri_gp_value"); Reginfo.ri_gprmask |= R->ri_gprmask; Sec->getFile()->MipsGp0 = R->ri_gp_value; }; if (Create) return make>(Reginfo); return nullptr; } InputSection *elf::createInterpSection() { // StringSaver guarantees that the returned string ends with '\0'. StringRef S = Saver.save(Config->DynamicLinker); ArrayRef Contents = {(const uint8_t *)S.data(), S.size() + 1}; auto *Sec = make(SHF_ALLOC, SHT_PROGBITS, 1, Contents, ".interp"); Sec->Live = true; return Sec; } template SymbolBody *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value, uint64_t Size, InputSectionBase *Section) { auto *S = make(Name, /*IsLocal*/ true, STV_DEFAULT, Type, Value, Size, Section, nullptr); if (In::SymTab) In::SymTab->addSymbol(S); return S; } static size_t getHashSize() { switch (Config->BuildId) { case BuildIdKind::Fast: return 8; case BuildIdKind::Md5: case BuildIdKind::Uuid: return 16; case BuildIdKind::Sha1: return 20; case BuildIdKind::Hexstring: return Config->BuildIdVector.size(); default: llvm_unreachable("unknown BuildIdKind"); } } BuildIdSection::BuildIdSection() : SyntheticSection(SHF_ALLOC, SHT_NOTE, 1, ".note.gnu.build-id"), HashSize(getHashSize()) {} void BuildIdSection::writeTo(uint8_t *Buf) { endianness E = Config->Endianness; write32(Buf, 4, E); // Name size write32(Buf + 4, HashSize, E); // Content size write32(Buf + 8, NT_GNU_BUILD_ID, E); // Type memcpy(Buf + 12, "GNU", 4); // Name string HashBuf = Buf + 16; } // Split one uint8 array into small pieces of uint8 arrays. static std::vector> split(ArrayRef Arr, size_t ChunkSize) { std::vector> Ret; while (Arr.size() > ChunkSize) { Ret.push_back(Arr.take_front(ChunkSize)); Arr = Arr.drop_front(ChunkSize); } if (!Arr.empty()) Ret.push_back(Arr); return Ret; } // Computes a hash value of Data using a given hash function. // In order to utilize multiple cores, we first split data into 1MB // chunks, compute a hash for each chunk, and then compute a hash value // of the hash values. void BuildIdSection::computeHash( llvm::ArrayRef Data, std::function Arr)> HashFn) { std::vector> Chunks = split(Data, 1024 * 1024); std::vector Hashes(Chunks.size() * HashSize); // Compute hash values. parallelFor(0, Chunks.size(), [&](size_t I) { HashFn(Hashes.data() + I * HashSize, Chunks[I]); }); // Write to the final output buffer. HashFn(HashBuf, Hashes); } BssSection::BssSection(StringRef Name) : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 0, Name) {} size_t BssSection::reserveSpace(uint64_t Size, uint32_t Alignment) { if (OutSec) OutSec->updateAlignment(Alignment); this->Size = alignTo(this->Size, Alignment) + Size; this->Alignment = std::max(this->Alignment, Alignment); return this->Size - Size; } void BuildIdSection::writeBuildId(ArrayRef Buf) { switch (Config->BuildId) { case BuildIdKind::Fast: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { write64le(Dest, xxHash64(toStringRef(Arr))); }); break; case BuildIdKind::Md5: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, MD5::hash(Arr).data(), 16); }); break; case BuildIdKind::Sha1: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, SHA1::hash(Arr).data(), 20); }); break; case BuildIdKind::Uuid: if (getRandomBytes(HashBuf, HashSize)) error("entropy source failure"); break; case BuildIdKind::Hexstring: memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); break; default: llvm_unreachable("unknown BuildIdKind"); } } template EhFrameSection::EhFrameSection() : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} // Search for an existing CIE record or create a new one. // CIE records from input object files are uniquified by their contents // and where their relocations point to. template template CieRecord *EhFrameSection::addCie(EhSectionPiece &Piece, ArrayRef Rels) { auto *Sec = cast(Piece.ID); const endianness E = ELFT::TargetEndianness; if (read32(Piece.data().data() + 4) != 0) fatal(toString(Sec) + ": CIE expected at beginning of .eh_frame"); SymbolBody *Personality = nullptr; unsigned FirstRelI = Piece.FirstRelocation; if (FirstRelI != (unsigned)-1) Personality = &Sec->template getFile()->getRelocTargetSym(Rels[FirstRelI]); // Search for an existing CIE by CIE contents/relocation target pair. CieRecord *Cie = &CieMap[{Piece.data(), Personality}]; // If not found, create a new one. if (Cie->Piece == nullptr) { Cie->Piece = &Piece; Cies.push_back(Cie); } return Cie; } // There is one FDE per function. Returns true if a given FDE // points to a live function. template template bool EhFrameSection::isFdeLive(EhSectionPiece &Piece, ArrayRef Rels) { auto *Sec = cast(Piece.ID); unsigned FirstRelI = Piece.FirstRelocation; if (FirstRelI == (unsigned)-1) return false; const RelTy &Rel = Rels[FirstRelI]; SymbolBody &B = Sec->template getFile()->getRelocTargetSym(Rel); auto *D = dyn_cast(&B); if (!D || !D->Section) return false; auto *Target = cast(cast(D->Section)->Repl); return Target && Target->Live; } // .eh_frame is a sequence of CIE or FDE records. In general, there // is one CIE record per input object file which is followed by // a list of FDEs. This function searches an existing CIE or create a new // one and associates FDEs to the CIE. template template void EhFrameSection::addSectionAux(EhInputSection *Sec, ArrayRef Rels) { const endianness E = ELFT::TargetEndianness; DenseMap OffsetToCie; for (EhSectionPiece &Piece : Sec->Pieces) { // The empty record is the end marker. if (Piece.size() == 4) return; size_t Offset = Piece.InputOff; uint32_t ID = read32(Piece.data().data() + 4); if (ID == 0) { OffsetToCie[Offset] = addCie(Piece, Rels); continue; } uint32_t CieOffset = Offset + 4 - ID; CieRecord *Cie = OffsetToCie[CieOffset]; if (!Cie) fatal(toString(Sec) + ": invalid CIE reference"); if (!isFdeLive(Piece, Rels)) continue; Cie->FdePieces.push_back(&Piece); NumFdes++; } } template void EhFrameSection::addSection(InputSectionBase *C) { auto *Sec = cast(C); Sec->EHSec = this; updateAlignment(Sec->Alignment); Sections.push_back(Sec); for (auto *DS : Sec->DependentSections) DependentSections.push_back(DS); // .eh_frame is a sequence of CIE or FDE records. This function // splits it into pieces so that we can call // SplitInputSection::getSectionPiece on the section. Sec->split(); if (Sec->Pieces.empty()) return; if (Sec->NumRelocations) { if (Sec->AreRelocsRela) addSectionAux(Sec, Sec->template relas()); else addSectionAux(Sec, Sec->template rels()); return; } addSectionAux(Sec, makeArrayRef(nullptr, nullptr)); } template static void writeCieFde(uint8_t *Buf, ArrayRef D) { memcpy(Buf, D.data(), D.size()); // Fix the size field. -4 since size does not include the size field itself. const endianness E = ELFT::TargetEndianness; write32(Buf, alignTo(D.size(), sizeof(typename ELFT::uint)) - 4); } template void EhFrameSection::finalizeContents() { if (this->Size) return; // Already finalized. size_t Off = 0; for (CieRecord *Cie : Cies) { Cie->Piece->OutputOff = Off; Off += alignTo(Cie->Piece->size(), Config->Wordsize); for (EhSectionPiece *Fde : Cie->FdePieces) { Fde->OutputOff = Off; Off += alignTo(Fde->size(), Config->Wordsize); } } this->Size = Off; } template static uint64_t readFdeAddr(uint8_t *Buf, int Size) { const endianness E = ELFT::TargetEndianness; switch (Size) { case DW_EH_PE_udata2: return read16(Buf); case DW_EH_PE_udata4: return read32(Buf); case DW_EH_PE_udata8: return read64(Buf); case DW_EH_PE_absptr: if (ELFT::Is64Bits) return read64(Buf); return read32(Buf); } fatal("unknown FDE size encoding"); } // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. // We need it to create .eh_frame_hdr section. template uint64_t EhFrameSection::getFdePc(uint8_t *Buf, size_t FdeOff, uint8_t Enc) { // The starting address to which this FDE applies is // stored at FDE + 8 byte. size_t Off = FdeOff + 8; uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0x7); if ((Enc & 0x70) == DW_EH_PE_absptr) return Addr; if ((Enc & 0x70) == DW_EH_PE_pcrel) return Addr + this->OutSec->Addr + Off; fatal("unknown FDE size relative encoding"); } template void EhFrameSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; for (CieRecord *Cie : Cies) { size_t CieOffset = Cie->Piece->OutputOff; writeCieFde(Buf + CieOffset, Cie->Piece->data()); for (EhSectionPiece *Fde : Cie->FdePieces) { size_t Off = Fde->OutputOff; writeCieFde(Buf + Off, Fde->data()); // FDE's second word should have the offset to an associated CIE. // Write it. write32(Buf + Off + 4, Off + 4 - CieOffset); } } for (EhInputSection *S : Sections) S->template relocate(Buf, nullptr); // Construct .eh_frame_hdr. .eh_frame_hdr is a binary search table // to get a FDE from an address to which FDE is applied. So here // we obtain two addresses and pass them to EhFrameHdr object. if (In::EhFrameHdr) { for (CieRecord *Cie : Cies) { uint8_t Enc = getFdeEncoding(Cie->Piece); for (SectionPiece *Fde : Cie->FdePieces) { uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); uint64_t FdeVA = this->OutSec->Addr + Fde->OutputOff; In::EhFrameHdr->addFde(Pc, FdeVA); } } } } template GotSection::GotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotEntrySize, ".got") {} template void GotSection::addEntry(SymbolBody &Sym) { Sym.GotIndex = NumEntries; ++NumEntries; } template bool GotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = NumEntries; // Global Dynamic TLS entries take two GOT slots. NumEntries += 2; return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool GotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = NumEntries * Config->Wordsize; NumEntries += 2; return true; } template uint64_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { return this->getVA() + B.GlobalDynIndex * Config->Wordsize; } template uint64_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * Config->Wordsize; } template void GotSection::finalizeContents() { Size = NumEntries * Config->Wordsize; } template bool GotSection::empty() const { // If we have a relocation that is relative to GOT (such as GOTOFFREL), // we need to emit a GOT even if it's empty. return NumEntries == 0 && !HasGotOffRel; } template void GotSection::writeTo(uint8_t *Buf) { this->template relocate(Buf, Buf + Size); } MipsGotSection::MipsGotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, ".got") {} void MipsGotSection::addEntry(SymbolBody &Sym, int64_t Addend, RelExpr Expr) { // For "true" local symbols which can be referenced from the same module // only compiler creates two instructions for address loading: // // lw $8, 0($gp) # R_MIPS_GOT16 // addi $8, $8, 0 # R_MIPS_LO16 // // The first instruction loads high 16 bits of the symbol address while // the second adds an offset. That allows to reduce number of required // GOT entries because only one global offset table entry is necessary // for every 64 KBytes of local data. So for local symbols we need to // allocate number of GOT entries to hold all required "page" addresses. // // All global symbols (hidden and regular) considered by compiler uniformly. // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation // to load address of the symbol. So for each such symbol we need to // allocate dedicated GOT entry to store its address. // // If a symbol is preemptible we need help of dynamic linker to get its // final address. The corresponding GOT entries are allocated in the // "global" part of GOT. Entries for non preemptible global symbol allocated // in the "local" part of GOT. // // See "Global Offset Table" in Chapter 5: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Expr == R_MIPS_GOT_LOCAL_PAGE) { // At this point we do not know final symbol value so to reduce number // of allocated GOT entries do the following trick. Save all output // sections referenced by GOT relocations. Then later in the `finalize` // method calculate number of "pages" required to cover all saved output // section and allocate appropriate number of GOT entries. auto *DefSym = cast(&Sym); PageIndexMap.insert({DefSym->Section->getOutputSection(), 0}); return; } if (Sym.isTls()) { // GOT entries created for MIPS TLS relocations behave like // almost GOT entries from other ABIs. They go to the end // of the global offset table. Sym.GotIndex = TlsEntries.size(); TlsEntries.push_back(&Sym); return; } auto AddEntry = [&](SymbolBody &S, uint64_t A, GotEntries &Items) { if (S.isInGot() && !A) return; size_t NewIndex = Items.size(); if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second) return; Items.emplace_back(&S, A); if (!A) S.GotIndex = NewIndex; }; if (Sym.isPreemptible()) { // Ignore addends for preemptible symbols. They got single GOT entry anyway. AddEntry(Sym, 0, GlobalEntries); Sym.IsInGlobalMipsGot = true; } else if (Expr == R_MIPS_GOT_OFF32) { AddEntry(Sym, Addend, LocalEntries32); Sym.Is32BitMipsGot = true; } else { // Hold local GOT entries accessed via a 16-bit index separately. // That allows to write them in the beginning of the GOT and keep // their indexes as less as possible to escape relocation's overflow. AddEntry(Sym, Addend, LocalEntries); } } bool MipsGotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = TlsEntries.size(); // Global Dynamic TLS entries take two GOT slots. TlsEntries.push_back(nullptr); TlsEntries.push_back(&Sym); return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. bool MipsGotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = TlsEntries.size() * Config->Wordsize; TlsEntries.push_back(nullptr); TlsEntries.push_back(nullptr); return true; } static uint64_t getMipsPageAddr(uint64_t Addr) { return (Addr + 0x8000) & ~0xffff; } static uint64_t getMipsPageCount(uint64_t Size) { return (Size + 0xfffe) / 0xffff + 1; } uint64_t MipsGotSection::getPageEntryOffset(const SymbolBody &B, int64_t Addend) const { const OutputSection *OutSec = cast(&B)->Section->getOutputSection(); uint64_t SecAddr = getMipsPageAddr(OutSec->Addr); uint64_t SymAddr = getMipsPageAddr(B.getVA(Addend)); uint64_t Index = PageIndexMap.lookup(OutSec) + (SymAddr - SecAddr) / 0xffff; assert(Index < PageEntriesNum); return (HeaderEntriesNum + Index) * Config->Wordsize; } uint64_t MipsGotSection::getBodyEntryOffset(const SymbolBody &B, int64_t Addend) const { // Calculate offset of the GOT entries block: TLS, global, local. uint64_t Index = HeaderEntriesNum + PageEntriesNum; if (B.isTls()) Index += LocalEntries.size() + LocalEntries32.size() + GlobalEntries.size(); else if (B.IsInGlobalMipsGot) Index += LocalEntries.size() + LocalEntries32.size(); else if (B.Is32BitMipsGot) Index += LocalEntries.size(); // Calculate offset of the GOT entry in the block. if (B.isInGot()) Index += B.GotIndex; else { auto It = EntryIndexMap.find({&B, Addend}); assert(It != EntryIndexMap.end()); Index += It->second; } return Index * Config->Wordsize; } uint64_t MipsGotSection::getTlsOffset() const { return (getLocalEntriesNum() + GlobalEntries.size()) * Config->Wordsize; } uint64_t MipsGotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * Config->Wordsize; } const SymbolBody *MipsGotSection::getFirstGlobalEntry() const { return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first; } unsigned MipsGotSection::getLocalEntriesNum() const { return HeaderEntriesNum + PageEntriesNum + LocalEntries.size() + LocalEntries32.size(); } void MipsGotSection::finalizeContents() { updateAllocSize(); } void MipsGotSection::updateAllocSize() { PageEntriesNum = 0; for (std::pair &P : PageIndexMap) { // For each output section referenced by GOT page relocations calculate // and save into PageIndexMap an upper bound of MIPS GOT entries required // to store page addresses of local symbols. We assume the worst case - // each 64kb page of the output section has at least one GOT relocation // against it. And take in account the case when the section intersects // page boundaries. P.second = PageEntriesNum; PageEntriesNum += getMipsPageCount(P.first->Size); } Size = (getLocalEntriesNum() + GlobalEntries.size() + TlsEntries.size()) * Config->Wordsize; } bool MipsGotSection::empty() const { // We add the .got section to the result for dynamic MIPS target because // its address and properties are mentioned in the .dynamic section. return Config->Relocatable; } uint64_t MipsGotSection::getGp() const { return ElfSym::MipsGp->getVA(0); } static uint64_t readUint(uint8_t *Buf) { if (Config->Is64) return read64(Buf, Config->Endianness); return read32(Buf, Config->Endianness); } static void writeUint(uint8_t *Buf, uint64_t Val) { if (Config->Is64) write64(Buf, Val, Config->Endianness); else write32(Buf, Val, Config->Endianness); } void MipsGotSection::writeTo(uint8_t *Buf) { // Set the MSB of the second GOT slot. This is not required by any // MIPS ABI documentation, though. // // There is a comment in glibc saying that "The MSB of got[1] of a // gnu object is set to identify gnu objects," and in GNU gold it // says "the second entry will be used by some runtime loaders". // But how this field is being used is unclear. // // We are not really willing to mimic other linkers behaviors // without understanding why they do that, but because all files // generated by GNU tools have this special GOT value, and because // we've been doing this for years, it is probably a safe bet to // keep doing this for now. We really need to revisit this to see // if we had to do this. writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1)); Buf += HeaderEntriesNum * Config->Wordsize; // Write 'page address' entries to the local part of the GOT. for (std::pair &L : PageIndexMap) { size_t PageCount = getMipsPageCount(L.first->Size); uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr); for (size_t PI = 0; PI < PageCount; ++PI) { uint8_t *Entry = Buf + (L.second + PI) * Config->Wordsize; writeUint(Entry, FirstPageAddr + PI * 0x10000); } } Buf += PageEntriesNum * Config->Wordsize; auto AddEntry = [&](const GotEntry &SA) { uint8_t *Entry = Buf; Buf += Config->Wordsize; const SymbolBody *Body = SA.first; uint64_t VA = Body->getVA(SA.second); writeUint(Entry, VA); }; std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry); std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry); std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry); // Initialize TLS-related GOT entries. If the entry has a corresponding // dynamic relocations, leave it initialized by zero. Write down adjusted // TLS symbol's values otherwise. To calculate the adjustments use offsets // for thread-local storage. // https://www.linux-mips.org/wiki/NPTL if (TlsIndexOff != -1U && !Config->Pic) writeUint(Buf + TlsIndexOff, 1); for (const SymbolBody *B : TlsEntries) { if (!B || B->isPreemptible()) continue; uint64_t VA = B->getVA(); if (B->GotIndex != -1U) { uint8_t *Entry = Buf + B->GotIndex * Config->Wordsize; writeUint(Entry, VA - 0x7000); } if (B->GlobalDynIndex != -1U) { uint8_t *Entry = Buf + B->GlobalDynIndex * Config->Wordsize; writeUint(Entry, 1); Entry += Config->Wordsize; writeUint(Entry, VA - 0x8000); } } } GotPltSection::GotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotPltEntrySize, ".got.plt") {} void GotPltSection::addEntry(SymbolBody &Sym) { Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); Entries.push_back(&Sym); } size_t GotPltSection::getSize() const { return (Target->GotPltHeaderEntriesNum + Entries.size()) * Target->GotPltEntrySize; } void GotPltSection::writeTo(uint8_t *Buf) { Target->writeGotPltHeader(Buf); Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; for (const SymbolBody *B : Entries) { Target->writeGotPlt(Buf, *B); Buf += Config->Wordsize; } } // On ARM the IgotPltSection is part of the GotSection, on other Targets it is // part of the .got.plt IgotPltSection::IgotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotPltEntrySize, Config->EMachine == EM_ARM ? ".got" : ".got.plt") {} void IgotPltSection::addEntry(SymbolBody &Sym) { Sym.IsInIgot = true; Sym.GotPltIndex = Entries.size(); Entries.push_back(&Sym); } size_t IgotPltSection::getSize() const { return Entries.size() * Target->GotPltEntrySize; } void IgotPltSection::writeTo(uint8_t *Buf) { for (const SymbolBody *B : Entries) { Target->writeIgotPlt(Buf, *B); Buf += Config->Wordsize; } } StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), Dynamic(Dynamic) { // ELF string tables start with a NUL byte. addString(""); } // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, this->Size)); if (!R.second) return R.first->second; } unsigned Ret = this->Size; this->Size = this->Size + S.size() + 1; Strings.push_back(S); return Ret; } void StringTableSection::writeTo(uint8_t *Buf) { for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf += S.size() + 1; } } // Returns the number of version definition entries. Because the first entry // is for the version definition itself, it is the number of versioned symbols // plus one. Note that we don't support multiple versions yet. static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } template DynamicSection::DynamicSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize, ".dynamic") { this->Entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS) this->Flags = SHF_ALLOC; addEntries(); } // There are some dynamic entries that don't depend on other sections. // Such entries can be set early. template void DynamicSection::addEntries() { // Add strings to .dynstr early so that .dynstr's size will be // fixed early. for (StringRef S : Config->AuxiliaryList) add({DT_AUXILIARY, In::DynStrTab->addString(S)}); if (!Config->RPath.empty()) add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, In::DynStrTab->addString(Config->RPath)}); for (SharedFile *F : Symtab::X->getSharedFiles()) if (F->isNeeded()) add({DT_NEEDED, In::DynStrTab->addString(F->getSoName())}); if (!Config->SoName.empty()) add({DT_SONAME, In::DynStrTab->addString(Config->SoName)}); // Set DT_FLAGS and DT_FLAGS_1. uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNodlopen) DtFlags1 |= DF_1_NOOPEN; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (DtFlags) add({DT_FLAGS, DtFlags}); if (DtFlags1) add({DT_FLAGS_1, DtFlags1}); if (!Config->Shared && !Config->Relocatable) add({DT_DEBUG, (uint64_t)0}); } // Add remaining entries to complete .dynamic contents. template void DynamicSection::finalizeContents() { if (this->Size) return; // Already finalized. this->Link = In::DynStrTab->OutSec->SectionIndex; if (In::RelaDyn->OutSec->Size > 0) { bool IsRela = Config->IsRela; add({IsRela ? DT_RELA : DT_REL, In::RelaDyn}); add({IsRela ? DT_RELASZ : DT_RELSZ, In::RelaDyn->OutSec->Size}); add({IsRela ? DT_RELAENT : DT_RELENT, uint64_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); // MIPS dynamic loader does not support RELCOUNT tag. // The problem is in the tight relation between dynamic // relocations and GOT. So do not emit this tag on MIPS. if (Config->EMachine != EM_MIPS) { size_t NumRelativeRels = In::RelaDyn->getRelativeRelocCount(); if (Config->ZCombreloc && NumRelativeRels) add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); } } if (In::RelaPlt->OutSec->Size > 0) { add({DT_JMPREL, In::RelaPlt}); add({DT_PLTRELSZ, In::RelaPlt->OutSec->Size}); add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, In::GotPlt}); add({DT_PLTREL, uint64_t(Config->IsRela ? DT_RELA : DT_REL)}); } add({DT_SYMTAB, In::DynSymTab}); add({DT_SYMENT, sizeof(Elf_Sym)}); add({DT_STRTAB, In::DynStrTab}); add({DT_STRSZ, In::DynStrTab->getSize()}); if (!Config->ZText) add({DT_TEXTREL, (uint64_t)0}); if (In::GnuHashTab) add({DT_GNU_HASH, In::GnuHashTab}); if (In::HashTab) add({DT_HASH, In::HashTab}); if (Out::PreinitArray) { add({DT_PREINIT_ARRAY, Out::PreinitArray}); add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize}); } if (Out::InitArray) { add({DT_INIT_ARRAY, Out::InitArray}); add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize}); } if (Out::FiniArray) { add({DT_FINI_ARRAY, Out::FiniArray}); add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize}); } if (SymbolBody *B = Symtab::X->findInCurrentDSO(Config->Init)) add({DT_INIT, B}); if (SymbolBody *B = Symtab::X->findInCurrentDSO(Config->Fini)) add({DT_FINI, B}); bool HasVerNeed = In::VerNeed->getNeedNum() != 0; if (HasVerNeed || In::VerDef) add({DT_VERSYM, In::VerSym}); if (In::VerDef) { add({DT_VERDEF, In::VerDef}); add({DT_VERDEFNUM, getVerDefNum()}); } if (HasVerNeed) { add({DT_VERNEED, In::VerNeed}); add({DT_VERNEEDNUM, In::VerNeed->getNeedNum()}); } if (Config->EMachine == EM_MIPS) { add({DT_MIPS_RLD_VERSION, 1}); add({DT_MIPS_FLAGS, RHF_NOTPOT}); add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); add({DT_MIPS_SYMTABNO, In::DynSymTab->getNumSymbols()}); add({DT_MIPS_LOCAL_GOTNO, In::MipsGot->getLocalEntriesNum()}); if (const SymbolBody *B = In::MipsGot->getFirstGlobalEntry()) add({DT_MIPS_GOTSYM, B->DynsymIndex}); else add({DT_MIPS_GOTSYM, In::DynSymTab->getNumSymbols()}); add({DT_PLTGOT, In::MipsGot}); if (In::MipsRldMap) add({DT_MIPS_RLD_MAP, In::MipsRldMap}); } this->OutSec->Link = this->Link; // +1 for DT_NULL this->Size = (Entries.size() + 1) * this->Entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (const Entry &E : Entries) { P->d_tag = E.Tag; switch (E.Kind) { case Entry::SecAddr: P->d_un.d_ptr = E.OutSec->Addr; break; case Entry::InSecAddr: P->d_un.d_ptr = E.InSec->OutSec->Addr + E.InSec->OutSecOff; break; case Entry::SecSize: P->d_un.d_val = E.OutSec->Size; break; case Entry::SymAddr: P->d_un.d_ptr = E.Sym->getVA(); break; case Entry::PlainInt: P->d_un.d_val = E.Val; break; } ++P; } } uint64_t DynamicReloc::getOffset() const { return InputSec->OutSec->Addr + InputSec->getOffset(OffsetInSec); } int64_t DynamicReloc::getAddend() const { if (UseSymVA) return Sym->getVA(Addend); return Addend; } uint32_t DynamicReloc::getSymIndex() const { if (Sym && !UseSymVA) return Sym->DynsymIndex; return 0; } template RelocationSection::RelocationSection(StringRef Name, bool Sort) : SyntheticSection(SHF_ALLOC, Config->IsRela ? SHT_RELA : SHT_REL, Config->Wordsize, Name), Sort(Sort) { this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); } template void RelocationSection::addReloc(const DynamicReloc &Reloc) { if (Reloc.Type == Target->RelativeRel) ++NumRelativeRelocs; Relocs.push_back(Reloc); } template static bool compRelocations(const RelTy &A, const RelTy &B) { bool AIsRel = A.getType(Config->IsMips64EL) == Target->RelativeRel; bool BIsRel = B.getType(Config->IsMips64EL) == Target->RelativeRel; if (AIsRel != BIsRel) return AIsRel; return A.getSymbol(Config->IsMips64EL) < B.getSymbol(Config->IsMips64EL); } template void RelocationSection::writeTo(uint8_t *Buf) { uint8_t *BufBegin = Buf; for (const DynamicReloc &Rel : Relocs) { auto *P = reinterpret_cast(Buf); Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); if (Config->IsRela) P->r_addend = Rel.getAddend(); P->r_offset = Rel.getOffset(); if (Config->EMachine == EM_MIPS && Rel.getInputSec() == In::MipsGot) // Dynamic relocation against MIPS GOT section make deal TLS entries // allocated in the end of the GOT. We need to adjust the offset to take // in account 'local' and 'global' GOT entries. P->r_offset += In::MipsGot->getTlsOffset(); P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL); } if (Sort) { if (Config->IsRela) std::stable_sort((Elf_Rela *)BufBegin, (Elf_Rela *)BufBegin + Relocs.size(), compRelocations); else std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), compRelocations); } } template unsigned RelocationSection::getRelocOffset() { return this->Entsize * Relocs.size(); } template void RelocationSection::finalizeContents() { this->Link = In::DynSymTab ? In::DynSymTab->OutSec->SectionIndex : In::SymTab->OutSec->SectionIndex; // Set required output section properties. this->OutSec->Link = this->Link; } template SymbolTableSection::SymbolTableSection(StringTableSection &StrTabSec) : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, Config->Wordsize, StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), StrTabSec(StrTabSec) { this->Entsize = sizeof(Elf_Sym); } // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const SymbolTableEntry &L, const SymbolTableEntry &R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the first part of GOT in arbitrary order. bool LIsInLocalGot = !L.Symbol->IsInGlobalMipsGot; bool RIsInLocalGot = !R.Symbol->IsInGlobalMipsGot; if (LIsInLocalGot || RIsInLocalGot) return !RIsInLocalGot; return L.Symbol->GotIndex < R.Symbol->GotIndex; } // Finalize a symbol table. The ELF spec requires that all local // symbols precede global symbols, so we sort symbol entries in this // function. (For .dynsym, we don't do that because symbols for // dynamic linking are inherently all globals.) template void SymbolTableSection::finalizeContents() { this->OutSec->Link = StrTabSec.OutSec->SectionIndex; // If it is a .dynsym, there should be no local symbols, but we need // to do a few things for the dynamic linker. if (this->Type == SHT_DYNSYM) { // Section's Info field has the index of the first non-local symbol. // Because the first symbol entry is a null entry, 1 is the first. this->OutSec->Info = 1; if (In::GnuHashTab) { // NB: It also sorts Symbols to meet the GNU hash table requirements. In::GnuHashTab->addSymbols(Symbols); } else if (Config->EMachine == EM_MIPS) { std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); } size_t I = 0; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; return; } } template void SymbolTableSection::postThunkContents() { if (this->Type == SHT_DYNSYM) return; // move all local symbols before global symbols. auto It = std::stable_partition( Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) { return S.Symbol->isLocal() || S.Symbol->symbol()->computeBinding() == STB_LOCAL; }); size_t NumLocals = It - Symbols.begin(); this->OutSec->Info = NumLocals + 1; } template void SymbolTableSection::addSymbol(SymbolBody *B) { // Adding a local symbol to a .dynsym is a bug. assert(this->Type != SHT_DYNSYM || !B->isLocal()); bool HashIt = B->isLocal(); Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)}); } template size_t SymbolTableSection::getSymbolIndex(SymbolBody *Body) { auto I = llvm::find_if(Symbols, [&](const SymbolTableEntry &E) { if (E.Symbol == Body) return true; // This is used for -r, so we have to handle multiple section // symbols being combined. if (Body->Type == STT_SECTION && E.Symbol->Type == STT_SECTION) return cast(Body)->Section->getOutputSection() == cast(E.Symbol)->Section->getOutputSection(); return false; }); if (I == Symbols.end()) return 0; return I - Symbols.begin() + 1; } // Write the internal symbol table contents to the output symbol table. template void SymbolTableSection::writeTo(uint8_t *Buf) { // The first entry is a null entry as per the ELF spec. Buf += sizeof(Elf_Sym); auto *ESym = reinterpret_cast(Buf); for (SymbolTableEntry &Ent : Symbols) { SymbolBody *Body = Ent.Symbol; // Set st_info and st_other. if (Body->isLocal()) { ESym->setBindingAndType(STB_LOCAL, Body->Type); } else { ESym->setBindingAndType(Body->symbol()->computeBinding(), Body->Type); ESym->setVisibility(Body->symbol()->Visibility); } ESym->st_name = Ent.StrTabOffset; ESym->st_size = Body->getSize(); // Set a section index. if (const OutputSection *OutSec = Body->getOutputSection()) ESym->st_shndx = OutSec->SectionIndex; else if (isa(Body)) ESym->st_shndx = SHN_ABS; else if (isa(Body)) ESym->st_shndx = SHN_COMMON; // st_value is usually an address of a symbol, but that has a // special meaining for uninstantiated common symbols (this can // occur if -r is given). if (!Config->DefineCommon && isa(Body)) ESym->st_value = cast(Body)->Alignment; else ESym->st_value = Body->getVA(); ++ESym; } // On MIPS we need to mark symbol which has a PLT entry and requires // pointer equality by STO_MIPS_PLT flag. That is necessary to help // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Config->EMachine == EM_MIPS) { auto *ESym = reinterpret_cast(Buf); for (SymbolTableEntry &Ent : Symbols) { SymbolBody *Body = Ent.Symbol; if (Body->isInPlt() && Body->NeedsPltAddr) ESym->st_other |= STO_MIPS_PLT; if (Config->Relocatable) if (auto *D = dyn_cast(Body)) if (D->isMipsPIC()) ESym->st_other |= STO_MIPS_PIC; ++ESym; } } } // .hash and .gnu.hash sections contain on-disk hash tables that map // symbol names to their dynamic symbol table indices. Their purpose // is to help the dynamic linker resolve symbols quickly. If ELF files // don't have them, the dynamic linker has to do linear search on all // dynamic symbols, which makes programs slower. Therefore, a .hash // section is added to a DSO by default. A .gnu.hash is added if you // give the -hash-style=gnu or -hash-style=both option. // // The Unix semantics of resolving dynamic symbols is somewhat expensive. // Each ELF file has a list of DSOs that the ELF file depends on and a // list of dynamic symbols that need to be resolved from any of the // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) // where m is the number of DSOs and n is the number of dynamic // symbols. For modern large programs, both m and n are large. So // making each step faster by using hash tables substiantially // improves time to load programs. // // (Note that this is not the only way to design the shared library. // For instance, the Windows DLL takes a different approach. On // Windows, each dynamic symbol has a name of DLL from which the symbol // has to be resolved. That makes the cost of symbol resolution O(n). // This disables some hacky techniques you can use on Unix such as // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) // // Due to historical reasons, we have two different hash tables, .hash // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new // and better version of .hash. .hash is just an on-disk hash table, but // .gnu.hash has a bloom filter in addition to a hash table to skip // DSOs very quickly. If you are sure that your dynamic linker knows // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a // safe bet is to specify -hash-style=both for backward compatibilty. template GnuHashTableSection::GnuHashTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") { } template void GnuHashTableSection::finalizeContents() { this->OutSec->Link = In::DynSymTab->OutSec->SectionIndex; // Computes bloom filter size in word size. We want to allocate 8 // bits for each symbol. It must be a power of two. if (Symbols.empty()) MaskWords = 1; else MaskWords = NextPowerOf2((Symbols.size() - 1) / Config->Wordsize); Size = 16; // Header Size += Config->Wordsize * MaskWords; // Bloom filter Size += NBuckets * 4; // Hash buckets Size += Symbols.size() * 4; // Hash values } template void GnuHashTableSection::writeTo(uint8_t *Buf) { // Write a header. write32(Buf, NBuckets, Config->Endianness); write32(Buf + 4, In::DynSymTab->getNumSymbols() - Symbols.size(), Config->Endianness); write32(Buf + 8, MaskWords, Config->Endianness); write32(Buf + 12, getShift2(), Config->Endianness); Buf += 16; // Write a bloom filter and a hash table. writeBloomFilter(Buf); Buf += Config->Wordsize * MaskWords; writeHashTable(Buf); } // This function writes a 2-bit bloom filter. This bloom filter alone // usually filters out 80% or more of all symbol lookups [1]. // The dynamic linker uses the hash table only when a symbol is not // filtered out by a bloom filter. // // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), // p.9, https://www.akkadia.org/drepper/dsohowto.pdf template void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) { const unsigned C = Config->Wordsize * 8; for (const Entry &Sym : Symbols) { size_t I = (Sym.Hash / C) & (MaskWords - 1); uint64_t Val = readUint(Buf + I * Config->Wordsize); Val |= uint64_t(1) << (Sym.Hash % C); Val |= uint64_t(1) << ((Sym.Hash >> getShift2()) % C); writeUint(Buf + I * Config->Wordsize, Val); } } template void GnuHashTableSection::writeHashTable(uint8_t *Buf) { // Group symbols by hash value. std::vector> Syms(NBuckets); for (const Entry &Ent : Symbols) Syms[Ent.Hash % NBuckets].push_back(Ent); // Write hash buckets. Hash buckets contain indices in the following // hash value table. uint32_t *Buckets = reinterpret_cast(Buf); for (size_t I = 0; I < NBuckets; ++I) if (!Syms[I].empty()) write32(Buckets + I, Syms[I][0].Body->DynsymIndex, Config->Endianness); // Write a hash value table. It represents a sequence of chains that // share the same hash modulo value. The last element of each chain // is terminated by LSB 1. uint32_t *Values = Buckets + NBuckets; size_t I = 0; for (std::vector &Vec : Syms) { if (Vec.empty()) continue; for (const Entry &Ent : makeArrayRef(Vec).drop_back()) write32(Values + I++, Ent.Hash & ~1, Config->Endianness); write32(Values + I++, Vec.back().Hash | 1, Config->Endianness); } } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } // Returns a number of hash buckets to accomodate given number of elements. // We want to choose a moderate number that is not too small (which // causes too many hash collisions) and not too large (which wastes // disk space.) // // We return a prime number because it (is believed to) achieve good // hash distribution. static size_t getBucketSize(size_t NumSymbols) { // List of largest prime numbers that are not greater than 2^n + 1. for (size_t N : {131071, 65521, 32749, 16381, 8191, 4093, 2039, 1021, 509, 251, 127, 61, 31, 13, 7, 3, 1}) if (N <= NumSymbols) return N; return 0; } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. template void GnuHashTableSection::addSymbols(std::vector &V) { // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce // its type correctly. std::vector::iterator Mid = std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { return S.Symbol->isUndefined(); }); if (Mid == V.end()) return; for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) { SymbolBody *B = Ent.Symbol; Symbols.push_back({B, Ent.StrTabOffset, hashGnu(B->getName())}); } NBuckets = getBucketSize(Symbols.size()); std::stable_sort(Symbols.begin(), Symbols.end(), [&](const Entry &L, const Entry &R) { return L.Hash % NBuckets < R.Hash % NBuckets; }); V.erase(Mid, V.end()); for (const Entry &Ent : Symbols) V.push_back({Ent.Body, Ent.StrTabOffset}); } template HashTableSection::HashTableSection() : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { this->Entsize = 4; } template void HashTableSection::finalizeContents() { this->OutSec->Link = In::DynSymTab->OutSec->SectionIndex; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += In::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. // FIXME: This is simplistic. We can try to optimize it, but implementing // support for SHT_GNU_HASH is probably even more profitable. NumEntries += In::DynSymTab->getNumSymbols(); this->Size = NumEntries * 4; } template void HashTableSection::writeTo(uint8_t *Buf) { // A 32-bit integer type in the target endianness. typedef typename ELFT::Word Elf_Word; unsigned NumSymbols = In::DynSymTab->getNumSymbols(); auto *P = reinterpret_cast(Buf); *P++ = NumSymbols; // nbucket *P++ = NumSymbols; // nchain Elf_Word *Buckets = P; Elf_Word *Chains = P + NumSymbols; for (const SymbolTableEntry &S : In::DynSymTab->getSymbols()) { SymbolBody *Body = S.Symbol; StringRef Name = Body->getName(); unsigned I = Body->DynsymIndex; uint32_t Hash = hashSysV(Name) % NumSymbols; Chains[I] = Buckets[Hash]; Buckets[Hash] = I; } } PltSection::PltSection(size_t S) : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"), HeaderSize(S) {} void PltSection::writeTo(uint8_t *Buf) { // At beginning of PLT but not the IPLT, we have code to call the dynamic // linker to resolve dynsyms at runtime. Write such code. if (HeaderSize != 0) Target->writePltHeader(Buf); size_t Off = HeaderSize; // The IPlt is immediately after the Plt, account for this in RelOff unsigned PltOff = getPltRelocOff(); for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second + PltOff; uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); RelocationSection *PltRelocSection = In::RelaPlt; if (HeaderSize == 0) { PltRelocSection = In::RelaIplt; Sym.IsInIplt = true; } unsigned RelOff = PltRelocSection->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } size_t PltSection::getSize() const { return HeaderSize + Entries.size() * Target->PltEntrySize; } // Some architectures such as additional symbols in the PLT section. For // example ARM uses mapping symbols to aid disassembly void PltSection::addSymbols() { // The PLT may have symbols defined for the Header, the IPLT has no header if (HeaderSize != 0) Target->addPltHeaderSymbols(this); size_t Off = HeaderSize; for (size_t I = 0; I < Entries.size(); ++I) { Target->addPltSymbols(this, Off); Off += Target->PltEntrySize; } } unsigned PltSection::getPltRelocOff() const { return (HeaderSize == 0) ? InX::Plt->getSize() : 0; } GdbIndexSection::GdbIndexSection() : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index"), StringPool(llvm::StringTableBuilder::ELF) {} // Iterative hash function for symbol's name is described in .gdb_index format // specification. Note that we use one for version 5 to 7 here, it is different // for version 4. static uint32_t hash(StringRef Str) { uint32_t R = 0; for (uint8_t C : Str) R = R * 67 + tolower(C) - 113; return R; } static std::vector> readCuList(DWARFContext &Dwarf, InputSection *Sec) { std::vector> Ret; for (std::unique_ptr &CU : Dwarf.compile_units()) Ret.push_back({Sec->OutSecOff + CU->getOffset(), CU->getLength() + 4}); return Ret; } static InputSectionBase *findSection(ArrayRef Arr, uint64_t Offset) { for (InputSectionBase *S : Arr) if (S && S != &InputSection::Discarded) if (Offset >= S->getOffsetInFile() && Offset < S->getOffsetInFile() + S->getSize()) return S; return nullptr; } static std::vector readAddressArea(DWARFContext &Dwarf, InputSection *Sec, size_t CurrentCU) { std::vector Ret; for (std::unique_ptr &CU : Dwarf.compile_units()) { DWARFAddressRangesVector Ranges; CU->collectAddressRanges(Ranges); ArrayRef Sections = Sec->File->getSections(); for (std::pair &R : Ranges) if (InputSectionBase *S = findSection(Sections, R.first)) Ret.push_back({S, R.first - S->getOffsetInFile(), R.second - S->getOffsetInFile(), CurrentCU}); ++CurrentCU; } return Ret; } static std::vector> readPubNamesAndTypes(DWARFContext &Dwarf, bool IsLE) { StringRef Data[] = {Dwarf.getGnuPubNamesSection(), Dwarf.getGnuPubTypesSection()}; std::vector> Ret; for (StringRef D : Data) { DWARFDebugPubTable PubTable(D, IsLE, true); for (const DWARFDebugPubTable::Set &Set : PubTable.getData()) for (const DWARFDebugPubTable::Entry &Ent : Set.Entries) Ret.push_back({Ent.Name, Ent.Descriptor.toBits()}); } return Ret; } class ObjInfoTy : public llvm::LoadedObjectInfo { uint64_t getSectionLoadAddress(const object::SectionRef &Sec) const override { auto &S = static_cast(Sec); if (S.getFlags() & ELF::SHF_ALLOC) return S.getOffset(); return 0; } std::unique_ptr clone() const override { return {}; } }; void GdbIndexSection::readDwarf(InputSection *Sec) { Expected> Obj = object::ObjectFile::createObjectFile(Sec->File->MB); if (!Obj) { error(toString(Sec->File) + ": error creating DWARF context"); return; } ObjInfoTy ObjInfo; DWARFContextInMemory Dwarf(*Obj.get(), &ObjInfo); size_t CuId = CompilationUnits.size(); for (std::pair &P : readCuList(Dwarf, Sec)) CompilationUnits.push_back(P); for (AddressEntry &Ent : readAddressArea(Dwarf, Sec, CuId)) AddressArea.push_back(Ent); std::vector> NamesAndTypes = readPubNamesAndTypes(Dwarf, Config->IsLE); for (std::pair &Pair : NamesAndTypes) { uint32_t Hash = hash(Pair.first); size_t Offset = StringPool.add(Pair.first); bool IsNew; GdbSymbol *Sym; std::tie(IsNew, Sym) = SymbolTable.add(Hash, Offset); if (IsNew) { Sym->CuVectorIndex = CuVectors.size(); CuVectors.push_back({{CuId, Pair.second}}); continue; } CuVectors[Sym->CuVectorIndex].push_back({CuId, Pair.second}); } } void GdbIndexSection::finalizeContents() { if (Finalized) return; Finalized = true; for (InputSectionBase *S : InputSections) if (InputSection *IS = dyn_cast(S)) if (IS->OutSec && IS->Name == ".debug_info") readDwarf(IS); SymbolTable.finalizeContents(); // GdbIndex header consist from version fields // and 5 more fields with different kinds of offsets. CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize; SymTabOffset = CuTypesOffset + AddressArea.size() * AddressEntrySize; ConstantPoolOffset = SymTabOffset + SymbolTable.getCapacity() * SymTabEntrySize; for (std::vector> &CuVec : CuVectors) { CuVectorsOffset.push_back(CuVectorsSize); CuVectorsSize += OffsetTypeSize * (CuVec.size() + 1); } StringPoolOffset = ConstantPoolOffset + CuVectorsSize; StringPool.finalizeInOrder(); } size_t GdbIndexSection::getSize() const { const_cast(this)->finalizeContents(); return StringPoolOffset + StringPool.getSize(); } void GdbIndexSection::writeTo(uint8_t *Buf) { write32le(Buf, 7); // Write version. write32le(Buf + 4, CuListOffset); // CU list offset. write32le(Buf + 8, CuTypesOffset); // Types CU list offset. write32le(Buf + 12, CuTypesOffset); // Address area offset. write32le(Buf + 16, SymTabOffset); // Symbol table offset. write32le(Buf + 20, ConstantPoolOffset); // Constant pool offset. Buf += 24; // Write the CU list. for (std::pair CU : CompilationUnits) { write64le(Buf, CU.first); write64le(Buf + 8, CU.second); Buf += 16; } // Write the address area. for (AddressEntry &E : AddressArea) { uint64_t BaseAddr = E.Section->OutSec->Addr + E.Section->getOffset(0); write64le(Buf, BaseAddr + E.LowAddress); write64le(Buf + 8, BaseAddr + E.HighAddress); write32le(Buf + 16, E.CuIndex); Buf += 20; } // Write the symbol table. for (size_t I = 0; I < SymbolTable.getCapacity(); ++I) { GdbSymbol *Sym = SymbolTable.getSymbol(I); if (Sym) { size_t NameOffset = Sym->NameOffset + StringPoolOffset - ConstantPoolOffset; size_t CuVectorOffset = CuVectorsOffset[Sym->CuVectorIndex]; write32le(Buf, NameOffset); write32le(Buf + 4, CuVectorOffset); } Buf += 8; } // Write the CU vectors into the constant pool. for (std::vector> &CuVec : CuVectors) { write32le(Buf, CuVec.size()); Buf += 4; for (std::pair &P : CuVec) { uint32_t Index = P.first; uint8_t Flags = P.second; Index |= Flags << 24; write32le(Buf, Index); Buf += 4; } } StringPool.write(Buf); } bool GdbIndexSection::empty() const { return !Out::DebugInfo; } template EhFrameHeader::EhFrameHeader() : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame_hdr") {} // .eh_frame_hdr contains a binary search table of pointers to FDEs. // Each entry of the search table consists of two values, // the starting PC from where FDEs covers, and the FDE's address. // It is sorted by PC. template void EhFrameHeader::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; // Sort the FDE list by their PC and uniqueify. Usually there is only // one FDE for a PC (i.e. function), but if ICF merges two functions // into one, there can be more than one FDEs pointing to the address. auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; std::stable_sort(Fdes.begin(), Fdes.end(), Less); auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); Buf[0] = 1; Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; Buf[2] = DW_EH_PE_udata4; Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; write32(Buf + 4, In::EhFrame->OutSec->Addr - this->getVA() - 4); write32(Buf + 8, Fdes.size()); Buf += 12; uint64_t VA = this->getVA(); for (FdeData &Fde : Fdes) { write32(Buf, Fde.Pc - VA); write32(Buf + 4, Fde.FdeVA - VA); Buf += 8; } } template size_t EhFrameHeader::getSize() const { // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. return 12 + In::EhFrame->NumFdes * 8; } template void EhFrameHeader::addFde(uint32_t Pc, uint32_t FdeVA) { Fdes.push_back({Pc, FdeVA}); } template bool EhFrameHeader::empty() const { return In::EhFrame->empty(); } template VersionDefinitionSection::VersionDefinitionSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), ".gnu.version_d") {} static StringRef getFileDefName() { if (!Config->SoName.empty()) return Config->SoName; return Config->OutputFile; } template void VersionDefinitionSection::finalizeContents() { FileDefNameOff = In::DynStrTab->addString(getFileDefName()); for (VersionDefinition &V : Config->VersionDefinitions) V.NameOff = In::DynStrTab->addString(V.Name); this->OutSec->Link = In::DynStrTab->OutSec->SectionIndex; // sh_info should be set to the number of definitions. This fact is missed in // documentation, but confirmed by binutils community: // https://sourceware.org/ml/binutils/2014-11/msg00355.html this->OutSec->Info = getVerDefNum(); } template void VersionDefinitionSection::writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff) { auto *Verdef = reinterpret_cast(Buf); Verdef->vd_version = 1; Verdef->vd_cnt = 1; Verdef->vd_aux = sizeof(Elf_Verdef); Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); Verdef->vd_ndx = Index; Verdef->vd_hash = hashSysV(Name); auto *Verdaux = reinterpret_cast(Buf + sizeof(Elf_Verdef)); Verdaux->vda_name = NameOff; Verdaux->vda_next = 0; } template void VersionDefinitionSection::writeTo(uint8_t *Buf) { writeOne(Buf, 1, getFileDefName(), FileDefNameOff); for (VersionDefinition &V : Config->VersionDefinitions) { Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); writeOne(Buf, V.Id, V.Name, V.NameOff); } // Need to terminate the last version definition. Elf_Verdef *Verdef = reinterpret_cast(Buf); Verdef->vd_next = 0; } template size_t VersionDefinitionSection::getSize() const { return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); } template VersionTableSection::VersionTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), ".gnu.version") { this->Entsize = sizeof(Elf_Versym); } template void VersionTableSection::finalizeContents() { // At the moment of june 2016 GNU docs does not mention that sh_link field // should be set, but Sun docs do. Also readelf relies on this field. this->OutSec->Link = In::DynSymTab->OutSec->SectionIndex; } template size_t VersionTableSection::getSize() const { return sizeof(Elf_Versym) * (In::DynSymTab->getSymbols().size() + 1); } template void VersionTableSection::writeTo(uint8_t *Buf) { auto *OutVersym = reinterpret_cast(Buf) + 1; for (const SymbolTableEntry &S : In::DynSymTab->getSymbols()) { OutVersym->vs_index = S.Symbol->symbol()->VersionId; ++OutVersym; } } template bool VersionTableSection::empty() const { return !In::VerDef && In::VerNeed->empty(); } template VersionNeedSection::VersionNeedSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), ".gnu.version_r") { // Identifiers in verneed section start at 2 because 0 and 1 are reserved // for VER_NDX_LOCAL and VER_NDX_GLOBAL. // First identifiers are reserved by verdef section if it exist. NextIndex = getVerDefNum() + 1; } template void VersionNeedSection::addSymbol(SharedSymbol *SS) { auto *Ver = reinterpret_cast(SS->Verdef); if (!Ver) { SS->symbol()->VersionId = VER_NDX_GLOBAL; return; } auto *File = cast>(SS->File); // If we don't already know that we need an Elf_Verneed for this DSO, prepare // to create one by adding it to our needed list and creating a dynstr entry // for the soname. if (File->VerdefMap.empty()) Needed.push_back({File, In::DynStrTab->addString(File->getSoName())}); typename SharedFile::NeededVer &NV = File->VerdefMap[Ver]; // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, // prepare to create one by allocating a version identifier and creating a // dynstr entry for the version name. if (NV.Index == 0) { NV.StrTab = In::DynStrTab->addString(File->getStringTable().data() + Ver->getAux()->vda_name); NV.Index = NextIndex++; } SS->symbol()->VersionId = NV.Index; } template void VersionNeedSection::writeTo(uint8_t *Buf) { // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. auto *Verneed = reinterpret_cast(Buf); auto *Vernaux = reinterpret_cast(Verneed + Needed.size()); for (std::pair *, size_t> &P : Needed) { // Create an Elf_Verneed for this DSO. Verneed->vn_version = 1; Verneed->vn_cnt = P.first->VerdefMap.size(); Verneed->vn_file = P.second; Verneed->vn_aux = reinterpret_cast(Vernaux) - reinterpret_cast(Verneed); Verneed->vn_next = sizeof(Elf_Verneed); ++Verneed; // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over // VerdefMap, which will only contain references to needed version // definitions. Each Elf_Vernaux is based on the information contained in // the Elf_Verdef in the source DSO. This loop iterates over a std::map of // pointers, but is deterministic because the pointers refer to Elf_Verdef // data structures within a single input file. for (auto &NV : P.first->VerdefMap) { Vernaux->vna_hash = NV.first->vd_hash; Vernaux->vna_flags = 0; Vernaux->vna_other = NV.second.Index; Vernaux->vna_name = NV.second.StrTab; Vernaux->vna_next = sizeof(Elf_Vernaux); ++Vernaux; } Vernaux[-1].vna_next = 0; } Verneed[-1].vn_next = 0; } template void VersionNeedSection::finalizeContents() { this->OutSec->Link = In::DynStrTab->OutSec->SectionIndex; this->OutSec->Info = Needed.size(); } template size_t VersionNeedSection::getSize() const { unsigned Size = Needed.size() * sizeof(Elf_Verneed); for (const std::pair *, size_t> &P : Needed) Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); return Size; } template bool VersionNeedSection::empty() const { return getNeedNum() == 0; } MergeSyntheticSection::MergeSyntheticSection(StringRef Name, uint32_t Type, uint64_t Flags, uint32_t Alignment) : SyntheticSection(Flags, Type, Alignment, Name), Builder(StringTableBuilder::RAW, Alignment) {} void MergeSyntheticSection::addSection(MergeInputSection *MS) { assert(!Finalized); MS->MergeSec = this; Sections.push_back(MS); } void MergeSyntheticSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } bool MergeSyntheticSection::shouldTailMerge() const { return (this->Flags & SHF_STRINGS) && Config->Optimize >= 2; } void MergeSyntheticSection::finalizeTailMerge() { // Add all string pieces to the string table builder to create section // contents. for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Builder.add(Sec->getData(I)); // Fix the string table content. After this, the contents will never change. Builder.finalize(); // finalize() fixed tail-optimized strings, so we can now get // offsets of strings. Get an offset for each string and save it // to a corresponding StringPiece for easy access. for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I)); } void MergeSyntheticSection::finalizeNoTailMerge() { // Add all string pieces to the string table builder to create section // contents. Because we are not tail-optimizing, offsets of strings are // fixed when they are added to the builder (string table builder contains // a hash table from strings to offsets). for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff = Builder.add(Sec->getData(I)); Builder.finalizeInOrder(); } void MergeSyntheticSection::finalizeContents() { if (Finalized) return; Finalized = true; if (shouldTailMerge()) finalizeTailMerge(); else finalizeNoTailMerge(); } size_t MergeSyntheticSection::getSize() const { // We should finalize string builder to know the size. const_cast(this)->finalizeContents(); return Builder.getSize(); } MipsRldMapSection::MipsRldMapSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize, ".rld_map") {} void MipsRldMapSection::writeTo(uint8_t *Buf) { // Apply filler from linker script. Optional Fill = Script->getFiller(this->Name); if (!Fill || *Fill == 0) return; uint64_t Filler = *Fill; Filler = (Filler << 32) | Filler; memcpy(Buf, &Filler, getSize()); } ARMExidxSentinelSection::ARMExidxSentinelSection() : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, Config->Wordsize, ".ARM.exidx") {} // Write a terminating sentinel entry to the end of the .ARM.exidx table. // This section will have been sorted last in the .ARM.exidx table. // This table entry will have the form: // | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND | void ARMExidxSentinelSection::writeTo(uint8_t *Buf) { // Get the InputSection before us, we are by definition last auto RI = cast(this->OutSec)->Sections.rbegin(); InputSection *LE = *(++RI); InputSection *LC = cast(LE->getLinkOrderDep()); uint64_t S = LC->OutSec->Addr + LC->getOffset(LC->getSize()); uint64_t P = this->getVA(); Target->relocateOne(Buf, R_ARM_PREL31, S - P); write32le(Buf + 4, 0x1); } ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off) : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, Config->Wordsize, ".text.thunk") { this->OutSec = OS; this->OutSecOff = Off; } void ThunkSection::addThunk(Thunk *T) { uint64_t Off = alignTo(Size, T->alignment); T->Offset = Off; Thunks.push_back(T); T->addSymbols(*this); Size = Off + T->size(); } void ThunkSection::writeTo(uint8_t *Buf) { for (const Thunk *T : Thunks) T->writeTo(Buf + T->Offset, *this); } InputSection *ThunkSection::getTargetInputSection() const { const Thunk *T = Thunks.front(); return T->getTargetInputSection(); } InputSection *InX::ARMAttributes; BssSection *InX::Bss; BssSection *InX::BssRelRo; BuildIdSection *InX::BuildId; InputSection *InX::Common; StringTableSection *InX::DynStrTab; InputSection *InX::Interp; GdbIndexSection *InX::GdbIndex; GotPltSection *InX::GotPlt; IgotPltSection *InX::IgotPlt; MipsGotSection *InX::MipsGot; MipsRldMapSection *InX::MipsRldMap; PltSection *InX::Plt; PltSection *InX::Iplt; StringTableSection *InX::ShStrTab; StringTableSection *InX::StrTab; template void PltSection::addEntry(SymbolBody &Sym); template void PltSection::addEntry(SymbolBody &Sym); template void PltSection::addEntry(SymbolBody &Sym); template void PltSection::addEntry(SymbolBody &Sym); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template SymbolBody *elf::addSyntheticLocal(StringRef, uint8_t, uint64_t, uint64_t, InputSectionBase *); template SymbolBody *elf::addSyntheticLocal(StringRef, uint8_t, uint64_t, uint64_t, InputSectionBase *); template SymbolBody *elf::addSyntheticLocal(StringRef, uint8_t, uint64_t, uint64_t, InputSectionBase *); template SymbolBody *elf::addSyntheticLocal(StringRef, uint8_t, uint64_t, uint64_t, InputSectionBase *); template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::GotSection; template class elf::GotSection; template class elf::GotSection; template class elf::GotSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::EhFrameHeader; template class elf::EhFrameHeader; template class elf::EhFrameHeader; template class elf::EhFrameHeader; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::EhFrameSection; template class elf::EhFrameSection; template class elf::EhFrameSection; template class elf::EhFrameSection;