//===- SyntheticSections.cpp ----------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains linker-synthesized sections. Currently, // synthetic sections are created either output sections or input sections, // but we are rewriting code so that all synthetic sections are created as // input sections. // //===----------------------------------------------------------------------===// #include "SyntheticSections.h" #include "Bits.h" #include "Config.h" #include "InputFiles.h" #include "LinkerScript.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "Target.h" #include "Writer.h" #include "lld/Common/ErrorHandler.h" #include "lld/Common/Memory.h" #include "lld/Common/Strings.h" #include "lld/Common/Threads.h" #include "lld/Common/Version.h" #include "llvm/ADT/SetOperations.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h" #include "llvm/Object/Decompressor.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/Endian.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MD5.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/xxhash.h" #include #include using namespace llvm; using namespace llvm::dwarf; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace lld; using namespace lld::elf; using llvm::support::endian::read32le; using llvm::support::endian::write32le; using llvm::support::endian::write64le; constexpr size_t MergeNoTailSection::NumShards; // Returns an LLD version string. static ArrayRef getVersion() { // Check LLD_VERSION first for ease of testing. // You can get consistent output by using the environment variable. // This is only for testing. StringRef S = getenv("LLD_VERSION"); if (S.empty()) S = Saver.save(Twine("Linker: ") + getLLDVersion()); // +1 to include the terminating '\0'. return {(const uint8_t *)S.data(), S.size() + 1}; } // Creates a .comment section containing LLD version info. // With this feature, you can identify LLD-generated binaries easily // by "readelf --string-dump .comment ". // The returned object is a mergeable string section. MergeInputSection *elf::createCommentSection() { return make(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1, getVersion(), ".comment"); } // .MIPS.abiflags section. template MipsAbiFlagsSection::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags) : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), Flags(Flags) { this->Entsize = sizeof(Elf_Mips_ABIFlags); } template void MipsAbiFlagsSection::writeTo(uint8_t *Buf) { memcpy(Buf, &Flags, sizeof(Flags)); } template MipsAbiFlagsSection *MipsAbiFlagsSection::create() { Elf_Mips_ABIFlags Flags = {}; bool Create = false; for (InputSectionBase *Sec : InputSections) { if (Sec->Type != SHT_MIPS_ABIFLAGS) continue; Sec->Live = false; Create = true; std::string Filename = toString(Sec->File); const size_t Size = Sec->Data.size(); // Older version of BFD (such as the default FreeBSD linker) concatenate // .MIPS.abiflags instead of merging. To allow for this case (or potential // zero padding) we ignore everything after the first Elf_Mips_ABIFlags if (Size < sizeof(Elf_Mips_ABIFlags)) { error(Filename + ": invalid size of .MIPS.abiflags section: got " + Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); return nullptr; } auto *S = reinterpret_cast(Sec->Data.data()); if (S->version != 0) { error(Filename + ": unexpected .MIPS.abiflags version " + Twine(S->version)); return nullptr; } // LLD checks ISA compatibility in calcMipsEFlags(). Here we just // select the highest number of ISA/Rev/Ext. Flags.isa_level = std::max(Flags.isa_level, S->isa_level); Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); Flags.ases |= S->ases; Flags.flags1 |= S->flags1; Flags.flags2 |= S->flags2; Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename); }; if (Create) return make>(Flags); return nullptr; } // .MIPS.options section. template MipsOptionsSection::MipsOptionsSection(Elf_Mips_RegInfo Reginfo) : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), Reginfo(Reginfo) { this->Entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo); } template void MipsOptionsSection::writeTo(uint8_t *Buf) { auto *Options = reinterpret_cast(Buf); Options->kind = ODK_REGINFO; Options->size = getSize(); if (!Config->Relocatable) Reginfo.ri_gp_value = InX::MipsGot->getGp(); memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo)); } template MipsOptionsSection *MipsOptionsSection::create() { // N64 ABI only. if (!ELFT::Is64Bits) return nullptr; std::vector Sections; for (InputSectionBase *Sec : InputSections) if (Sec->Type == SHT_MIPS_OPTIONS) Sections.push_back(Sec); if (Sections.empty()) return nullptr; Elf_Mips_RegInfo Reginfo = {}; for (InputSectionBase *Sec : Sections) { Sec->Live = false; std::string Filename = toString(Sec->File); ArrayRef D = Sec->Data; while (!D.empty()) { if (D.size() < sizeof(Elf_Mips_Options)) { error(Filename + ": invalid size of .MIPS.options section"); break; } auto *Opt = reinterpret_cast(D.data()); if (Opt->kind == ODK_REGINFO) { Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask; Sec->getFile()->MipsGp0 = Opt->getRegInfo().ri_gp_value; break; } if (!Opt->size) fatal(Filename + ": zero option descriptor size"); D = D.slice(Opt->size); } }; return make>(Reginfo); } // MIPS .reginfo section. template MipsReginfoSection::MipsReginfoSection(Elf_Mips_RegInfo Reginfo) : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), Reginfo(Reginfo) { this->Entsize = sizeof(Elf_Mips_RegInfo); } template void MipsReginfoSection::writeTo(uint8_t *Buf) { if (!Config->Relocatable) Reginfo.ri_gp_value = InX::MipsGot->getGp(); memcpy(Buf, &Reginfo, sizeof(Reginfo)); } template MipsReginfoSection *MipsReginfoSection::create() { // Section should be alive for O32 and N32 ABIs only. if (ELFT::Is64Bits) return nullptr; std::vector Sections; for (InputSectionBase *Sec : InputSections) if (Sec->Type == SHT_MIPS_REGINFO) Sections.push_back(Sec); if (Sections.empty()) return nullptr; Elf_Mips_RegInfo Reginfo = {}; for (InputSectionBase *Sec : Sections) { Sec->Live = false; if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) { error(toString(Sec->File) + ": invalid size of .reginfo section"); return nullptr; } auto *R = reinterpret_cast(Sec->Data.data()); Reginfo.ri_gprmask |= R->ri_gprmask; Sec->getFile()->MipsGp0 = R->ri_gp_value; }; return make>(Reginfo); } InputSection *elf::createInterpSection() { // StringSaver guarantees that the returned string ends with '\0'. StringRef S = Saver.save(Config->DynamicLinker); ArrayRef Contents = {(const uint8_t *)S.data(), S.size() + 1}; auto *Sec = make(nullptr, SHF_ALLOC, SHT_PROGBITS, 1, Contents, ".interp"); Sec->Live = true; return Sec; } Defined *elf::addSyntheticLocal(StringRef Name, uint8_t Type, uint64_t Value, uint64_t Size, InputSectionBase &Section) { auto *S = make(Section.File, Name, STB_LOCAL, STV_DEFAULT, Type, Value, Size, &Section); if (InX::SymTab) InX::SymTab->addSymbol(S); return S; } static size_t getHashSize() { switch (Config->BuildId) { case BuildIdKind::Fast: return 8; case BuildIdKind::Md5: case BuildIdKind::Uuid: return 16; case BuildIdKind::Sha1: return 20; case BuildIdKind::Hexstring: return Config->BuildIdVector.size(); default: llvm_unreachable("unknown BuildIdKind"); } } BuildIdSection::BuildIdSection() : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"), HashSize(getHashSize()) {} void BuildIdSection::writeTo(uint8_t *Buf) { write32(Buf, 4); // Name size write32(Buf + 4, HashSize); // Content size write32(Buf + 8, NT_GNU_BUILD_ID); // Type memcpy(Buf + 12, "GNU", 4); // Name string HashBuf = Buf + 16; } // Split one uint8 array into small pieces of uint8 arrays. static std::vector> split(ArrayRef Arr, size_t ChunkSize) { std::vector> Ret; while (Arr.size() > ChunkSize) { Ret.push_back(Arr.take_front(ChunkSize)); Arr = Arr.drop_front(ChunkSize); } if (!Arr.empty()) Ret.push_back(Arr); return Ret; } // Computes a hash value of Data using a given hash function. // In order to utilize multiple cores, we first split data into 1MB // chunks, compute a hash for each chunk, and then compute a hash value // of the hash values. void BuildIdSection::computeHash( llvm::ArrayRef Data, std::function Arr)> HashFn) { std::vector> Chunks = split(Data, 1024 * 1024); std::vector Hashes(Chunks.size() * HashSize); // Compute hash values. parallelForEachN(0, Chunks.size(), [&](size_t I) { HashFn(Hashes.data() + I * HashSize, Chunks[I]); }); // Write to the final output buffer. HashFn(HashBuf, Hashes); } BssSection::BssSection(StringRef Name, uint64_t Size, uint32_t Alignment) : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, Alignment, Name) { this->Bss = true; this->Size = Size; } void BuildIdSection::writeBuildId(ArrayRef Buf) { switch (Config->BuildId) { case BuildIdKind::Fast: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { write64le(Dest, xxHash64(Arr)); }); break; case BuildIdKind::Md5: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, MD5::hash(Arr).data(), 16); }); break; case BuildIdKind::Sha1: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, SHA1::hash(Arr).data(), 20); }); break; case BuildIdKind::Uuid: if (auto EC = getRandomBytes(HashBuf, HashSize)) error("entropy source failure: " + EC.message()); break; case BuildIdKind::Hexstring: memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); break; default: llvm_unreachable("unknown BuildIdKind"); } } EhFrameSection::EhFrameSection() : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {} // Search for an existing CIE record or create a new one. // CIE records from input object files are uniquified by their contents // and where their relocations point to. template CieRecord *EhFrameSection::addCie(EhSectionPiece &Cie, ArrayRef Rels) { Symbol *Personality = nullptr; unsigned FirstRelI = Cie.FirstRelocation; if (FirstRelI != (unsigned)-1) Personality = &Cie.Sec->template getFile()->getRelocTargetSym(Rels[FirstRelI]); // Search for an existing CIE by CIE contents/relocation target pair. CieRecord *&Rec = CieMap[{Cie.data(), Personality}]; // If not found, create a new one. if (!Rec) { Rec = make(); Rec->Cie = &Cie; CieRecords.push_back(Rec); } return Rec; } // There is one FDE per function. Returns true if a given FDE // points to a live function. template bool EhFrameSection::isFdeLive(EhSectionPiece &Fde, ArrayRef Rels) { auto *Sec = cast(Fde.Sec); unsigned FirstRelI = Fde.FirstRelocation; // An FDE should point to some function because FDEs are to describe // functions. That's however not always the case due to an issue of // ld.gold with -r. ld.gold may discard only functions and leave their // corresponding FDEs, which results in creating bad .eh_frame sections. // To deal with that, we ignore such FDEs. if (FirstRelI == (unsigned)-1) return false; const RelTy &Rel = Rels[FirstRelI]; Symbol &B = Sec->template getFile()->getRelocTargetSym(Rel); // FDEs for garbage-collected or merged-by-ICF sections are dead. if (auto *D = dyn_cast(&B)) if (SectionBase *Sec = D->Section) return Sec->Live; return false; } // .eh_frame is a sequence of CIE or FDE records. In general, there // is one CIE record per input object file which is followed by // a list of FDEs. This function searches an existing CIE or create a new // one and associates FDEs to the CIE. template void EhFrameSection::addSectionAux(EhInputSection *Sec, ArrayRef Rels) { OffsetToCie.clear(); for (EhSectionPiece &Piece : Sec->Pieces) { // The empty record is the end marker. if (Piece.Size == 4) return; size_t Offset = Piece.InputOff; uint32_t ID = read32(Piece.data().data() + 4); if (ID == 0) { OffsetToCie[Offset] = addCie(Piece, Rels); continue; } uint32_t CieOffset = Offset + 4 - ID; CieRecord *Rec = OffsetToCie[CieOffset]; if (!Rec) fatal(toString(Sec) + ": invalid CIE reference"); if (!isFdeLive(Piece, Rels)) continue; Rec->Fdes.push_back(&Piece); NumFdes++; } } template void EhFrameSection::addSection(InputSectionBase *C) { auto *Sec = cast(C); Sec->Parent = this; Alignment = std::max(Alignment, Sec->Alignment); Sections.push_back(Sec); for (auto *DS : Sec->DependentSections) DependentSections.push_back(DS); if (Sec->Pieces.empty()) return; if (Sec->AreRelocsRela) addSectionAux(Sec, Sec->template relas()); else addSectionAux(Sec, Sec->template rels()); } static void writeCieFde(uint8_t *Buf, ArrayRef D) { memcpy(Buf, D.data(), D.size()); size_t Aligned = alignTo(D.size(), Config->Wordsize); // Zero-clear trailing padding if it exists. memset(Buf + D.size(), 0, Aligned - D.size()); // Fix the size field. -4 since size does not include the size field itself. write32(Buf, Aligned - 4); } void EhFrameSection::finalizeContents() { assert(!this->Size); // Not finalized. size_t Off = 0; for (CieRecord *Rec : CieRecords) { Rec->Cie->OutputOff = Off; Off += alignTo(Rec->Cie->Size, Config->Wordsize); for (EhSectionPiece *Fde : Rec->Fdes) { Fde->OutputOff = Off; Off += alignTo(Fde->Size, Config->Wordsize); } } // The LSB standard does not allow a .eh_frame section with zero // Call Frame Information records. glibc unwind-dw2-fde.c // classify_object_over_fdes expects there is a CIE record length 0 as a // terminator. Thus we add one unconditionally. Off += 4; this->Size = Off; } // Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table // to get an FDE from an address to which FDE is applied. This function // returns a list of such pairs. std::vector EhFrameSection::getFdeData() const { uint8_t *Buf = getParent()->Loc + OutSecOff; std::vector Ret; uint64_t VA = InX::EhFrameHdr->getVA(); for (CieRecord *Rec : CieRecords) { uint8_t Enc = getFdeEncoding(Rec->Cie); for (EhSectionPiece *Fde : Rec->Fdes) { uint64_t Pc = getFdePc(Buf, Fde->OutputOff, Enc); uint64_t FdeVA = getParent()->Addr + Fde->OutputOff; if (!isInt<32>(Pc - VA)) fatal(toString(Fde->Sec) + ": PC offset is too large: 0x" + Twine::utohexstr(Pc - VA)); Ret.push_back({uint32_t(Pc - VA), uint32_t(FdeVA - VA)}); } } // Sort the FDE list by their PC and uniqueify. Usually there is only // one FDE for a PC (i.e. function), but if ICF merges two functions // into one, there can be more than one FDEs pointing to the address. auto Less = [](const FdeData &A, const FdeData &B) { return A.PcRel < B.PcRel; }; std::stable_sort(Ret.begin(), Ret.end(), Less); auto Eq = [](const FdeData &A, const FdeData &B) { return A.PcRel == B.PcRel; }; Ret.erase(std::unique(Ret.begin(), Ret.end(), Eq), Ret.end()); return Ret; } static uint64_t readFdeAddr(uint8_t *Buf, int Size) { switch (Size) { case DW_EH_PE_udata2: return read16(Buf); case DW_EH_PE_sdata2: return (int16_t)read16(Buf); case DW_EH_PE_udata4: return read32(Buf); case DW_EH_PE_sdata4: return (int32_t)read32(Buf); case DW_EH_PE_udata8: case DW_EH_PE_sdata8: return read64(Buf); case DW_EH_PE_absptr: return readUint(Buf); } fatal("unknown FDE size encoding"); } // Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to. // We need it to create .eh_frame_hdr section. uint64_t EhFrameSection::getFdePc(uint8_t *Buf, size_t FdeOff, uint8_t Enc) const { // The starting address to which this FDE applies is // stored at FDE + 8 byte. size_t Off = FdeOff + 8; uint64_t Addr = readFdeAddr(Buf + Off, Enc & 0xf); if ((Enc & 0x70) == DW_EH_PE_absptr) return Addr; if ((Enc & 0x70) == DW_EH_PE_pcrel) return Addr + getParent()->Addr + Off; fatal("unknown FDE size relative encoding"); } void EhFrameSection::writeTo(uint8_t *Buf) { // Write CIE and FDE records. for (CieRecord *Rec : CieRecords) { size_t CieOffset = Rec->Cie->OutputOff; writeCieFde(Buf + CieOffset, Rec->Cie->data()); for (EhSectionPiece *Fde : Rec->Fdes) { size_t Off = Fde->OutputOff; writeCieFde(Buf + Off, Fde->data()); // FDE's second word should have the offset to an associated CIE. // Write it. write32(Buf + Off + 4, Off + 4 - CieOffset); } } // Apply relocations. .eh_frame section contents are not contiguous // in the output buffer, but relocateAlloc() still works because // getOffset() takes care of discontiguous section pieces. for (EhInputSection *S : Sections) S->relocateAlloc(Buf, nullptr); } GotSection::GotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotEntrySize, ".got") { // PPC64 saves the ElfSym::GlobalOffsetTable .TOC. as the first entry in the // .got. If there are no references to .TOC. in the symbol table, // ElfSym::GlobalOffsetTable will not be defined and we won't need to save // .TOC. in the .got. When it is defined, we increase NumEntries by the number // of entries used to emit ElfSym::GlobalOffsetTable. if (ElfSym::GlobalOffsetTable && !Target->GotBaseSymInGotPlt) NumEntries += Target->GotHeaderEntriesNum; } void GotSection::addEntry(Symbol &Sym) { Sym.GotIndex = NumEntries; ++NumEntries; } bool GotSection::addDynTlsEntry(Symbol &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = NumEntries; // Global Dynamic TLS entries take two GOT slots. NumEntries += 2; return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. bool GotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = NumEntries * Config->Wordsize; NumEntries += 2; return true; } uint64_t GotSection::getGlobalDynAddr(const Symbol &B) const { return this->getVA() + B.GlobalDynIndex * Config->Wordsize; } uint64_t GotSection::getGlobalDynOffset(const Symbol &B) const { return B.GlobalDynIndex * Config->Wordsize; } void GotSection::finalizeContents() { Size = NumEntries * Config->Wordsize; } bool GotSection::empty() const { // We need to emit a GOT even if it's empty if there's a relocation that is // relative to GOT(such as GOTOFFREL) or there's a symbol that points to a GOT // (i.e. _GLOBAL_OFFSET_TABLE_) that the target defines relative to the .got. return NumEntries == 0 && !HasGotOffRel && !(ElfSym::GlobalOffsetTable && !Target->GotBaseSymInGotPlt); } void GotSection::writeTo(uint8_t *Buf) { // Buf points to the start of this section's buffer, // whereas InputSectionBase::relocateAlloc() expects its argument // to point to the start of the output section. Target->writeGotHeader(Buf); relocateAlloc(Buf - OutSecOff, Buf - OutSecOff + Size); } static uint64_t getMipsPageAddr(uint64_t Addr) { return (Addr + 0x8000) & ~0xffff; } static uint64_t getMipsPageCount(uint64_t Size) { return (Size + 0xfffe) / 0xffff + 1; } MipsGotSection::MipsGotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16, ".got") {} void MipsGotSection::addEntry(InputFile &File, Symbol &Sym, int64_t Addend, RelExpr Expr) { FileGot &G = getGot(File); if (Expr == R_MIPS_GOT_LOCAL_PAGE) { if (const OutputSection *OS = Sym.getOutputSection()) G.PagesMap.insert({OS, {}}); else G.Local16.insert({{nullptr, getMipsPageAddr(Sym.getVA(Addend))}, 0}); } else if (Sym.isTls()) G.Tls.insert({&Sym, 0}); else if (Sym.IsPreemptible && Expr == R_ABS) G.Relocs.insert({&Sym, 0}); else if (Sym.IsPreemptible) G.Global.insert({&Sym, 0}); else if (Expr == R_MIPS_GOT_OFF32) G.Local32.insert({{&Sym, Addend}, 0}); else G.Local16.insert({{&Sym, Addend}, 0}); } void MipsGotSection::addDynTlsEntry(InputFile &File, Symbol &Sym) { getGot(File).DynTlsSymbols.insert({&Sym, 0}); } void MipsGotSection::addTlsIndex(InputFile &File) { getGot(File).DynTlsSymbols.insert({nullptr, 0}); } size_t MipsGotSection::FileGot::getEntriesNum() const { return getPageEntriesNum() + Local16.size() + Global.size() + Relocs.size() + Tls.size() + DynTlsSymbols.size() * 2; } size_t MipsGotSection::FileGot::getPageEntriesNum() const { size_t Num = 0; for (const std::pair &P : PagesMap) Num += P.second.Count; return Num; } size_t MipsGotSection::FileGot::getIndexedEntriesNum() const { size_t Count = getPageEntriesNum() + Local16.size() + Global.size(); // If there are relocation-only entries in the GOT, TLS entries // are allocated after them. TLS entries should be addressable // by 16-bit index so count both reloc-only and TLS entries. if (!Tls.empty() || !DynTlsSymbols.empty()) Count += Relocs.size() + Tls.size() + DynTlsSymbols.size() * 2; return Count; } MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &F) { if (!F.MipsGotIndex.hasValue()) { Gots.emplace_back(); Gots.back().File = &F; F.MipsGotIndex = Gots.size() - 1; } return Gots[*F.MipsGotIndex]; } uint64_t MipsGotSection::getPageEntryOffset(const InputFile *F, const Symbol &Sym, int64_t Addend) const { const FileGot &G = Gots[*F->MipsGotIndex]; uint64_t Index = 0; if (const OutputSection *OutSec = Sym.getOutputSection()) { uint64_t SecAddr = getMipsPageAddr(OutSec->Addr); uint64_t SymAddr = getMipsPageAddr(Sym.getVA(Addend)); Index = G.PagesMap.lookup(OutSec).FirstIndex + (SymAddr - SecAddr) / 0xffff; } else { Index = G.Local16.lookup({nullptr, getMipsPageAddr(Sym.getVA(Addend))}); } return Index * Config->Wordsize; } uint64_t MipsGotSection::getSymEntryOffset(const InputFile *F, const Symbol &S, int64_t Addend) const { const FileGot &G = Gots[*F->MipsGotIndex]; Symbol *Sym = const_cast(&S); if (Sym->isTls()) return G.Tls.lookup(Sym) * Config->Wordsize; if (Sym->IsPreemptible) return G.Global.lookup(Sym) * Config->Wordsize; return G.Local16.lookup({Sym, Addend}) * Config->Wordsize; } uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *F) const { const FileGot &G = Gots[*F->MipsGotIndex]; return G.DynTlsSymbols.lookup(nullptr) * Config->Wordsize; } uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *F, const Symbol &S) const { const FileGot &G = Gots[*F->MipsGotIndex]; Symbol *Sym = const_cast(&S); return G.DynTlsSymbols.lookup(Sym) * Config->Wordsize; } const Symbol *MipsGotSection::getFirstGlobalEntry() const { if (Gots.empty()) return nullptr; const FileGot &PrimGot = Gots.front(); if (!PrimGot.Global.empty()) return PrimGot.Global.front().first; if (!PrimGot.Relocs.empty()) return PrimGot.Relocs.front().first; return nullptr; } unsigned MipsGotSection::getLocalEntriesNum() const { if (Gots.empty()) return HeaderEntriesNum; return HeaderEntriesNum + Gots.front().getPageEntriesNum() + Gots.front().Local16.size(); } bool MipsGotSection::tryMergeGots(FileGot &Dst, FileGot &Src, bool IsPrimary) { FileGot Tmp = Dst; set_union(Tmp.PagesMap, Src.PagesMap); set_union(Tmp.Local16, Src.Local16); set_union(Tmp.Global, Src.Global); set_union(Tmp.Relocs, Src.Relocs); set_union(Tmp.Tls, Src.Tls); set_union(Tmp.DynTlsSymbols, Src.DynTlsSymbols); size_t Count = IsPrimary ? HeaderEntriesNum : 0; Count += Tmp.getIndexedEntriesNum(); if (Count * Config->Wordsize > Config->MipsGotSize) return false; std::swap(Tmp, Dst); return true; } void MipsGotSection::finalizeContents() { updateAllocSize(); } bool MipsGotSection::updateAllocSize() { Size = HeaderEntriesNum * Config->Wordsize; for (const FileGot &G : Gots) Size += G.getEntriesNum() * Config->Wordsize; return false; } template void MipsGotSection::build() { if (Gots.empty()) return; std::vector MergedGots(1); // For each GOT move non-preemptible symbols from the `Global` // to `Local16` list. Preemptible symbol might become non-preemptible // one if, for example, it gets a related copy relocation. for (FileGot &Got : Gots) { for (auto &P: Got.Global) if (!P.first->IsPreemptible) Got.Local16.insert({{P.first, 0}, 0}); Got.Global.remove_if([&](const std::pair &P) { return !P.first->IsPreemptible; }); } // For each GOT remove "reloc-only" entry if there is "global" // entry for the same symbol. And add local entries which indexed // using 32-bit value at the end of 16-bit entries. for (FileGot &Got : Gots) { Got.Relocs.remove_if([&](const std::pair &P) { return Got.Global.count(P.first); }); set_union(Got.Local16, Got.Local32); Got.Local32.clear(); } // Evaluate number of "reloc-only" entries in the resulting GOT. // To do that put all unique "reloc-only" and "global" entries // from all GOTs to the future primary GOT. FileGot *PrimGot = &MergedGots.front(); for (FileGot &Got : Gots) { set_union(PrimGot->Relocs, Got.Global); set_union(PrimGot->Relocs, Got.Relocs); Got.Relocs.clear(); } // Evaluate number of "page" entries in each GOT. for (FileGot &Got : Gots) { for (std::pair &P : Got.PagesMap) { const OutputSection *OS = P.first; uint64_t SecSize = 0; for (BaseCommand *Cmd : OS->SectionCommands) { if (auto *ISD = dyn_cast(Cmd)) for (InputSection *IS : ISD->Sections) { uint64_t Off = alignTo(SecSize, IS->Alignment); SecSize = Off + IS->getSize(); } } P.second.Count = getMipsPageCount(SecSize); } } // Merge GOTs. Try to join as much as possible GOTs but do not exceed // maximum GOT size. At first, try to fill the primary GOT because // the primary GOT can be accessed in the most effective way. If it // is not possible, try to fill the last GOT in the list, and finally // create a new GOT if both attempts failed. for (FileGot &SrcGot : Gots) { InputFile *File = SrcGot.File; if (tryMergeGots(MergedGots.front(), SrcGot, true)) { File->MipsGotIndex = 0; } else { // If this is the first time we failed to merge with the primary GOT, // MergedGots.back() will also be the primary GOT. We must make sure not // to try to merge again with IsPrimary=false, as otherwise, if the // inputs are just right, we could allow the primary GOT to become 1 or 2 // words too big due to ignoring the header size. if (MergedGots.size() == 1 || !tryMergeGots(MergedGots.back(), SrcGot, false)) { MergedGots.emplace_back(); std::swap(MergedGots.back(), SrcGot); } File->MipsGotIndex = MergedGots.size() - 1; } } std::swap(Gots, MergedGots); // Reduce number of "reloc-only" entries in the primary GOT // by substracting "global" entries exist in the primary GOT. PrimGot = &Gots.front(); PrimGot->Relocs.remove_if([&](const std::pair &P) { return PrimGot->Global.count(P.first); }); // Calculate indexes for each GOT entry. size_t Index = HeaderEntriesNum; for (FileGot &Got : Gots) { Got.StartIndex = &Got == PrimGot ? 0 : Index; for (std::pair &P : Got.PagesMap) { // For each output section referenced by GOT page relocations calculate // and save into PagesMap an upper bound of MIPS GOT entries required // to store page addresses of local symbols. We assume the worst case - // each 64kb page of the output section has at least one GOT relocation // against it. And take in account the case when the section intersects // page boundaries. P.second.FirstIndex = Index; Index += P.second.Count; } for (auto &P: Got.Local16) P.second = Index++; for (auto &P: Got.Global) P.second = Index++; for (auto &P: Got.Relocs) P.second = Index++; for (auto &P: Got.Tls) P.second = Index++; for (auto &P: Got.DynTlsSymbols) { P.second = Index; Index += 2; } } // Update Symbol::GotIndex field to use this // value later in the `sortMipsSymbols` function. for (auto &P : PrimGot->Global) P.first->GotIndex = P.second; for (auto &P : PrimGot->Relocs) P.first->GotIndex = P.second; // Create dynamic relocations. for (FileGot &Got : Gots) { // Create dynamic relocations for TLS entries. for (std::pair &P : Got.Tls) { Symbol *S = P.first; uint64_t Offset = P.second * Config->Wordsize; if (S->IsPreemptible) InX::RelaDyn->addReloc(Target->TlsGotRel, this, Offset, S); } for (std::pair &P : Got.DynTlsSymbols) { Symbol *S = P.first; uint64_t Offset = P.second * Config->Wordsize; if (S == nullptr) { if (!Config->Pic) continue; InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, this, Offset, S); } else { // When building a shared library we still need a dynamic relocation // for the module index. Therefore only checking for // S->IsPreemptible is not sufficient (this happens e.g. for // thread-locals that have been marked as local through a linker script) if (!S->IsPreemptible && !Config->Pic) continue; InX::RelaDyn->addReloc(Target->TlsModuleIndexRel, this, Offset, S); // However, we can skip writing the TLS offset reloc for non-preemptible // symbols since it is known even in shared libraries if (!S->IsPreemptible) continue; Offset += Config->Wordsize; InX::RelaDyn->addReloc(Target->TlsOffsetRel, this, Offset, S); } } // Do not create dynamic relocations for non-TLS // entries in the primary GOT. if (&Got == PrimGot) continue; // Dynamic relocations for "global" entries. for (const std::pair &P : Got.Global) { uint64_t Offset = P.second * Config->Wordsize; InX::RelaDyn->addReloc(Target->RelativeRel, this, Offset, P.first); } if (!Config->Pic) continue; // Dynamic relocations for "local" entries in case of PIC. for (const std::pair &L : Got.PagesMap) { size_t PageCount = L.second.Count; for (size_t PI = 0; PI < PageCount; ++PI) { uint64_t Offset = (L.second.FirstIndex + PI) * Config->Wordsize; InX::RelaDyn->addReloc({Target->RelativeRel, this, Offset, L.first, int64_t(PI * 0x10000)}); } } for (const std::pair &P : Got.Local16) { uint64_t Offset = P.second * Config->Wordsize; InX::RelaDyn->addReloc({Target->RelativeRel, this, Offset, true, P.first.first, P.first.second}); } } } bool MipsGotSection::empty() const { // We add the .got section to the result for dynamic MIPS target because // its address and properties are mentioned in the .dynamic section. return Config->Relocatable; } uint64_t MipsGotSection::getGp(const InputFile *F) const { // For files without related GOT or files refer a primary GOT // returns "common" _gp value. For secondary GOTs calculate // individual _gp values. if (!F || !F->MipsGotIndex.hasValue() || *F->MipsGotIndex == 0) return ElfSym::MipsGp->getVA(0); return getVA() + Gots[*F->MipsGotIndex].StartIndex * Config->Wordsize + 0x7ff0; } void MipsGotSection::writeTo(uint8_t *Buf) { // Set the MSB of the second GOT slot. This is not required by any // MIPS ABI documentation, though. // // There is a comment in glibc saying that "The MSB of got[1] of a // gnu object is set to identify gnu objects," and in GNU gold it // says "the second entry will be used by some runtime loaders". // But how this field is being used is unclear. // // We are not really willing to mimic other linkers behaviors // without understanding why they do that, but because all files // generated by GNU tools have this special GOT value, and because // we've been doing this for years, it is probably a safe bet to // keep doing this for now. We really need to revisit this to see // if we had to do this. writeUint(Buf + Config->Wordsize, (uint64_t)1 << (Config->Wordsize * 8 - 1)); for (const FileGot &G : Gots) { auto Write = [&](size_t I, const Symbol *S, int64_t A) { uint64_t VA = A; if (S) { VA = S->getVA(A); if (S->StOther & STO_MIPS_MICROMIPS) VA |= 1; } writeUint(Buf + I * Config->Wordsize, VA); }; // Write 'page address' entries to the local part of the GOT. for (const std::pair &L : G.PagesMap) { size_t PageCount = L.second.Count; uint64_t FirstPageAddr = getMipsPageAddr(L.first->Addr); for (size_t PI = 0; PI < PageCount; ++PI) Write(L.second.FirstIndex + PI, nullptr, FirstPageAddr + PI * 0x10000); } // Local, global, TLS, reloc-only entries. // If TLS entry has a corresponding dynamic relocations, leave it // initialized by zero. Write down adjusted TLS symbol's values otherwise. // To calculate the adjustments use offsets for thread-local storage. // https://www.linux-mips.org/wiki/NPTL for (const std::pair &P : G.Local16) Write(P.second, P.first.first, P.first.second); // Write VA to the primary GOT only. For secondary GOTs that // will be done by REL32 dynamic relocations. if (&G == &Gots.front()) for (const std::pair &P : G.Global) Write(P.second, P.first, 0); for (const std::pair &P : G.Relocs) Write(P.second, P.first, 0); for (const std::pair &P : G.Tls) Write(P.second, P.first, P.first->IsPreemptible ? 0 : -0x7000); for (const std::pair &P : G.DynTlsSymbols) { if (P.first == nullptr && !Config->Pic) Write(P.second, nullptr, 1); else if (P.first && !P.first->IsPreemptible) { // If we are emitting PIC code with relocations we mustn't write // anything to the GOT here. When using Elf_Rel relocations the value // one will be treated as an addend and will cause crashes at runtime if (!Config->Pic) Write(P.second, nullptr, 1); Write(P.second + 1, P.first, -0x8000); } } } } // On PowerPC the .plt section is used to hold the table of function addresses // instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss // section. I don't know why we have a BSS style type for the section but it is // consitent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI. GotPltSection::GotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, Config->EMachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, Target->GotPltEntrySize, Config->EMachine == EM_PPC64 ? ".plt" : ".got.plt") {} void GotPltSection::addEntry(Symbol &Sym) { assert(Sym.PltIndex == Entries.size()); Entries.push_back(&Sym); } size_t GotPltSection::getSize() const { return (Target->GotPltHeaderEntriesNum + Entries.size()) * Target->GotPltEntrySize; } void GotPltSection::writeTo(uint8_t *Buf) { Target->writeGotPltHeader(Buf); Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; for (const Symbol *B : Entries) { Target->writeGotPlt(Buf, *B); Buf += Config->Wordsize; } } bool GotPltSection::empty() const { // We need to emit a GOT.PLT even if it's empty if there's a symbol that // references the _GLOBAL_OFFSET_TABLE_ and the Target defines the symbol // relative to the .got.plt section. return Entries.empty() && !(ElfSym::GlobalOffsetTable && Target->GotBaseSymInGotPlt); } static StringRef getIgotPltName() { // On ARM the IgotPltSection is part of the GotSection. if (Config->EMachine == EM_ARM) return ".got"; // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection // needs to be named the same. if (Config->EMachine == EM_PPC64) return ".plt"; return ".got.plt"; } // On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit // with the IgotPltSection. IgotPltSection::IgotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, Config->EMachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS, Target->GotPltEntrySize, getIgotPltName()) {} void IgotPltSection::addEntry(Symbol &Sym) { Sym.IsInIgot = true; assert(Sym.PltIndex == Entries.size()); Entries.push_back(&Sym); } size_t IgotPltSection::getSize() const { return Entries.size() * Target->GotPltEntrySize; } void IgotPltSection::writeTo(uint8_t *Buf) { for (const Symbol *B : Entries) { Target->writeIgotPlt(Buf, *B); Buf += Config->Wordsize; } } StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : SyntheticSection(Dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), Dynamic(Dynamic) { // ELF string tables start with a NUL byte. addString(""); } // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, this->Size)); if (!R.second) return R.first->second; } unsigned Ret = this->Size; this->Size = this->Size + S.size() + 1; Strings.push_back(S); return Ret; } void StringTableSection::writeTo(uint8_t *Buf) { for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf[S.size()] = '\0'; Buf += S.size() + 1; } } // Returns the number of version definition entries. Because the first entry // is for the version definition itself, it is the number of versioned symbols // plus one. Note that we don't support multiple versions yet. static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } template DynamicSection::DynamicSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, Config->Wordsize, ".dynamic") { this->Entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS and on Fuchsia OS // which passes -z rodynamic. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS || Config->ZRodynamic) this->Flags = SHF_ALLOC; // Add strings to .dynstr early so that .dynstr's size will be // fixed early. for (StringRef S : Config->FilterList) addInt(DT_FILTER, InX::DynStrTab->addString(S)); for (StringRef S : Config->AuxiliaryList) addInt(DT_AUXILIARY, InX::DynStrTab->addString(S)); if (!Config->Rpath.empty()) addInt(Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, InX::DynStrTab->addString(Config->Rpath)); for (InputFile *File : SharedFiles) { SharedFile *F = cast>(File); if (F->IsNeeded) addInt(DT_NEEDED, InX::DynStrTab->addString(F->SoName)); } if (!Config->SoName.empty()) addInt(DT_SONAME, InX::DynStrTab->addString(Config->SoName)); } template void DynamicSection::add(int32_t Tag, std::function Fn) { Entries.push_back({Tag, Fn}); } template void DynamicSection::addInt(int32_t Tag, uint64_t Val) { Entries.push_back({Tag, [=] { return Val; }}); } template void DynamicSection::addInSec(int32_t Tag, InputSection *Sec) { Entries.push_back({Tag, [=] { return Sec->getVA(0); }}); } template void DynamicSection::addInSecRelative(int32_t Tag, InputSection *Sec) { size_t TagOffset = Entries.size() * Entsize; Entries.push_back( {Tag, [=] { return Sec->getVA(0) - (getVA() + TagOffset); }}); } template void DynamicSection::addOutSec(int32_t Tag, OutputSection *Sec) { Entries.push_back({Tag, [=] { return Sec->Addr; }}); } template void DynamicSection::addSize(int32_t Tag, OutputSection *Sec) { Entries.push_back({Tag, [=] { return Sec->Size; }}); } template void DynamicSection::addSym(int32_t Tag, Symbol *Sym) { Entries.push_back({Tag, [=] { return Sym->getVA(); }}); } // Add remaining entries to complete .dynamic contents. template void DynamicSection::finalizeContents() { if (this->Size) return; // Already finalized. // Set DT_FLAGS and DT_FLAGS_1. uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZInitfirst) DtFlags1 |= DF_1_INITFIRST; if (Config->ZInterpose) DtFlags1 |= DF_1_INTERPOSE; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNodlopen) DtFlags1 |= DF_1_NOOPEN; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (!Config->ZText) DtFlags |= DF_TEXTREL; if (DtFlags) addInt(DT_FLAGS, DtFlags); if (DtFlags1) addInt(DT_FLAGS_1, DtFlags1); // DT_DEBUG is a pointer to debug informaion used by debuggers at runtime. We // need it for each process, so we don't write it for DSOs. The loader writes // the pointer into this entry. // // DT_DEBUG is the only .dynamic entry that needs to be written to. Some // systems (currently only Fuchsia OS) provide other means to give the // debugger this information. Such systems may choose make .dynamic read-only. // If the target is such a system (used -z rodynamic) don't write DT_DEBUG. if (!Config->Shared && !Config->Relocatable && !Config->ZRodynamic) addInt(DT_DEBUG, 0); this->Link = InX::DynStrTab->getParent()->SectionIndex; if (!InX::RelaDyn->empty()) { addInSec(InX::RelaDyn->DynamicTag, InX::RelaDyn); addSize(InX::RelaDyn->SizeDynamicTag, InX::RelaDyn->getParent()); bool IsRela = Config->IsRela; addInt(IsRela ? DT_RELAENT : DT_RELENT, IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel)); // MIPS dynamic loader does not support RELCOUNT tag. // The problem is in the tight relation between dynamic // relocations and GOT. So do not emit this tag on MIPS. if (Config->EMachine != EM_MIPS) { size_t NumRelativeRels = InX::RelaDyn->getRelativeRelocCount(); if (Config->ZCombreloc && NumRelativeRels) addInt(IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels); } } if (InX::RelrDyn && !InX::RelrDyn->Relocs.empty()) { addInSec(Config->UseAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR, InX::RelrDyn); addSize(Config->UseAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ, InX::RelrDyn->getParent()); addInt(Config->UseAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT, sizeof(Elf_Relr)); } // .rel[a].plt section usually consists of two parts, containing plt and // iplt relocations. It is possible to have only iplt relocations in the // output. In that case RelaPlt is empty and have zero offset, the same offset // as RelaIplt have. And we still want to emit proper dynamic tags for that // case, so here we always use RelaPlt as marker for the begining of // .rel[a].plt section. if (InX::RelaPlt->getParent()->Live) { addInSec(DT_JMPREL, InX::RelaPlt); addSize(DT_PLTRELSZ, InX::RelaPlt->getParent()); switch (Config->EMachine) { case EM_MIPS: addInSec(DT_MIPS_PLTGOT, InX::GotPlt); break; case EM_SPARCV9: addInSec(DT_PLTGOT, InX::Plt); break; default: addInSec(DT_PLTGOT, InX::GotPlt); break; } addInt(DT_PLTREL, Config->IsRela ? DT_RELA : DT_REL); } addInSec(DT_SYMTAB, InX::DynSymTab); addInt(DT_SYMENT, sizeof(Elf_Sym)); addInSec(DT_STRTAB, InX::DynStrTab); addInt(DT_STRSZ, InX::DynStrTab->getSize()); if (!Config->ZText) addInt(DT_TEXTREL, 0); if (InX::GnuHashTab) addInSec(DT_GNU_HASH, InX::GnuHashTab); if (InX::HashTab) addInSec(DT_HASH, InX::HashTab); if (Out::PreinitArray) { addOutSec(DT_PREINIT_ARRAY, Out::PreinitArray); addSize(DT_PREINIT_ARRAYSZ, Out::PreinitArray); } if (Out::InitArray) { addOutSec(DT_INIT_ARRAY, Out::InitArray); addSize(DT_INIT_ARRAYSZ, Out::InitArray); } if (Out::FiniArray) { addOutSec(DT_FINI_ARRAY, Out::FiniArray); addSize(DT_FINI_ARRAYSZ, Out::FiniArray); } if (Symbol *B = Symtab->find(Config->Init)) if (B->isDefined()) addSym(DT_INIT, B); if (Symbol *B = Symtab->find(Config->Fini)) if (B->isDefined()) addSym(DT_FINI, B); bool HasVerNeed = In::VerNeed->getNeedNum() != 0; if (HasVerNeed || In::VerDef) addInSec(DT_VERSYM, In::VerSym); if (In::VerDef) { addInSec(DT_VERDEF, In::VerDef); addInt(DT_VERDEFNUM, getVerDefNum()); } if (HasVerNeed) { addInSec(DT_VERNEED, In::VerNeed); addInt(DT_VERNEEDNUM, In::VerNeed->getNeedNum()); } if (Config->EMachine == EM_MIPS) { addInt(DT_MIPS_RLD_VERSION, 1); addInt(DT_MIPS_FLAGS, RHF_NOTPOT); addInt(DT_MIPS_BASE_ADDRESS, Target->getImageBase()); addInt(DT_MIPS_SYMTABNO, InX::DynSymTab->getNumSymbols()); add(DT_MIPS_LOCAL_GOTNO, [] { return InX::MipsGot->getLocalEntriesNum(); }); if (const Symbol *B = InX::MipsGot->getFirstGlobalEntry()) addInt(DT_MIPS_GOTSYM, B->DynsymIndex); else addInt(DT_MIPS_GOTSYM, InX::DynSymTab->getNumSymbols()); addInSec(DT_PLTGOT, InX::MipsGot); if (InX::MipsRldMap) { if (!Config->Pie) addInSec(DT_MIPS_RLD_MAP, InX::MipsRldMap); // Store the offset to the .rld_map section // relative to the address of the tag. addInSecRelative(DT_MIPS_RLD_MAP_REL, InX::MipsRldMap); } } // Glink dynamic tag is required by the V2 abi if the plt section isn't empty. if (Config->EMachine == EM_PPC64 && !InX::Plt->empty()) { // The Glink tag points to 32 bytes before the first lazy symbol resolution // stub, which starts directly after the header. Entries.push_back({DT_PPC64_GLINK, [=] { unsigned Offset = Target->PltHeaderSize - 32; return InX::Plt->getVA(0) + Offset; }}); } addInt(DT_NULL, 0); getParent()->Link = this->Link; this->Size = Entries.size() * this->Entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (std::pair> &KV : Entries) { P->d_tag = KV.first; P->d_un.d_val = KV.second(); ++P; } } uint64_t DynamicReloc::getOffset() const { return InputSec->getVA(OffsetInSec); } int64_t DynamicReloc::computeAddend() const { if (UseSymVA) return Sym->getVA(Addend); if (!OutputSec) return Addend; // See the comment in the DynamicReloc ctor. return getMipsPageAddr(OutputSec->Addr) + Addend; } uint32_t DynamicReloc::getSymIndex() const { if (Sym && !UseSymVA) return Sym->DynsymIndex; return 0; } RelocationBaseSection::RelocationBaseSection(StringRef Name, uint32_t Type, int32_t DynamicTag, int32_t SizeDynamicTag) : SyntheticSection(SHF_ALLOC, Type, Config->Wordsize, Name), DynamicTag(DynamicTag), SizeDynamicTag(SizeDynamicTag) {} void RelocationBaseSection::addReloc(RelType DynType, InputSectionBase *IS, uint64_t OffsetInSec, Symbol *Sym) { addReloc({DynType, IS, OffsetInSec, false, Sym, 0}); } void RelocationBaseSection::addReloc(RelType DynType, InputSectionBase *InputSec, uint64_t OffsetInSec, Symbol *Sym, int64_t Addend, RelExpr Expr, RelType Type) { // Write the addends to the relocated address if required. We skip // it if the written value would be zero. if (Config->WriteAddends && (Expr != R_ADDEND || Addend != 0)) InputSec->Relocations.push_back({Expr, Type, OffsetInSec, Addend, Sym}); addReloc({DynType, InputSec, OffsetInSec, Expr != R_ADDEND, Sym, Addend}); } void RelocationBaseSection::addReloc(const DynamicReloc &Reloc) { if (Reloc.Type == Target->RelativeRel) ++NumRelativeRelocs; Relocs.push_back(Reloc); } void RelocationBaseSection::finalizeContents() { // If all relocations are R_*_RELATIVE they don't refer to any // dynamic symbol and we don't need a dynamic symbol table. If that // is the case, just use the index of the regular symbol table section. getParent()->Link = InX::DynSymTab ? InX::DynSymTab->getParent()->SectionIndex : InX::SymTab->getParent()->SectionIndex; if (InX::RelaIplt == this || InX::RelaPlt == this) getParent()->Info = InX::GotPlt->getParent()->SectionIndex; } RelrBaseSection::RelrBaseSection() : SyntheticSection(SHF_ALLOC, Config->UseAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR, Config->Wordsize, ".relr.dyn") {} template static void encodeDynamicReloc(typename ELFT::Rela *P, const DynamicReloc &Rel) { if (Config->IsRela) P->r_addend = Rel.computeAddend(); P->r_offset = Rel.getOffset(); P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->IsMips64EL); } template RelocationSection::RelocationSection(StringRef Name, bool Sort) : RelocationBaseSection(Name, Config->IsRela ? SHT_RELA : SHT_REL, Config->IsRela ? DT_RELA : DT_REL, Config->IsRela ? DT_RELASZ : DT_RELSZ), Sort(Sort) { this->Entsize = Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); } static bool compRelocations(const DynamicReloc &A, const DynamicReloc &B) { bool AIsRel = A.Type == Target->RelativeRel; bool BIsRel = B.Type == Target->RelativeRel; if (AIsRel != BIsRel) return AIsRel; return A.getSymIndex() < B.getSymIndex(); } template void RelocationSection::writeTo(uint8_t *Buf) { if (Sort) std::stable_sort(Relocs.begin(), Relocs.end(), compRelocations); for (const DynamicReloc &Rel : Relocs) { encodeDynamicReloc(reinterpret_cast(Buf), Rel); Buf += Config->IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); } } template unsigned RelocationSection::getRelocOffset() { return this->Entsize * Relocs.size(); } template AndroidPackedRelocationSection::AndroidPackedRelocationSection( StringRef Name) : RelocationBaseSection( Name, Config->IsRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL, Config->IsRela ? DT_ANDROID_RELA : DT_ANDROID_REL, Config->IsRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ) { this->Entsize = 1; } template bool AndroidPackedRelocationSection::updateAllocSize() { // This function computes the contents of an Android-format packed relocation // section. // // This format compresses relocations by using relocation groups to factor out // fields that are common between relocations and storing deltas from previous // relocations in SLEB128 format (which has a short representation for small // numbers). A good example of a relocation type with common fields is // R_*_RELATIVE, which is normally used to represent function pointers in // vtables. In the REL format, each relative relocation has the same r_info // field, and is only different from other relative relocations in terms of // the r_offset field. By sorting relocations by offset, grouping them by // r_info and representing each relocation with only the delta from the // previous offset, each 8-byte relocation can be compressed to as little as 1 // byte (or less with run-length encoding). This relocation packer was able to // reduce the size of the relocation section in an Android Chromium DSO from // 2,911,184 bytes to 174,693 bytes, or 6% of the original size. // // A relocation section consists of a header containing the literal bytes // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two // elements are the total number of relocations in the section and an initial // r_offset value. The remaining elements define a sequence of relocation // groups. Each relocation group starts with a header consisting of the // following elements: // // - the number of relocations in the relocation group // - flags for the relocation group // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta // for each relocation in the group. // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info // field for each relocation in the group. // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for // each relocation in the group. // // Following the relocation group header are descriptions of each of the // relocations in the group. They consist of the following elements: // // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset // delta for this relocation. // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info // field for this relocation. // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for // this relocation. size_t OldSize = RelocData.size(); RelocData = {'A', 'P', 'S', '2'}; raw_svector_ostream OS(RelocData); auto Add = [&](int64_t V) { encodeSLEB128(V, OS); }; // The format header includes the number of relocations and the initial // offset (we set this to zero because the first relocation group will // perform the initial adjustment). Add(Relocs.size()); Add(0); std::vector Relatives, NonRelatives; for (const DynamicReloc &Rel : Relocs) { Elf_Rela R; encodeDynamicReloc(&R, Rel); if (R.getType(Config->IsMips64EL) == Target->RelativeRel) Relatives.push_back(R); else NonRelatives.push_back(R); } llvm::sort(Relatives.begin(), Relatives.end(), [](const Elf_Rel &A, const Elf_Rel &B) { return A.r_offset < B.r_offset; }); // Try to find groups of relative relocations which are spaced one word // apart from one another. These generally correspond to vtable entries. The // format allows these groups to be encoded using a sort of run-length // encoding, but each group will cost 7 bytes in addition to the offset from // the previous group, so it is only profitable to do this for groups of // size 8 or larger. std::vector UngroupedRelatives; std::vector> RelativeGroups; for (auto I = Relatives.begin(), E = Relatives.end(); I != E;) { std::vector Group; do { Group.push_back(*I++); } while (I != E && (I - 1)->r_offset + Config->Wordsize == I->r_offset); if (Group.size() < 8) UngroupedRelatives.insert(UngroupedRelatives.end(), Group.begin(), Group.end()); else RelativeGroups.emplace_back(std::move(Group)); } unsigned HasAddendIfRela = Config->IsRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0; uint64_t Offset = 0; uint64_t Addend = 0; // Emit the run-length encoding for the groups of adjacent relative // relocations. Each group is represented using two groups in the packed // format. The first is used to set the current offset to the start of the // group (and also encodes the first relocation), and the second encodes the // remaining relocations. for (std::vector &G : RelativeGroups) { // The first relocation in the group. Add(1); Add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela); Add(G[0].r_offset - Offset); Add(Target->RelativeRel); if (Config->IsRela) { Add(G[0].r_addend - Addend); Addend = G[0].r_addend; } // The remaining relocations. Add(G.size() - 1); Add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG | RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela); Add(Config->Wordsize); Add(Target->RelativeRel); if (Config->IsRela) { for (auto I = G.begin() + 1, E = G.end(); I != E; ++I) { Add(I->r_addend - Addend); Addend = I->r_addend; } } Offset = G.back().r_offset; } // Now the ungrouped relatives. if (!UngroupedRelatives.empty()) { Add(UngroupedRelatives.size()); Add(RELOCATION_GROUPED_BY_INFO_FLAG | HasAddendIfRela); Add(Target->RelativeRel); for (Elf_Rela &R : UngroupedRelatives) { Add(R.r_offset - Offset); Offset = R.r_offset; if (Config->IsRela) { Add(R.r_addend - Addend); Addend = R.r_addend; } } } // Finally the non-relative relocations. llvm::sort(NonRelatives.begin(), NonRelatives.end(), [](const Elf_Rela &A, const Elf_Rela &B) { return A.r_offset < B.r_offset; }); if (!NonRelatives.empty()) { Add(NonRelatives.size()); Add(HasAddendIfRela); for (Elf_Rela &R : NonRelatives) { Add(R.r_offset - Offset); Offset = R.r_offset; Add(R.r_info); if (Config->IsRela) { Add(R.r_addend - Addend); Addend = R.r_addend; } } } // Returns whether the section size changed. We need to keep recomputing both // section layout and the contents of this section until the size converges // because changing this section's size can affect section layout, which in // turn can affect the sizes of the LEB-encoded integers stored in this // section. return RelocData.size() != OldSize; } template RelrSection::RelrSection() { this->Entsize = Config->Wordsize; } template bool RelrSection::updateAllocSize() { // This function computes the contents of an SHT_RELR packed relocation // section. // // Proposal for adding SHT_RELR sections to generic-abi is here: // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg // // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] // // i.e. start with an address, followed by any number of bitmaps. The address // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63 // relocations each, at subsequent offsets following the last address entry. // // The bitmap entries must have 1 in the least significant bit. The assumption // here is that an address cannot have 1 in lsb. Odd addresses are not // supported. // // Excluding the least significant bit in the bitmap, each non-zero bit in // the bitmap represents a relocation to be applied to a corresponding machine // word that follows the base address word. The second least significant bit // represents the machine word immediately following the initial address, and // each bit that follows represents the next word, in linear order. As such, // a single bitmap can encode up to 31 relocations in a 32-bit object, and // 63 relocations in a 64-bit object. // // This encoding has a couple of interesting properties: // 1. Looking at any entry, it is clear whether it's an address or a bitmap: // even means address, odd means bitmap. // 2. Just a simple list of addresses is a valid encoding. size_t OldSize = RelrRelocs.size(); RelrRelocs.clear(); // Same as Config->Wordsize but faster because this is a compile-time // constant. const size_t Wordsize = sizeof(typename ELFT::uint); // Number of bits to use for the relocation offsets bitmap. // Must be either 63 or 31. const size_t NBits = Wordsize * 8 - 1; // Get offsets for all relative relocations and sort them. std::vector Offsets; for (const RelativeReloc &Rel : Relocs) Offsets.push_back(Rel.getOffset()); llvm::sort(Offsets.begin(), Offsets.end()); // For each leading relocation, find following ones that can be folded // as a bitmap and fold them. for (size_t I = 0, E = Offsets.size(); I < E;) { // Add a leading relocation. RelrRelocs.push_back(Elf_Relr(Offsets[I])); uint64_t Base = Offsets[I] + Wordsize; ++I; // Find foldable relocations to construct bitmaps. while (I < E) { uint64_t Bitmap = 0; while (I < E) { uint64_t Delta = Offsets[I] - Base; // If it is too far, it cannot be folded. if (Delta >= NBits * Wordsize) break; // If it is not a multiple of wordsize away, it cannot be folded. if (Delta % Wordsize) break; // Fold it. Bitmap |= 1ULL << (Delta / Wordsize); ++I; } if (!Bitmap) break; RelrRelocs.push_back(Elf_Relr((Bitmap << 1) | 1)); Base += NBits * Wordsize; } } return RelrRelocs.size() != OldSize; } SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &StrTabSec) : SyntheticSection(StrTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0, StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, Config->Wordsize, StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), StrTabSec(StrTabSec) {} // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const SymbolTableEntry &L, const SymbolTableEntry &R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the beginning of a dynsym in arbitrary order. if (L.Sym->isInGot() && R.Sym->isInGot()) return L.Sym->GotIndex < R.Sym->GotIndex; if (!L.Sym->isInGot() && !R.Sym->isInGot()) return false; return !L.Sym->isInGot(); } void SymbolTableBaseSection::finalizeContents() { getParent()->Link = StrTabSec.getParent()->SectionIndex; if (this->Type != SHT_DYNSYM) return; // If it is a .dynsym, there should be no local symbols, but we need // to do a few things for the dynamic linker. // Section's Info field has the index of the first non-local symbol. // Because the first symbol entry is a null entry, 1 is the first. getParent()->Info = 1; if (InX::GnuHashTab) { // NB: It also sorts Symbols to meet the GNU hash table requirements. InX::GnuHashTab->addSymbols(Symbols); } else if (Config->EMachine == EM_MIPS) { std::stable_sort(Symbols.begin(), Symbols.end(), sortMipsSymbols); } size_t I = 0; for (const SymbolTableEntry &S : Symbols) S.Sym->DynsymIndex = ++I; } // The ELF spec requires that all local symbols precede global symbols, so we // sort symbol entries in this function. (For .dynsym, we don't do that because // symbols for dynamic linking are inherently all globals.) // // Aside from above, we put local symbols in groups starting with the STT_FILE // symbol. That is convenient for purpose of identifying where are local symbols // coming from. void SymbolTableBaseSection::postThunkContents() { assert(this->Type == SHT_SYMTAB); // Move all local symbols before global symbols. auto E = std::stable_partition( Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &S) { return S.Sym->isLocal() || S.Sym->computeBinding() == STB_LOCAL; }); size_t NumLocals = E - Symbols.begin(); getParent()->Info = NumLocals + 1; // We want to group the local symbols by file. For that we rebuild the local // part of the symbols vector. We do not need to care about the STT_FILE // symbols, they are already naturally placed first in each group. That // happens because STT_FILE is always the first symbol in the object and hence // precede all other local symbols we add for a file. MapVector> Arr; for (const SymbolTableEntry &S : llvm::make_range(Symbols.begin(), E)) Arr[S.Sym->File].push_back(S); auto I = Symbols.begin(); for (std::pair> &P : Arr) for (SymbolTableEntry &Entry : P.second) *I++ = Entry; } void SymbolTableBaseSection::addSymbol(Symbol *B) { // Adding a local symbol to a .dynsym is a bug. assert(this->Type != SHT_DYNSYM || !B->isLocal()); bool HashIt = B->isLocal(); Symbols.push_back({B, StrTabSec.addString(B->getName(), HashIt)}); } size_t SymbolTableBaseSection::getSymbolIndex(Symbol *Sym) { // Initializes symbol lookup tables lazily. This is used only // for -r or -emit-relocs. llvm::call_once(OnceFlag, [&] { SymbolIndexMap.reserve(Symbols.size()); size_t I = 0; for (const SymbolTableEntry &E : Symbols) { if (E.Sym->Type == STT_SECTION) SectionIndexMap[E.Sym->getOutputSection()] = ++I; else SymbolIndexMap[E.Sym] = ++I; } }); // Section symbols are mapped based on their output sections // to maintain their semantics. if (Sym->Type == STT_SECTION) return SectionIndexMap.lookup(Sym->getOutputSection()); return SymbolIndexMap.lookup(Sym); } template SymbolTableSection::SymbolTableSection(StringTableSection &StrTabSec) : SymbolTableBaseSection(StrTabSec) { this->Entsize = sizeof(Elf_Sym); } static BssSection *getCommonSec(Symbol *Sym) { if (!Config->DefineCommon) if (auto *D = dyn_cast(Sym)) return dyn_cast_or_null(D->Section); return nullptr; } static uint32_t getSymSectionIndex(Symbol *Sym) { if (getCommonSec(Sym)) return SHN_COMMON; if (!isa(Sym) || Sym->NeedsPltAddr) return SHN_UNDEF; if (const OutputSection *OS = Sym->getOutputSection()) return OS->SectionIndex >= SHN_LORESERVE ? SHN_XINDEX : OS->SectionIndex; return SHN_ABS; } // Write the internal symbol table contents to the output symbol table. template void SymbolTableSection::writeTo(uint8_t *Buf) { // The first entry is a null entry as per the ELF spec. memset(Buf, 0, sizeof(Elf_Sym)); Buf += sizeof(Elf_Sym); auto *ESym = reinterpret_cast(Buf); for (SymbolTableEntry &Ent : Symbols) { Symbol *Sym = Ent.Sym; // Set st_info and st_other. ESym->st_other = 0; if (Sym->isLocal()) { ESym->setBindingAndType(STB_LOCAL, Sym->Type); } else { ESym->setBindingAndType(Sym->computeBinding(), Sym->Type); ESym->setVisibility(Sym->Visibility); } ESym->st_name = Ent.StrTabOffset; ESym->st_shndx = getSymSectionIndex(Ent.Sym); // Copy symbol size if it is a defined symbol. st_size is not significant // for undefined symbols, so whether copying it or not is up to us if that's // the case. We'll leave it as zero because by not setting a value, we can // get the exact same outputs for two sets of input files that differ only // in undefined symbol size in DSOs. if (ESym->st_shndx == SHN_UNDEF) ESym->st_size = 0; else ESym->st_size = Sym->getSize(); // st_value is usually an address of a symbol, but that has a // special meaining for uninstantiated common symbols (this can // occur if -r is given). if (BssSection *CommonSec = getCommonSec(Ent.Sym)) ESym->st_value = CommonSec->Alignment; else ESym->st_value = Sym->getVA(); ++ESym; } // On MIPS we need to mark symbol which has a PLT entry and requires // pointer equality by STO_MIPS_PLT flag. That is necessary to help // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Config->EMachine == EM_MIPS) { auto *ESym = reinterpret_cast(Buf); for (SymbolTableEntry &Ent : Symbols) { Symbol *Sym = Ent.Sym; if (Sym->isInPlt() && Sym->NeedsPltAddr) ESym->st_other |= STO_MIPS_PLT; if (isMicroMips()) { // Set STO_MIPS_MICROMIPS flag and less-significant bit for // a defined microMIPS symbol and symbol should point to its // PLT entry (in case of microMIPS, PLT entries always contain // microMIPS code). if (Sym->isDefined() && ((Sym->StOther & STO_MIPS_MICROMIPS) || Sym->NeedsPltAddr)) { if (StrTabSec.isDynamic()) ESym->st_value |= 1; ESym->st_other |= STO_MIPS_MICROMIPS; } } if (Config->Relocatable) if (auto *D = dyn_cast(Sym)) if (isMipsPIC(D)) ESym->st_other |= STO_MIPS_PIC; ++ESym; } } } SymtabShndxSection::SymtabShndxSection() : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndxr") { this->Entsize = 4; } void SymtabShndxSection::writeTo(uint8_t *Buf) { // We write an array of 32 bit values, where each value has 1:1 association // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX, // we need to write actual index, otherwise, we must write SHN_UNDEF(0). Buf += 4; // Ignore .symtab[0] entry. for (const SymbolTableEntry &Entry : InX::SymTab->getSymbols()) { if (getSymSectionIndex(Entry.Sym) == SHN_XINDEX) write32(Buf, Entry.Sym->getOutputSection()->SectionIndex); Buf += 4; } } bool SymtabShndxSection::empty() const { // SHT_SYMTAB can hold symbols with section indices values up to // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX // section. Problem is that we reveal the final section indices a bit too // late, and we do not know them here. For simplicity, we just always create // a .symtab_shndxr section when the amount of output sections is huge. size_t Size = 0; for (BaseCommand *Base : Script->SectionCommands) if (isa(Base)) ++Size; return Size < SHN_LORESERVE; } void SymtabShndxSection::finalizeContents() { getParent()->Link = InX::SymTab->getParent()->SectionIndex; } size_t SymtabShndxSection::getSize() const { return InX::SymTab->getNumSymbols() * 4; } // .hash and .gnu.hash sections contain on-disk hash tables that map // symbol names to their dynamic symbol table indices. Their purpose // is to help the dynamic linker resolve symbols quickly. If ELF files // don't have them, the dynamic linker has to do linear search on all // dynamic symbols, which makes programs slower. Therefore, a .hash // section is added to a DSO by default. A .gnu.hash is added if you // give the -hash-style=gnu or -hash-style=both option. // // The Unix semantics of resolving dynamic symbols is somewhat expensive. // Each ELF file has a list of DSOs that the ELF file depends on and a // list of dynamic symbols that need to be resolved from any of the // DSOs. That means resolving all dynamic symbols takes O(m)*O(n) // where m is the number of DSOs and n is the number of dynamic // symbols. For modern large programs, both m and n are large. So // making each step faster by using hash tables substiantially // improves time to load programs. // // (Note that this is not the only way to design the shared library. // For instance, the Windows DLL takes a different approach. On // Windows, each dynamic symbol has a name of DLL from which the symbol // has to be resolved. That makes the cost of symbol resolution O(n). // This disables some hacky techniques you can use on Unix such as // LD_PRELOAD, but this is arguably better semantics than the Unix ones.) // // Due to historical reasons, we have two different hash tables, .hash // and .gnu.hash. They are for the same purpose, and .gnu.hash is a new // and better version of .hash. .hash is just an on-disk hash table, but // .gnu.hash has a bloom filter in addition to a hash table to skip // DSOs very quickly. If you are sure that your dynamic linker knows // about .gnu.hash, you want to specify -hash-style=gnu. Otherwise, a // safe bet is to specify -hash-style=both for backward compatibilty. GnuHashTableSection::GnuHashTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, Config->Wordsize, ".gnu.hash") { } void GnuHashTableSection::finalizeContents() { getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; // Computes bloom filter size in word size. We want to allocate 12 // bits for each symbol. It must be a power of two. if (Symbols.empty()) { MaskWords = 1; } else { uint64_t NumBits = Symbols.size() * 12; MaskWords = NextPowerOf2(NumBits / (Config->Wordsize * 8)); } Size = 16; // Header Size += Config->Wordsize * MaskWords; // Bloom filter Size += NBuckets * 4; // Hash buckets Size += Symbols.size() * 4; // Hash values } void GnuHashTableSection::writeTo(uint8_t *Buf) { // The output buffer is not guaranteed to be zero-cleared because we pre- // fill executable sections with trap instructions. This is a precaution // for that case, which happens only when -no-rosegment is given. memset(Buf, 0, Size); // Write a header. write32(Buf, NBuckets); write32(Buf + 4, InX::DynSymTab->getNumSymbols() - Symbols.size()); write32(Buf + 8, MaskWords); write32(Buf + 12, Shift2); Buf += 16; // Write a bloom filter and a hash table. writeBloomFilter(Buf); Buf += Config->Wordsize * MaskWords; writeHashTable(Buf); } // This function writes a 2-bit bloom filter. This bloom filter alone // usually filters out 80% or more of all symbol lookups [1]. // The dynamic linker uses the hash table only when a symbol is not // filtered out by a bloom filter. // // [1] Ulrich Drepper (2011), "How To Write Shared Libraries" (Ver. 4.1.2), // p.9, https://www.akkadia.org/drepper/dsohowto.pdf void GnuHashTableSection::writeBloomFilter(uint8_t *Buf) { unsigned C = Config->Is64 ? 64 : 32; for (const Entry &Sym : Symbols) { size_t I = (Sym.Hash / C) & (MaskWords - 1); uint64_t Val = readUint(Buf + I * Config->Wordsize); Val |= uint64_t(1) << (Sym.Hash % C); Val |= uint64_t(1) << ((Sym.Hash >> Shift2) % C); writeUint(Buf + I * Config->Wordsize, Val); } } void GnuHashTableSection::writeHashTable(uint8_t *Buf) { uint32_t *Buckets = reinterpret_cast(Buf); uint32_t OldBucket = -1; uint32_t *Values = Buckets + NBuckets; for (auto I = Symbols.begin(), E = Symbols.end(); I != E; ++I) { // Write a hash value. It represents a sequence of chains that share the // same hash modulo value. The last element of each chain is terminated by // LSB 1. uint32_t Hash = I->Hash; bool IsLastInChain = (I + 1) == E || I->BucketIdx != (I + 1)->BucketIdx; Hash = IsLastInChain ? Hash | 1 : Hash & ~1; write32(Values++, Hash); if (I->BucketIdx == OldBucket) continue; // Write a hash bucket. Hash buckets contain indices in the following hash // value table. write32(Buckets + I->BucketIdx, I->Sym->DynsymIndex); OldBucket = I->BucketIdx; } } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. void GnuHashTableSection::addSymbols(std::vector &V) { // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce // its type correctly. std::vector::iterator Mid = std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { return !S.Sym->isDefined(); }); // We chose load factor 4 for the on-disk hash table. For each hash // collision, the dynamic linker will compare a uint32_t hash value. // Since the integer comparison is quite fast, we believe we can // make the load factor even larger. 4 is just a conservative choice. // // Note that we don't want to create a zero-sized hash table because // Android loader as of 2018 doesn't like a .gnu.hash containing such // table. If that's the case, we create a hash table with one unused // dummy slot. NBuckets = std::max((V.end() - Mid) / 4, 1); if (Mid == V.end()) return; for (SymbolTableEntry &Ent : llvm::make_range(Mid, V.end())) { Symbol *B = Ent.Sym; uint32_t Hash = hashGnu(B->getName()); uint32_t BucketIdx = Hash % NBuckets; Symbols.push_back({B, Ent.StrTabOffset, Hash, BucketIdx}); } std::stable_sort( Symbols.begin(), Symbols.end(), [](const Entry &L, const Entry &R) { return L.BucketIdx < R.BucketIdx; }); V.erase(Mid, V.end()); for (const Entry &Ent : Symbols) V.push_back({Ent.Sym, Ent.StrTabOffset}); } HashTableSection::HashTableSection() : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") { this->Entsize = 4; } void HashTableSection::finalizeContents() { getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += InX::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. NumEntries += InX::DynSymTab->getNumSymbols(); this->Size = NumEntries * 4; } void HashTableSection::writeTo(uint8_t *Buf) { // See comment in GnuHashTableSection::writeTo. memset(Buf, 0, Size); unsigned NumSymbols = InX::DynSymTab->getNumSymbols(); uint32_t *P = reinterpret_cast(Buf); write32(P++, NumSymbols); // nbucket write32(P++, NumSymbols); // nchain uint32_t *Buckets = P; uint32_t *Chains = P + NumSymbols; for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { Symbol *Sym = S.Sym; StringRef Name = Sym->getName(); unsigned I = Sym->DynsymIndex; uint32_t Hash = hashSysV(Name) % NumSymbols; Chains[I] = Buckets[Hash]; write32(Buckets + Hash, I); } } // On PowerPC64 the lazy symbol resolvers go into the `global linkage table` // in the .glink section, rather then the typical .plt section. PltSection::PltSection(bool IsIplt) : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, Config->EMachine == EM_PPC64 ? ".glink" : ".plt"), HeaderSize(IsIplt ? 0 : Target->PltHeaderSize), IsIplt(IsIplt) { // The PLT needs to be writable on SPARC as the dynamic linker will // modify the instructions in the PLT entries. if (Config->EMachine == EM_SPARCV9) this->Flags |= SHF_WRITE; } void PltSection::writeTo(uint8_t *Buf) { // At beginning of PLT but not the IPLT, we have code to call the dynamic // linker to resolve dynsyms at runtime. Write such code. if (!IsIplt) Target->writePltHeader(Buf); size_t Off = HeaderSize; // The IPlt is immediately after the Plt, account for this in RelOff unsigned PltOff = getPltRelocOff(); for (auto &I : Entries) { const Symbol *B = I.first; unsigned RelOff = I.second + PltOff; uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(Symbol &Sym) { Sym.PltIndex = Entries.size(); RelocationBaseSection *PltRelocSection = InX::RelaPlt; if (IsIplt) { PltRelocSection = InX::RelaIplt; Sym.IsInIplt = true; } unsigned RelOff = static_cast *>(PltRelocSection)->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } size_t PltSection::getSize() const { return HeaderSize + Entries.size() * Target->PltEntrySize; } // Some architectures such as additional symbols in the PLT section. For // example ARM uses mapping symbols to aid disassembly void PltSection::addSymbols() { // The PLT may have symbols defined for the Header, the IPLT has no header if (!IsIplt) Target->addPltHeaderSymbols(*this); size_t Off = HeaderSize; for (size_t I = 0; I < Entries.size(); ++I) { Target->addPltSymbols(*this, Off); Off += Target->PltEntrySize; } } unsigned PltSection::getPltRelocOff() const { return IsIplt ? InX::Plt->getSize() : 0; } // The string hash function for .gdb_index. static uint32_t computeGdbHash(StringRef S) { uint32_t H = 0; for (uint8_t C : S) H = H * 67 + tolower(C) - 113; return H; } GdbIndexSection::GdbIndexSection() : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {} // Returns the desired size of an on-disk hash table for a .gdb_index section. // There's a tradeoff between size and collision rate. We aim 75% utilization. size_t GdbIndexSection::computeSymtabSize() const { return std::max(NextPowerOf2(Symbols.size() * 4 / 3), 1024); } // Compute the output section size. void GdbIndexSection::initOutputSize() { Size = sizeof(GdbIndexHeader) + computeSymtabSize() * 8; for (GdbChunk &Chunk : Chunks) Size += Chunk.CompilationUnits.size() * 16 + Chunk.AddressAreas.size() * 20; // Add the constant pool size if exists. if (!Symbols.empty()) { GdbSymbol &Sym = Symbols.back(); Size += Sym.NameOff + Sym.Name.size() + 1; } } static std::vector getDebugInfoSections() { std::vector Ret; for (InputSectionBase *S : InputSections) if (InputSection *IS = dyn_cast(S)) if (IS->Name == ".debug_info") Ret.push_back(IS); return Ret; } static std::vector readCuList(DWARFContext &Dwarf) { std::vector Ret; for (std::unique_ptr &Cu : Dwarf.compile_units()) Ret.push_back({Cu->getOffset(), Cu->getLength() + 4}); return Ret; } static std::vector readAddressAreas(DWARFContext &Dwarf, InputSection *Sec) { std::vector Ret; uint32_t CuIdx = 0; for (std::unique_ptr &Cu : Dwarf.compile_units()) { DWARFAddressRangesVector Ranges; Cu->collectAddressRanges(Ranges); ArrayRef Sections = Sec->File->getSections(); for (DWARFAddressRange &R : Ranges) { InputSectionBase *S = Sections[R.SectionIndex]; if (!S || S == &InputSection::Discarded || !S->Live) continue; // Range list with zero size has no effect. if (R.LowPC == R.HighPC) continue; auto *IS = cast(S); uint64_t Offset = IS->getOffsetInFile(); Ret.push_back({IS, R.LowPC - Offset, R.HighPC - Offset, CuIdx}); } ++CuIdx; } return Ret; } static std::vector readPubNamesAndTypes(DWARFContext &Dwarf, uint32_t Idx) { StringRef Sec1 = Dwarf.getDWARFObj().getGnuPubNamesSection(); StringRef Sec2 = Dwarf.getDWARFObj().getGnuPubTypesSection(); std::vector Ret; for (StringRef Sec : {Sec1, Sec2}) { DWARFDebugPubTable Table(Sec, Config->IsLE, true); for (const DWARFDebugPubTable::Set &Set : Table.getData()) for (const DWARFDebugPubTable::Entry &Ent : Set.Entries) Ret.push_back({{Ent.Name, computeGdbHash(Ent.Name)}, (Ent.Descriptor.toBits() << 24) | Idx}); } return Ret; } // Create a list of symbols from a given list of symbol names and types // by uniquifying them by name. static std::vector createSymbols(ArrayRef> NameTypes) { typedef GdbIndexSection::GdbSymbol GdbSymbol; typedef GdbIndexSection::NameTypeEntry NameTypeEntry; // The number of symbols we will handle in this function is of the order // of millions for very large executables, so we use multi-threading to // speed it up. size_t NumShards = 32; size_t Concurrency = 1; if (ThreadsEnabled) Concurrency = std::min(PowerOf2Floor(hardware_concurrency()), NumShards); // A sharded map to uniquify symbols by name. std::vector> Map(NumShards); size_t Shift = 32 - countTrailingZeros(NumShards); // Instantiate GdbSymbols while uniqufying them by name. std::vector> Symbols(NumShards); parallelForEachN(0, Concurrency, [&](size_t ThreadId) { for (ArrayRef Entries : NameTypes) { for (const NameTypeEntry &Ent : Entries) { size_t ShardId = Ent.Name.hash() >> Shift; if ((ShardId & (Concurrency - 1)) != ThreadId) continue; size_t &Idx = Map[ShardId][Ent.Name]; if (Idx) { Symbols[ShardId][Idx - 1].CuVector.push_back(Ent.Type); continue; } Idx = Symbols[ShardId].size() + 1; Symbols[ShardId].push_back({Ent.Name, {Ent.Type}, 0, 0}); } } }); size_t NumSymbols = 0; for (ArrayRef V : Symbols) NumSymbols += V.size(); // The return type is a flattened vector, so we'll copy each vector // contents to Ret. std::vector Ret; Ret.reserve(NumSymbols); for (std::vector &Vec : Symbols) for (GdbSymbol &Sym : Vec) Ret.push_back(std::move(Sym)); // CU vectors and symbol names are adjacent in the output file. // We can compute their offsets in the output file now. size_t Off = 0; for (GdbSymbol &Sym : Ret) { Sym.CuVectorOff = Off; Off += (Sym.CuVector.size() + 1) * 4; } for (GdbSymbol &Sym : Ret) { Sym.NameOff = Off; Off += Sym.Name.size() + 1; } return Ret; } // Returns a newly-created .gdb_index section. template GdbIndexSection *GdbIndexSection::create() { std::vector Sections = getDebugInfoSections(); // .debug_gnu_pub{names,types} are useless in executables. // They are present in input object files solely for creating // a .gdb_index. So we can remove them from the output. for (InputSectionBase *S : InputSections) if (S->Name == ".debug_gnu_pubnames" || S->Name == ".debug_gnu_pubtypes") S->Live = false; std::vector Chunks(Sections.size()); std::vector> NameTypes(Sections.size()); parallelForEachN(0, Sections.size(), [&](size_t I) { ObjFile *File = Sections[I]->getFile(); DWARFContext Dwarf(make_unique>(File)); Chunks[I].Sec = Sections[I]; Chunks[I].CompilationUnits = readCuList(Dwarf); Chunks[I].AddressAreas = readAddressAreas(Dwarf, Sections[I]); NameTypes[I] = readPubNamesAndTypes(Dwarf, I); }); auto *Ret = make(); Ret->Chunks = std::move(Chunks); Ret->Symbols = createSymbols(NameTypes); Ret->initOutputSize(); return Ret; } void GdbIndexSection::writeTo(uint8_t *Buf) { // Write the header. auto *Hdr = reinterpret_cast(Buf); uint8_t *Start = Buf; Hdr->Version = 7; Buf += sizeof(*Hdr); // Write the CU list. Hdr->CuListOff = Buf - Start; for (GdbChunk &Chunk : Chunks) { for (CuEntry &Cu : Chunk.CompilationUnits) { write64le(Buf, Chunk.Sec->OutSecOff + Cu.CuOffset); write64le(Buf + 8, Cu.CuLength); Buf += 16; } } // Write the address area. Hdr->CuTypesOff = Buf - Start; Hdr->AddressAreaOff = Buf - Start; uint32_t CuOff = 0; for (GdbChunk &Chunk : Chunks) { for (AddressEntry &E : Chunk.AddressAreas) { uint64_t BaseAddr = E.Section->getVA(0); write64le(Buf, BaseAddr + E.LowAddress); write64le(Buf + 8, BaseAddr + E.HighAddress); write32le(Buf + 16, E.CuIndex + CuOff); Buf += 20; } CuOff += Chunk.CompilationUnits.size(); } // Write the on-disk open-addressing hash table containing symbols. Hdr->SymtabOff = Buf - Start; size_t SymtabSize = computeSymtabSize(); uint32_t Mask = SymtabSize - 1; for (GdbSymbol &Sym : Symbols) { uint32_t H = Sym.Name.hash(); uint32_t I = H & Mask; uint32_t Step = ((H * 17) & Mask) | 1; while (read32le(Buf + I * 8)) I = (I + Step) & Mask; write32le(Buf + I * 8, Sym.NameOff); write32le(Buf + I * 8 + 4, Sym.CuVectorOff); } Buf += SymtabSize * 8; // Write the string pool. Hdr->ConstantPoolOff = Buf - Start; for (GdbSymbol &Sym : Symbols) memcpy(Buf + Sym.NameOff, Sym.Name.data(), Sym.Name.size()); // Write the CU vectors. for (GdbSymbol &Sym : Symbols) { write32le(Buf, Sym.CuVector.size()); Buf += 4; for (uint32_t Val : Sym.CuVector) { write32le(Buf, Val); Buf += 4; } } } bool GdbIndexSection::empty() const { return !Out::DebugInfo; } EhFrameHeader::EhFrameHeader() : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {} // .eh_frame_hdr contains a binary search table of pointers to FDEs. // Each entry of the search table consists of two values, // the starting PC from where FDEs covers, and the FDE's address. // It is sorted by PC. void EhFrameHeader::writeTo(uint8_t *Buf) { typedef EhFrameSection::FdeData FdeData; std::vector Fdes = InX::EhFrame->getFdeData(); Buf[0] = 1; Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; Buf[2] = DW_EH_PE_udata4; Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; write32(Buf + 4, InX::EhFrame->getParent()->Addr - this->getVA() - 4); write32(Buf + 8, Fdes.size()); Buf += 12; for (FdeData &Fde : Fdes) { write32(Buf, Fde.PcRel); write32(Buf + 4, Fde.FdeVARel); Buf += 8; } } size_t EhFrameHeader::getSize() const { // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. return 12 + InX::EhFrame->NumFdes * 8; } bool EhFrameHeader::empty() const { return InX::EhFrame->empty(); } template VersionDefinitionSection::VersionDefinitionSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), ".gnu.version_d") {} static StringRef getFileDefName() { if (!Config->SoName.empty()) return Config->SoName; return Config->OutputFile; } template void VersionDefinitionSection::finalizeContents() { FileDefNameOff = InX::DynStrTab->addString(getFileDefName()); for (VersionDefinition &V : Config->VersionDefinitions) V.NameOff = InX::DynStrTab->addString(V.Name); getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; // sh_info should be set to the number of definitions. This fact is missed in // documentation, but confirmed by binutils community: // https://sourceware.org/ml/binutils/2014-11/msg00355.html getParent()->Info = getVerDefNum(); } template void VersionDefinitionSection::writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff) { auto *Verdef = reinterpret_cast(Buf); Verdef->vd_version = 1; Verdef->vd_cnt = 1; Verdef->vd_aux = sizeof(Elf_Verdef); Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); Verdef->vd_ndx = Index; Verdef->vd_hash = hashSysV(Name); auto *Verdaux = reinterpret_cast(Buf + sizeof(Elf_Verdef)); Verdaux->vda_name = NameOff; Verdaux->vda_next = 0; } template void VersionDefinitionSection::writeTo(uint8_t *Buf) { writeOne(Buf, 1, getFileDefName(), FileDefNameOff); for (VersionDefinition &V : Config->VersionDefinitions) { Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); writeOne(Buf, V.Id, V.Name, V.NameOff); } // Need to terminate the last version definition. Elf_Verdef *Verdef = reinterpret_cast(Buf); Verdef->vd_next = 0; } template size_t VersionDefinitionSection::getSize() const { return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); } template VersionTableSection::VersionTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), ".gnu.version") { this->Entsize = sizeof(Elf_Versym); } template void VersionTableSection::finalizeContents() { // At the moment of june 2016 GNU docs does not mention that sh_link field // should be set, but Sun docs do. Also readelf relies on this field. getParent()->Link = InX::DynSymTab->getParent()->SectionIndex; } template size_t VersionTableSection::getSize() const { return sizeof(Elf_Versym) * (InX::DynSymTab->getSymbols().size() + 1); } template void VersionTableSection::writeTo(uint8_t *Buf) { auto *OutVersym = reinterpret_cast(Buf) + 1; for (const SymbolTableEntry &S : InX::DynSymTab->getSymbols()) { OutVersym->vs_index = S.Sym->VersionId; ++OutVersym; } } template bool VersionTableSection::empty() const { return !In::VerDef && In::VerNeed->empty(); } template VersionNeedSection::VersionNeedSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), ".gnu.version_r") { // Identifiers in verneed section start at 2 because 0 and 1 are reserved // for VER_NDX_LOCAL and VER_NDX_GLOBAL. // First identifiers are reserved by verdef section if it exist. NextIndex = getVerDefNum() + 1; } template void VersionNeedSection::addSymbol(Symbol *SS) { auto &File = cast>(*SS->File); if (SS->VerdefIndex == VER_NDX_GLOBAL) { SS->VersionId = VER_NDX_GLOBAL; return; } // If we don't already know that we need an Elf_Verneed for this DSO, prepare // to create one by adding it to our needed list and creating a dynstr entry // for the soname. if (File.VerdefMap.empty()) Needed.push_back({&File, InX::DynStrTab->addString(File.SoName)}); const typename ELFT::Verdef *Ver = File.Verdefs[SS->VerdefIndex]; typename SharedFile::NeededVer &NV = File.VerdefMap[Ver]; // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, // prepare to create one by allocating a version identifier and creating a // dynstr entry for the version name. if (NV.Index == 0) { NV.StrTab = InX::DynStrTab->addString(File.getStringTable().data() + Ver->getAux()->vda_name); NV.Index = NextIndex++; } SS->VersionId = NV.Index; } template void VersionNeedSection::writeTo(uint8_t *Buf) { // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. auto *Verneed = reinterpret_cast(Buf); auto *Vernaux = reinterpret_cast(Verneed + Needed.size()); for (std::pair *, size_t> &P : Needed) { // Create an Elf_Verneed for this DSO. Verneed->vn_version = 1; Verneed->vn_cnt = P.first->VerdefMap.size(); Verneed->vn_file = P.second; Verneed->vn_aux = reinterpret_cast(Vernaux) - reinterpret_cast(Verneed); Verneed->vn_next = sizeof(Elf_Verneed); ++Verneed; // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over // VerdefMap, which will only contain references to needed version // definitions. Each Elf_Vernaux is based on the information contained in // the Elf_Verdef in the source DSO. This loop iterates over a std::map of // pointers, but is deterministic because the pointers refer to Elf_Verdef // data structures within a single input file. for (auto &NV : P.first->VerdefMap) { Vernaux->vna_hash = NV.first->vd_hash; Vernaux->vna_flags = 0; Vernaux->vna_other = NV.second.Index; Vernaux->vna_name = NV.second.StrTab; Vernaux->vna_next = sizeof(Elf_Vernaux); ++Vernaux; } Vernaux[-1].vna_next = 0; } Verneed[-1].vn_next = 0; } template void VersionNeedSection::finalizeContents() { getParent()->Link = InX::DynStrTab->getParent()->SectionIndex; getParent()->Info = Needed.size(); } template size_t VersionNeedSection::getSize() const { unsigned Size = Needed.size() * sizeof(Elf_Verneed); for (const std::pair *, size_t> &P : Needed) Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); return Size; } template bool VersionNeedSection::empty() const { return getNeedNum() == 0; } void MergeSyntheticSection::addSection(MergeInputSection *MS) { MS->Parent = this; Sections.push_back(MS); } MergeTailSection::MergeTailSection(StringRef Name, uint32_t Type, uint64_t Flags, uint32_t Alignment) : MergeSyntheticSection(Name, Type, Flags, Alignment), Builder(StringTableBuilder::RAW, Alignment) {} size_t MergeTailSection::getSize() const { return Builder.getSize(); } void MergeTailSection::writeTo(uint8_t *Buf) { Builder.write(Buf); } void MergeTailSection::finalizeContents() { // Add all string pieces to the string table builder to create section // contents. for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Builder.add(Sec->getData(I)); // Fix the string table content. After this, the contents will never change. Builder.finalize(); // finalize() fixed tail-optimized strings, so we can now get // offsets of strings. Get an offset for each string and save it // to a corresponding StringPiece for easy access. for (MergeInputSection *Sec : Sections) for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff = Builder.getOffset(Sec->getData(I)); } void MergeNoTailSection::writeTo(uint8_t *Buf) { for (size_t I = 0; I < NumShards; ++I) Shards[I].write(Buf + ShardOffsets[I]); } // This function is very hot (i.e. it can take several seconds to finish) // because sometimes the number of inputs is in an order of magnitude of // millions. So, we use multi-threading. // // For any strings S and T, we know S is not mergeable with T if S's hash // value is different from T's. If that's the case, we can safely put S and // T into different string builders without worrying about merge misses. // We do it in parallel. void MergeNoTailSection::finalizeContents() { // Initializes string table builders. for (size_t I = 0; I < NumShards; ++I) Shards.emplace_back(StringTableBuilder::RAW, Alignment); // Concurrency level. Must be a power of 2 to avoid expensive modulo // operations in the following tight loop. size_t Concurrency = 1; if (ThreadsEnabled) Concurrency = std::min(PowerOf2Floor(hardware_concurrency()), NumShards); // Add section pieces to the builders. parallelForEachN(0, Concurrency, [&](size_t ThreadId) { for (MergeInputSection *Sec : Sections) { for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) { size_t ShardId = getShardId(Sec->Pieces[I].Hash); if ((ShardId & (Concurrency - 1)) == ThreadId && Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff = Shards[ShardId].add(Sec->getData(I)); } } }); // Compute an in-section offset for each shard. size_t Off = 0; for (size_t I = 0; I < NumShards; ++I) { Shards[I].finalizeInOrder(); if (Shards[I].getSize() > 0) Off = alignTo(Off, Alignment); ShardOffsets[I] = Off; Off += Shards[I].getSize(); } Size = Off; // So far, section pieces have offsets from beginning of shards, but // we want offsets from beginning of the whole section. Fix them. parallelForEach(Sections, [&](MergeInputSection *Sec) { for (size_t I = 0, E = Sec->Pieces.size(); I != E; ++I) if (Sec->Pieces[I].Live) Sec->Pieces[I].OutputOff += ShardOffsets[getShardId(Sec->Pieces[I].Hash)]; }); } static MergeSyntheticSection *createMergeSynthetic(StringRef Name, uint32_t Type, uint64_t Flags, uint32_t Alignment) { bool ShouldTailMerge = (Flags & SHF_STRINGS) && Config->Optimize >= 2; if (ShouldTailMerge) return make(Name, Type, Flags, Alignment); return make(Name, Type, Flags, Alignment); } // Debug sections may be compressed by zlib. Decompress if exists. void elf::decompressSections() { parallelForEach(InputSections, [](InputSectionBase *Sec) { Sec->maybeDecompress(); }); } template void elf::splitSections() { // splitIntoPieces needs to be called on each MergeInputSection // before calling finalizeContents(). parallelForEach(InputSections, [](InputSectionBase *Sec) { if (auto *S = dyn_cast(Sec)) S->splitIntoPieces(); else if (auto *Eh = dyn_cast(Sec)) Eh->split(); }); } // This function scans over the inputsections to create mergeable // synthetic sections. // // It removes MergeInputSections from the input section array and adds // new synthetic sections at the location of the first input section // that it replaces. It then finalizes each synthetic section in order // to compute an output offset for each piece of each input section. void elf::mergeSections() { std::vector MergeSections; for (InputSectionBase *&S : InputSections) { MergeInputSection *MS = dyn_cast(S); if (!MS) continue; // We do not want to handle sections that are not alive, so just remove // them instead of trying to merge. if (!MS->Live) { S = nullptr; continue; } StringRef OutsecName = getOutputSectionName(MS); uint32_t Alignment = std::max(MS->Alignment, MS->Entsize); auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) { // While we could create a single synthetic section for two different // values of Entsize, it is better to take Entsize into consideration. // // With a single synthetic section no two pieces with different Entsize // could be equal, so we may as well have two sections. // // Using Entsize in here also allows us to propagate it to the synthetic // section. return Sec->Name == OutsecName && Sec->Flags == MS->Flags && Sec->Entsize == MS->Entsize && Sec->Alignment == Alignment; }); if (I == MergeSections.end()) { MergeSyntheticSection *Syn = createMergeSynthetic(OutsecName, MS->Type, MS->Flags, Alignment); MergeSections.push_back(Syn); I = std::prev(MergeSections.end()); S = Syn; Syn->Entsize = MS->Entsize; } else { S = nullptr; } (*I)->addSection(MS); } for (auto *MS : MergeSections) MS->finalizeContents(); std::vector &V = InputSections; V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); } MipsRldMapSection::MipsRldMapSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Config->Wordsize, ".rld_map") {} ARMExidxSentinelSection::ARMExidxSentinelSection() : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, Config->Wordsize, ".ARM.exidx") {} // Write a terminating sentinel entry to the end of the .ARM.exidx table. // This section will have been sorted last in the .ARM.exidx table. // This table entry will have the form: // | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND | // The sentinel must have the PREL31 value of an address higher than any // address described by any other table entry. void ARMExidxSentinelSection::writeTo(uint8_t *Buf) { assert(Highest); uint64_t S = Highest->getVA(Highest->getSize()); uint64_t P = getVA(); Target->relocateOne(Buf, R_ARM_PREL31, S - P); write32le(Buf + 4, 1); } // The sentinel has to be removed if there are no other .ARM.exidx entries. bool ARMExidxSentinelSection::empty() const { for (InputSection *IS : getInputSections(getParent())) if (!isa(IS)) return false; return true; } bool ARMExidxSentinelSection::classof(const SectionBase *D) { return D->kind() == InputSectionBase::Synthetic && D->Type == SHT_ARM_EXIDX; } ThunkSection::ThunkSection(OutputSection *OS, uint64_t Off) : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, Config->Wordsize, ".text.thunk") { this->Parent = OS; this->OutSecOff = Off; } void ThunkSection::addThunk(Thunk *T) { Thunks.push_back(T); T->addSymbols(*this); } void ThunkSection::writeTo(uint8_t *Buf) { for (Thunk *T : Thunks) T->writeTo(Buf + T->Offset); } InputSection *ThunkSection::getTargetInputSection() const { if (Thunks.empty()) return nullptr; const Thunk *T = Thunks.front(); return T->getTargetInputSection(); } bool ThunkSection::assignOffsets() { uint64_t Off = 0; for (Thunk *T : Thunks) { Off = alignTo(Off, T->Alignment); T->setOffset(Off); uint32_t Size = T->size(); T->getThunkTargetSym()->Size = Size; Off += Size; } bool Changed = Off != Size; Size = Off; return Changed; } InputSection *InX::ARMAttributes; BssSection *InX::Bss; BssSection *InX::BssRelRo; BuildIdSection *InX::BuildId; EhFrameHeader *InX::EhFrameHdr; EhFrameSection *InX::EhFrame; SyntheticSection *InX::Dynamic; StringTableSection *InX::DynStrTab; SymbolTableBaseSection *InX::DynSymTab; InputSection *InX::Interp; GdbIndexSection *InX::GdbIndex; GotSection *InX::Got; GotPltSection *InX::GotPlt; GnuHashTableSection *InX::GnuHashTab; HashTableSection *InX::HashTab; IgotPltSection *InX::IgotPlt; MipsGotSection *InX::MipsGot; MipsRldMapSection *InX::MipsRldMap; PltSection *InX::Plt; PltSection *InX::Iplt; RelocationBaseSection *InX::RelaDyn; RelrBaseSection *InX::RelrDyn; RelocationBaseSection *InX::RelaPlt; RelocationBaseSection *InX::RelaIplt; StringTableSection *InX::ShStrTab; StringTableSection *InX::StrTab; SymbolTableBaseSection *InX::SymTab; SymtabShndxSection *InX::SymTabShndx; template GdbIndexSection *GdbIndexSection::create(); template GdbIndexSection *GdbIndexSection::create(); template GdbIndexSection *GdbIndexSection::create(); template GdbIndexSection *GdbIndexSection::create(); template void elf::splitSections(); template void elf::splitSections(); template void elf::splitSections(); template void elf::splitSections(); template void EhFrameSection::addSection(InputSectionBase *); template void EhFrameSection::addSection(InputSectionBase *); template void EhFrameSection::addSection(InputSectionBase *); template void EhFrameSection::addSection(InputSectionBase *); template void PltSection::addEntry(Symbol &Sym); template void PltSection::addEntry(Symbol &Sym); template void PltSection::addEntry(Symbol &Sym); template void PltSection::addEntry(Symbol &Sym); template void MipsGotSection::build(); template void MipsGotSection::build(); template void MipsGotSection::build(); template void MipsGotSection::build(); template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::AndroidPackedRelocationSection; template class elf::AndroidPackedRelocationSection; template class elf::AndroidPackedRelocationSection; template class elf::AndroidPackedRelocationSection; template class elf::RelrSection; template class elf::RelrSection; template class elf::RelrSection; template class elf::RelrSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection;