//===- SyntheticSections.cpp ----------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains linker-synthesized sections. Currently, // synthetic sections are created either output sections or input sections, // but we are rewriting code so that all synthetic sections are created as // input sections. // //===----------------------------------------------------------------------===// #include "SyntheticSections.h" #include "Config.h" #include "Error.h" #include "InputFiles.h" #include "LinkerScript.h" #include "Memory.h" #include "OutputSections.h" #include "Strings.h" #include "SymbolTable.h" #include "Target.h" #include "Threads.h" #include "Writer.h" #include "lld/Config/Version.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Endian.h" #include "llvm/Support/MD5.h" #include "llvm/Support/RandomNumberGenerator.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/xxhash.h" #include using namespace llvm; using namespace llvm::dwarf; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; template static std::vector getCommonSymbols() { std::vector V; for (Symbol *S : Symtab::X->getSymbols()) if (auto *B = dyn_cast(S->body())) V.push_back(B); return V; } // Find all common symbols and allocate space for them. template InputSection *elf::createCommonSection() { auto *Ret = make>(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1, ArrayRef(), "COMMON"); Ret->Live = true; // Sort the common symbols by alignment as an heuristic to pack them better. std::vector Syms = getCommonSymbols(); std::stable_sort(Syms.begin(), Syms.end(), [](const DefinedCommon *A, const DefinedCommon *B) { return A->Alignment > B->Alignment; }); // Assign offsets to symbols. size_t Size = 0; size_t Alignment = 1; for (DefinedCommon *Sym : Syms) { Alignment = std::max(Alignment, Sym->Alignment); Size = alignTo(Size, Sym->Alignment); // Compute symbol offset relative to beginning of input section. Sym->Offset = Size; Size += Sym->Size; } Ret->Alignment = Alignment; Ret->Data = makeArrayRef(nullptr, Size); return Ret; } // Returns an LLD version string. static ArrayRef getVersion() { // Check LLD_VERSION first for ease of testing. // You can get consitent output by using the environment variable. // This is only for testing. StringRef S = getenv("LLD_VERSION"); if (S.empty()) S = Saver.save(Twine("Linker: ") + getLLDVersion()); // +1 to include the terminating '\0'. return {(const uint8_t *)S.data(), S.size() + 1}; } // Creates a .comment section containing LLD version info. // With this feature, you can identify LLD-generated binaries easily // by "objdump -s -j .comment ". // The returned object is a mergeable string section. template MergeInputSection *elf::createCommentSection() { typename ELFT::Shdr Hdr = {}; Hdr.sh_flags = SHF_MERGE | SHF_STRINGS; Hdr.sh_type = SHT_PROGBITS; Hdr.sh_entsize = 1; Hdr.sh_addralign = 1; auto *Ret = make>(/*file=*/nullptr, &Hdr, ".comment"); Ret->Data = getVersion(); Ret->splitIntoPieces(); return Ret; } // .MIPS.abiflags section. template MipsAbiFlagsSection::MipsAbiFlagsSection(Elf_Mips_ABIFlags Flags) : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"), Flags(Flags) {} template void MipsAbiFlagsSection::writeTo(uint8_t *Buf) { memcpy(Buf, &Flags, sizeof(Flags)); } template MipsAbiFlagsSection *MipsAbiFlagsSection::create() { Elf_Mips_ABIFlags Flags = {}; bool Create = false; for (InputSectionBase *Sec : Symtab::X->Sections) { if (!Sec->Live || Sec->Type != SHT_MIPS_ABIFLAGS) continue; Sec->Live = false; Create = true; std::string Filename = toString(Sec->getFile()); const size_t Size = Sec->Data.size(); // Older version of BFD (such as the default FreeBSD linker) concatenate // .MIPS.abiflags instead of merging. To allow for this case (or potential // zero padding) we ignore everything after the first Elf_Mips_ABIFlags if (Size < sizeof(Elf_Mips_ABIFlags)) { error(Filename + ": invalid size of .MIPS.abiflags section: got " + Twine(Size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags))); return nullptr; } auto *S = reinterpret_cast(Sec->Data.data()); if (S->version != 0) { error(Filename + ": unexpected .MIPS.abiflags version " + Twine(S->version)); return nullptr; } // LLD checks ISA compatibility in getMipsEFlags(). Here we just // select the highest number of ISA/Rev/Ext. Flags.isa_level = std::max(Flags.isa_level, S->isa_level); Flags.isa_rev = std::max(Flags.isa_rev, S->isa_rev); Flags.isa_ext = std::max(Flags.isa_ext, S->isa_ext); Flags.gpr_size = std::max(Flags.gpr_size, S->gpr_size); Flags.cpr1_size = std::max(Flags.cpr1_size, S->cpr1_size); Flags.cpr2_size = std::max(Flags.cpr2_size, S->cpr2_size); Flags.ases |= S->ases; Flags.flags1 |= S->flags1; Flags.flags2 |= S->flags2; Flags.fp_abi = elf::getMipsFpAbiFlag(Flags.fp_abi, S->fp_abi, Filename); }; if (Create) return make>(Flags); return nullptr; } // .MIPS.options section. template MipsOptionsSection::MipsOptionsSection(Elf_Mips_RegInfo Reginfo) : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"), Reginfo(Reginfo) {} template void MipsOptionsSection::writeTo(uint8_t *Buf) { auto *Options = reinterpret_cast(Buf); Options->kind = ODK_REGINFO; Options->size = getSize(); if (!Config->Relocatable) Reginfo.ri_gp_value = In::MipsGot->getGp(); memcpy(Buf + sizeof(Elf_Mips_Options), &Reginfo, sizeof(Reginfo)); } template MipsOptionsSection *MipsOptionsSection::create() { // N64 ABI only. if (!ELFT::Is64Bits) return nullptr; Elf_Mips_RegInfo Reginfo = {}; bool Create = false; for (InputSectionBase *Sec : Symtab::X->Sections) { if (!Sec->Live || Sec->Type != SHT_MIPS_OPTIONS) continue; Sec->Live = false; Create = true; std::string Filename = toString(Sec->getFile()); ArrayRef D = Sec->Data; while (!D.empty()) { if (D.size() < sizeof(Elf_Mips_Options)) { error(Filename + ": invalid size of .MIPS.options section"); break; } auto *Opt = reinterpret_cast(D.data()); if (Opt->kind == ODK_REGINFO) { if (Config->Relocatable && Opt->getRegInfo().ri_gp_value) error(Filename + ": unsupported non-zero ri_gp_value"); Reginfo.ri_gprmask |= Opt->getRegInfo().ri_gprmask; Sec->getFile()->MipsGp0 = Opt->getRegInfo().ri_gp_value; break; } if (!Opt->size) fatal(Filename + ": zero option descriptor size"); D = D.slice(Opt->size); } }; if (Create) return make>(Reginfo); return nullptr; } // MIPS .reginfo section. template MipsReginfoSection::MipsReginfoSection(Elf_Mips_RegInfo Reginfo) : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"), Reginfo(Reginfo) {} template void MipsReginfoSection::writeTo(uint8_t *Buf) { if (!Config->Relocatable) Reginfo.ri_gp_value = In::MipsGot->getGp(); memcpy(Buf, &Reginfo, sizeof(Reginfo)); } template MipsReginfoSection *MipsReginfoSection::create() { // Section should be alive for O32 and N32 ABIs only. if (ELFT::Is64Bits) return nullptr; Elf_Mips_RegInfo Reginfo = {}; bool Create = false; for (InputSectionBase *Sec : Symtab::X->Sections) { if (!Sec->Live || Sec->Type != SHT_MIPS_REGINFO) continue; Sec->Live = false; Create = true; if (Sec->Data.size() != sizeof(Elf_Mips_RegInfo)) { error(toString(Sec->getFile()) + ": invalid size of .reginfo section"); return nullptr; } auto *R = reinterpret_cast(Sec->Data.data()); if (Config->Relocatable && R->ri_gp_value) error(toString(Sec->getFile()) + ": unsupported non-zero ri_gp_value"); Reginfo.ri_gprmask |= R->ri_gprmask; Sec->getFile()->MipsGp0 = R->ri_gp_value; }; if (Create) return make>(Reginfo); return nullptr; } template InputSection *elf::createInterpSection() { auto *Ret = make>(SHF_ALLOC, SHT_PROGBITS, 1, ArrayRef(), ".interp"); Ret->Live = true; // StringSaver guarantees that the returned string ends with '\0'. StringRef S = Saver.save(Config->DynamicLinker); Ret->Data = {(const uint8_t *)S.data(), S.size() + 1}; return Ret; } static size_t getHashSize() { switch (Config->BuildId) { case BuildIdKind::Fast: return 8; case BuildIdKind::Md5: case BuildIdKind::Uuid: return 16; case BuildIdKind::Sha1: return 20; case BuildIdKind::Hexstring: return Config->BuildIdVector.size(); default: llvm_unreachable("unknown BuildIdKind"); } } template BuildIdSection::BuildIdSection() : SyntheticSection(SHF_ALLOC, SHT_NOTE, 1, ".note.gnu.build-id"), HashSize(getHashSize()) {} template void BuildIdSection::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; write32(Buf, 4); // Name size write32(Buf + 4, HashSize); // Content size write32(Buf + 8, NT_GNU_BUILD_ID); // Type memcpy(Buf + 12, "GNU", 4); // Name string HashBuf = Buf + 16; } // Split one uint8 array into small pieces of uint8 arrays. static std::vector> split(ArrayRef Arr, size_t ChunkSize) { std::vector> Ret; while (Arr.size() > ChunkSize) { Ret.push_back(Arr.take_front(ChunkSize)); Arr = Arr.drop_front(ChunkSize); } if (!Arr.empty()) Ret.push_back(Arr); return Ret; } // Computes a hash value of Data using a given hash function. // In order to utilize multiple cores, we first split data into 1MB // chunks, compute a hash for each chunk, and then compute a hash value // of the hash values. template void BuildIdSection::computeHash( llvm::ArrayRef Data, std::function Arr)> HashFn) { std::vector> Chunks = split(Data, 1024 * 1024); std::vector Hashes(Chunks.size() * HashSize); // Compute hash values. forLoop(0, Chunks.size(), [&](size_t I) { HashFn(Hashes.data() + I * HashSize, Chunks[I]); }); // Write to the final output buffer. HashFn(HashBuf, Hashes); } template void BuildIdSection::writeBuildId(ArrayRef Buf) { switch (Config->BuildId) { case BuildIdKind::Fast: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { write64le(Dest, xxHash64(toStringRef(Arr))); }); break; case BuildIdKind::Md5: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, MD5::hash(Arr).data(), 16); }); break; case BuildIdKind::Sha1: computeHash(Buf, [](uint8_t *Dest, ArrayRef Arr) { memcpy(Dest, SHA1::hash(Arr).data(), 20); }); break; case BuildIdKind::Uuid: if (getRandomBytes(HashBuf, HashSize)) error("entropy source failure"); break; case BuildIdKind::Hexstring: memcpy(HashBuf, Config->BuildIdVector.data(), Config->BuildIdVector.size()); break; default: llvm_unreachable("unknown BuildIdKind"); } } template GotSection::GotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotEntrySize, ".got") {} template void GotSection::addEntry(SymbolBody &Sym) { Sym.GotIndex = NumEntries; ++NumEntries; } template bool GotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = NumEntries; // Global Dynamic TLS entries take two GOT slots. NumEntries += 2; return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool GotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = NumEntries * sizeof(uintX_t); NumEntries += 2; return true; } template typename GotSection::uintX_t GotSection::getGlobalDynAddr(const SymbolBody &B) const { return this->getVA() + B.GlobalDynIndex * sizeof(uintX_t); } template typename GotSection::uintX_t GotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * sizeof(uintX_t); } template void GotSection::finalize() { Size = NumEntries * sizeof(uintX_t); } template bool GotSection::empty() const { // If we have a relocation that is relative to GOT (such as GOTOFFREL), // we need to emit a GOT even if it's empty. return NumEntries == 0 && !HasGotOffRel; } template void GotSection::writeTo(uint8_t *Buf) { this->relocate(Buf, Buf + Size); } template MipsGotSection::MipsGotSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, Target->GotEntrySize, ".got") {} template void MipsGotSection::addEntry(SymbolBody &Sym, uintX_t Addend, RelExpr Expr) { // For "true" local symbols which can be referenced from the same module // only compiler creates two instructions for address loading: // // lw $8, 0($gp) # R_MIPS_GOT16 // addi $8, $8, 0 # R_MIPS_LO16 // // The first instruction loads high 16 bits of the symbol address while // the second adds an offset. That allows to reduce number of required // GOT entries because only one global offset table entry is necessary // for every 64 KBytes of local data. So for local symbols we need to // allocate number of GOT entries to hold all required "page" addresses. // // All global symbols (hidden and regular) considered by compiler uniformly. // It always generates a single `lw` instruction and R_MIPS_GOT16 relocation // to load address of the symbol. So for each such symbol we need to // allocate dedicated GOT entry to store its address. // // If a symbol is preemptible we need help of dynamic linker to get its // final address. The corresponding GOT entries are allocated in the // "global" part of GOT. Entries for non preemptible global symbol allocated // in the "local" part of GOT. // // See "Global Offset Table" in Chapter 5: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Expr == R_MIPS_GOT_LOCAL_PAGE) { // At this point we do not know final symbol value so to reduce number // of allocated GOT entries do the following trick. Save all output // sections referenced by GOT relocations. Then later in the `finalize` // method calculate number of "pages" required to cover all saved output // section and allocate appropriate number of GOT entries. PageIndexMap.insert({cast>(&Sym)->Section->OutSec, 0}); return; } if (Sym.isTls()) { // GOT entries created for MIPS TLS relocations behave like // almost GOT entries from other ABIs. They go to the end // of the global offset table. Sym.GotIndex = TlsEntries.size(); TlsEntries.push_back(&Sym); return; } auto AddEntry = [&](SymbolBody &S, uintX_t A, GotEntries &Items) { if (S.isInGot() && !A) return; size_t NewIndex = Items.size(); if (!EntryIndexMap.insert({{&S, A}, NewIndex}).second) return; Items.emplace_back(&S, A); if (!A) S.GotIndex = NewIndex; }; if (Sym.isPreemptible()) { // Ignore addends for preemptible symbols. They got single GOT entry anyway. AddEntry(Sym, 0, GlobalEntries); Sym.IsInGlobalMipsGot = true; } else if (Expr == R_MIPS_GOT_OFF32) { AddEntry(Sym, Addend, LocalEntries32); Sym.Is32BitMipsGot = true; } else { // Hold local GOT entries accessed via a 16-bit index separately. // That allows to write them in the beginning of the GOT and keep // their indexes as less as possible to escape relocation's overflow. AddEntry(Sym, Addend, LocalEntries); } } template bool MipsGotSection::addDynTlsEntry(SymbolBody &Sym) { if (Sym.GlobalDynIndex != -1U) return false; Sym.GlobalDynIndex = TlsEntries.size(); // Global Dynamic TLS entries take two GOT slots. TlsEntries.push_back(nullptr); TlsEntries.push_back(&Sym); return true; } // Reserves TLS entries for a TLS module ID and a TLS block offset. // In total it takes two GOT slots. template bool MipsGotSection::addTlsIndex() { if (TlsIndexOff != uint32_t(-1)) return false; TlsIndexOff = TlsEntries.size() * sizeof(uintX_t); TlsEntries.push_back(nullptr); TlsEntries.push_back(nullptr); return true; } static uint64_t getMipsPageAddr(uint64_t Addr) { return (Addr + 0x8000) & ~0xffff; } static uint64_t getMipsPageCount(uint64_t Size) { return (Size + 0xfffe) / 0xffff + 1; } template typename MipsGotSection::uintX_t MipsGotSection::getPageEntryOffset(const SymbolBody &B, uintX_t Addend) const { const OutputSectionBase *OutSec = cast>(&B)->Section->OutSec; uintX_t SecAddr = getMipsPageAddr(OutSec->Addr); uintX_t SymAddr = getMipsPageAddr(B.getVA(Addend)); uintX_t Index = PageIndexMap.lookup(OutSec) + (SymAddr - SecAddr) / 0xffff; assert(Index < PageEntriesNum); return (HeaderEntriesNum + Index) * sizeof(uintX_t); } template typename MipsGotSection::uintX_t MipsGotSection::getBodyEntryOffset(const SymbolBody &B, uintX_t Addend) const { // Calculate offset of the GOT entries block: TLS, global, local. uintX_t Index = HeaderEntriesNum + PageEntriesNum; if (B.isTls()) Index += LocalEntries.size() + LocalEntries32.size() + GlobalEntries.size(); else if (B.IsInGlobalMipsGot) Index += LocalEntries.size() + LocalEntries32.size(); else if (B.Is32BitMipsGot) Index += LocalEntries.size(); // Calculate offset of the GOT entry in the block. if (B.isInGot()) Index += B.GotIndex; else { auto It = EntryIndexMap.find({&B, Addend}); assert(It != EntryIndexMap.end()); Index += It->second; } return Index * sizeof(uintX_t); } template typename MipsGotSection::uintX_t MipsGotSection::getTlsOffset() const { return (getLocalEntriesNum() + GlobalEntries.size()) * sizeof(uintX_t); } template typename MipsGotSection::uintX_t MipsGotSection::getGlobalDynOffset(const SymbolBody &B) const { return B.GlobalDynIndex * sizeof(uintX_t); } template const SymbolBody *MipsGotSection::getFirstGlobalEntry() const { return GlobalEntries.empty() ? nullptr : GlobalEntries.front().first; } template unsigned MipsGotSection::getLocalEntriesNum() const { return HeaderEntriesNum + PageEntriesNum + LocalEntries.size() + LocalEntries32.size(); } template void MipsGotSection::finalize() { PageEntriesNum = 0; for (std::pair &P : PageIndexMap) { // For each output section referenced by GOT page relocations calculate // and save into PageIndexMap an upper bound of MIPS GOT entries required // to store page addresses of local symbols. We assume the worst case - // each 64kb page of the output section has at least one GOT relocation // against it. And take in account the case when the section intersects // page boundaries. P.second = PageEntriesNum; PageEntriesNum += getMipsPageCount(P.first->Size); } Size = (getLocalEntriesNum() + GlobalEntries.size() + TlsEntries.size()) * sizeof(uintX_t); } template bool MipsGotSection::empty() const { // We add the .got section to the result for dynamic MIPS target because // its address and properties are mentioned in the .dynamic section. return Config->Relocatable; } template typename MipsGotSection::uintX_t MipsGotSection::getGp() const { return ElfSym::MipsGp->template getVA(0); } template static void writeUint(uint8_t *Buf, typename ELFT::uint Val) { typedef typename ELFT::uint uintX_t; write(Buf, Val); } template void MipsGotSection::writeTo(uint8_t *Buf) { // Set the MSB of the second GOT slot. This is not required by any // MIPS ABI documentation, though. // // There is a comment in glibc saying that "The MSB of got[1] of a // gnu object is set to identify gnu objects," and in GNU gold it // says "the second entry will be used by some runtime loaders". // But how this field is being used is unclear. // // We are not really willing to mimic other linkers behaviors // without understanding why they do that, but because all files // generated by GNU tools have this special GOT value, and because // we've been doing this for years, it is probably a safe bet to // keep doing this for now. We really need to revisit this to see // if we had to do this. auto *P = reinterpret_cast(Buf); P[1] = uintX_t(1) << (ELFT::Is64Bits ? 63 : 31); Buf += HeaderEntriesNum * sizeof(uintX_t); // Write 'page address' entries to the local part of the GOT. for (std::pair &L : PageIndexMap) { size_t PageCount = getMipsPageCount(L.first->Size); uintX_t FirstPageAddr = getMipsPageAddr(L.first->Addr); for (size_t PI = 0; PI < PageCount; ++PI) { uint8_t *Entry = Buf + (L.second + PI) * sizeof(uintX_t); writeUint(Entry, FirstPageAddr + PI * 0x10000); } } Buf += PageEntriesNum * sizeof(uintX_t); auto AddEntry = [&](const GotEntry &SA) { uint8_t *Entry = Buf; Buf += sizeof(uintX_t); const SymbolBody *Body = SA.first; uintX_t VA = Body->template getVA(SA.second); writeUint(Entry, VA); }; std::for_each(std::begin(LocalEntries), std::end(LocalEntries), AddEntry); std::for_each(std::begin(LocalEntries32), std::end(LocalEntries32), AddEntry); std::for_each(std::begin(GlobalEntries), std::end(GlobalEntries), AddEntry); // Initialize TLS-related GOT entries. If the entry has a corresponding // dynamic relocations, leave it initialized by zero. Write down adjusted // TLS symbol's values otherwise. To calculate the adjustments use offsets // for thread-local storage. // https://www.linux-mips.org/wiki/NPTL if (TlsIndexOff != -1U && !Config->Pic) writeUint(Buf + TlsIndexOff, 1); for (const SymbolBody *B : TlsEntries) { if (!B || B->isPreemptible()) continue; uintX_t VA = B->getVA(); if (B->GotIndex != -1U) { uint8_t *Entry = Buf + B->GotIndex * sizeof(uintX_t); writeUint(Entry, VA - 0x7000); } if (B->GlobalDynIndex != -1U) { uint8_t *Entry = Buf + B->GlobalDynIndex * sizeof(uintX_t); writeUint(Entry, 1); Entry += sizeof(uintX_t); writeUint(Entry, VA - 0x8000); } } } template GotPltSection::GotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotPltEntrySize, ".got.plt") {} template void GotPltSection::addEntry(SymbolBody &Sym) { Sym.GotPltIndex = Target->GotPltHeaderEntriesNum + Entries.size(); Entries.push_back(&Sym); } template size_t GotPltSection::getSize() const { return (Target->GotPltHeaderEntriesNum + Entries.size()) * Target->GotPltEntrySize; } template void GotPltSection::writeTo(uint8_t *Buf) { Target->writeGotPltHeader(Buf); Buf += Target->GotPltHeaderEntriesNum * Target->GotPltEntrySize; for (const SymbolBody *B : Entries) { Target->writeGotPlt(Buf, *B); Buf += sizeof(uintX_t); } } // On ARM the IgotPltSection is part of the GotSection, on other Targets it is // part of the .got.plt template IgotPltSection::IgotPltSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, Target->GotPltEntrySize, Config->EMachine == EM_ARM ? ".got" : ".got.plt") { } template void IgotPltSection::addEntry(SymbolBody &Sym) { Sym.IsInIgot = true; Sym.GotPltIndex = Entries.size(); Entries.push_back(&Sym); } template size_t IgotPltSection::getSize() const { return Entries.size() * Target->GotPltEntrySize; } template void IgotPltSection::writeTo(uint8_t *Buf) { for (const SymbolBody *B : Entries) { Target->writeIgotPlt(Buf, *B); Buf += sizeof(uintX_t); } } template StringTableSection::StringTableSection(StringRef Name, bool Dynamic) : SyntheticSection(Dynamic ? (uintX_t)SHF_ALLOC : 0, SHT_STRTAB, 1, Name), Dynamic(Dynamic) {} // Adds a string to the string table. If HashIt is true we hash and check for // duplicates. It is optional because the name of global symbols are already // uniqued and hashing them again has a big cost for a small value: uniquing // them with some other string that happens to be the same. template unsigned StringTableSection::addString(StringRef S, bool HashIt) { if (HashIt) { auto R = StringMap.insert(std::make_pair(S, this->Size)); if (!R.second) return R.first->second; } unsigned Ret = this->Size; this->Size = this->Size + S.size() + 1; Strings.push_back(S); return Ret; } template void StringTableSection::writeTo(uint8_t *Buf) { // ELF string tables start with NUL byte, so advance the pointer by one. ++Buf; for (StringRef S : Strings) { memcpy(Buf, S.data(), S.size()); Buf += S.size() + 1; } } // Returns the number of version definition entries. Because the first entry // is for the version definition itself, it is the number of versioned symbols // plus one. Note that we don't support multiple versions yet. static unsigned getVerDefNum() { return Config->VersionDefinitions.size() + 1; } template DynamicSection::DynamicSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, sizeof(uintX_t), ".dynamic") { this->Entsize = ELFT::Is64Bits ? 16 : 8; // .dynamic section is not writable on MIPS. // See "Special Section" in Chapter 4 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Config->EMachine == EM_MIPS) this->Flags = SHF_ALLOC; addEntries(); } // There are some dynamic entries that don't depend on other sections. // Such entries can be set early. template void DynamicSection::addEntries() { // Add strings to .dynstr early so that .dynstr's size will be // fixed early. for (StringRef S : Config->AuxiliaryList) add({DT_AUXILIARY, In::DynStrTab->addString(S)}); if (!Config->RPath.empty()) add({Config->EnableNewDtags ? DT_RUNPATH : DT_RPATH, In::DynStrTab->addString(Config->RPath)}); for (SharedFile *F : Symtab::X->getSharedFiles()) if (F->isNeeded()) add({DT_NEEDED, In::DynStrTab->addString(F->getSoName())}); if (!Config->SoName.empty()) add({DT_SONAME, In::DynStrTab->addString(Config->SoName)}); // Set DT_FLAGS and DT_FLAGS_1. uint32_t DtFlags = 0; uint32_t DtFlags1 = 0; if (Config->Bsymbolic) DtFlags |= DF_SYMBOLIC; if (Config->ZNodelete) DtFlags1 |= DF_1_NODELETE; if (Config->ZNow) { DtFlags |= DF_BIND_NOW; DtFlags1 |= DF_1_NOW; } if (Config->ZOrigin) { DtFlags |= DF_ORIGIN; DtFlags1 |= DF_1_ORIGIN; } if (DtFlags) add({DT_FLAGS, DtFlags}); if (DtFlags1) add({DT_FLAGS_1, DtFlags1}); if (!Config->Shared && !Config->Relocatable) add({DT_DEBUG, (uint64_t)0}); } // Add remaining entries to complete .dynamic contents. template void DynamicSection::finalize() { if (this->Size) return; // Already finalized. this->Link = In::DynStrTab->OutSec->SectionIndex; if (In::RelaDyn->OutSec->Size > 0) { bool IsRela = Config->Rela; add({IsRela ? DT_RELA : DT_REL, In::RelaDyn}); add({IsRela ? DT_RELASZ : DT_RELSZ, In::RelaDyn->OutSec->Size}); add({IsRela ? DT_RELAENT : DT_RELENT, uintX_t(IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel))}); // MIPS dynamic loader does not support RELCOUNT tag. // The problem is in the tight relation between dynamic // relocations and GOT. So do not emit this tag on MIPS. if (Config->EMachine != EM_MIPS) { size_t NumRelativeRels = In::RelaDyn->getRelativeRelocCount(); if (Config->ZCombreloc && NumRelativeRels) add({IsRela ? DT_RELACOUNT : DT_RELCOUNT, NumRelativeRels}); } } if (In::RelaPlt->OutSec->Size > 0) { add({DT_JMPREL, In::RelaPlt}); add({DT_PLTRELSZ, In::RelaPlt->OutSec->Size}); add({Config->EMachine == EM_MIPS ? DT_MIPS_PLTGOT : DT_PLTGOT, In::GotPlt}); add({DT_PLTREL, uint64_t(Config->Rela ? DT_RELA : DT_REL)}); } add({DT_SYMTAB, In::DynSymTab}); add({DT_SYMENT, sizeof(Elf_Sym)}); add({DT_STRTAB, In::DynStrTab}); add({DT_STRSZ, In::DynStrTab->getSize()}); if (In::GnuHashTab) add({DT_GNU_HASH, In::GnuHashTab}); if (In::HashTab) add({DT_HASH, In::HashTab}); if (Out::PreinitArray) { add({DT_PREINIT_ARRAY, Out::PreinitArray}); add({DT_PREINIT_ARRAYSZ, Out::PreinitArray, Entry::SecSize}); } if (Out::InitArray) { add({DT_INIT_ARRAY, Out::InitArray}); add({DT_INIT_ARRAYSZ, Out::InitArray, Entry::SecSize}); } if (Out::FiniArray) { add({DT_FINI_ARRAY, Out::FiniArray}); add({DT_FINI_ARRAYSZ, Out::FiniArray, Entry::SecSize}); } if (SymbolBody *B = Symtab::X->find(Config->Init)) add({DT_INIT, B}); if (SymbolBody *B = Symtab::X->find(Config->Fini)) add({DT_FINI, B}); bool HasVerNeed = In::VerNeed->getNeedNum() != 0; if (HasVerNeed || In::VerDef) add({DT_VERSYM, In::VerSym}); if (In::VerDef) { add({DT_VERDEF, In::VerDef}); add({DT_VERDEFNUM, getVerDefNum()}); } if (HasVerNeed) { add({DT_VERNEED, In::VerNeed}); add({DT_VERNEEDNUM, In::VerNeed->getNeedNum()}); } if (Config->EMachine == EM_MIPS) { add({DT_MIPS_RLD_VERSION, 1}); add({DT_MIPS_FLAGS, RHF_NOTPOT}); add({DT_MIPS_BASE_ADDRESS, Config->ImageBase}); add({DT_MIPS_SYMTABNO, In::DynSymTab->getNumSymbols()}); add({DT_MIPS_LOCAL_GOTNO, In::MipsGot->getLocalEntriesNum()}); if (const SymbolBody *B = In::MipsGot->getFirstGlobalEntry()) add({DT_MIPS_GOTSYM, B->DynsymIndex}); else add({DT_MIPS_GOTSYM, In::DynSymTab->getNumSymbols()}); add({DT_PLTGOT, In::MipsGot}); if (In::MipsRldMap) add({DT_MIPS_RLD_MAP, In::MipsRldMap}); } this->OutSec->Entsize = this->Entsize; this->OutSec->Link = this->Link; // +1 for DT_NULL this->Size = (Entries.size() + 1) * this->Entsize; } template void DynamicSection::writeTo(uint8_t *Buf) { auto *P = reinterpret_cast(Buf); for (const Entry &E : Entries) { P->d_tag = E.Tag; switch (E.Kind) { case Entry::SecAddr: P->d_un.d_ptr = E.OutSec->Addr; break; case Entry::InSecAddr: P->d_un.d_ptr = E.InSec->OutSec->Addr + E.InSec->OutSecOff; break; case Entry::SecSize: P->d_un.d_val = E.OutSec->Size; break; case Entry::SymAddr: P->d_un.d_ptr = E.Sym->template getVA(); break; case Entry::PlainInt: P->d_un.d_val = E.Val; break; } ++P; } } template typename ELFT::uint DynamicReloc::getOffset() const { if (OutputSec) return OutputSec->Addr + OffsetInSec; return InputSec->OutSec->Addr + InputSec->getOffset(OffsetInSec); } template typename ELFT::uint DynamicReloc::getAddend() const { if (UseSymVA) return Sym->getVA(Addend); return Addend; } template uint32_t DynamicReloc::getSymIndex() const { if (Sym && !UseSymVA) return Sym->DynsymIndex; return 0; } template RelocationSection::RelocationSection(StringRef Name, bool Sort) : SyntheticSection(SHF_ALLOC, Config->Rela ? SHT_RELA : SHT_REL, sizeof(uintX_t), Name), Sort(Sort) { this->Entsize = Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); } template void RelocationSection::addReloc(const DynamicReloc &Reloc) { if (Reloc.Type == Target->RelativeRel) ++NumRelativeRelocs; Relocs.push_back(Reloc); } template static bool compRelocations(const RelTy &A, const RelTy &B) { bool AIsRel = A.getType(Config->Mips64EL) == Target->RelativeRel; bool BIsRel = B.getType(Config->Mips64EL) == Target->RelativeRel; if (AIsRel != BIsRel) return AIsRel; return A.getSymbol(Config->Mips64EL) < B.getSymbol(Config->Mips64EL); } template void RelocationSection::writeTo(uint8_t *Buf) { uint8_t *BufBegin = Buf; for (const DynamicReloc &Rel : Relocs) { auto *P = reinterpret_cast(Buf); Buf += Config->Rela ? sizeof(Elf_Rela) : sizeof(Elf_Rel); if (Config->Rela) P->r_addend = Rel.getAddend(); P->r_offset = Rel.getOffset(); if (Config->EMachine == EM_MIPS && Rel.getInputSec() == In::MipsGot) // Dynamic relocation against MIPS GOT section make deal TLS entries // allocated in the end of the GOT. We need to adjust the offset to take // in account 'local' and 'global' GOT entries. P->r_offset += In::MipsGot->getTlsOffset(); P->setSymbolAndType(Rel.getSymIndex(), Rel.Type, Config->Mips64EL); } if (Sort) { if (Config->Rela) std::stable_sort((Elf_Rela *)BufBegin, (Elf_Rela *)BufBegin + Relocs.size(), compRelocations); else std::stable_sort((Elf_Rel *)BufBegin, (Elf_Rel *)BufBegin + Relocs.size(), compRelocations); } } template unsigned RelocationSection::getRelocOffset() { return this->Entsize * Relocs.size(); } template void RelocationSection::finalize() { this->Link = In::DynSymTab ? In::DynSymTab->OutSec->SectionIndex : In::SymTab->OutSec->SectionIndex; // Set required output section properties. this->OutSec->Link = this->Link; this->OutSec->Entsize = this->Entsize; } template SymbolTableSection::SymbolTableSection( StringTableSection &StrTabSec) : SyntheticSection(StrTabSec.isDynamic() ? (uintX_t)SHF_ALLOC : 0, StrTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB, sizeof(uintX_t), StrTabSec.isDynamic() ? ".dynsym" : ".symtab"), StrTabSec(StrTabSec) { this->Entsize = sizeof(Elf_Sym); } // Orders symbols according to their positions in the GOT, // in compliance with MIPS ABI rules. // See "Global Offset Table" in Chapter 5 in the following document // for detailed description: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf static bool sortMipsSymbols(const SymbolBody *L, const SymbolBody *R) { // Sort entries related to non-local preemptible symbols by GOT indexes. // All other entries go to the first part of GOT in arbitrary order. bool LIsInLocalGot = !L->IsInGlobalMipsGot; bool RIsInLocalGot = !R->IsInGlobalMipsGot; if (LIsInLocalGot || RIsInLocalGot) return !RIsInLocalGot; return L->GotIndex < R->GotIndex; } static uint8_t getSymbolBinding(SymbolBody *Body) { Symbol *S = Body->symbol(); if (Config->Relocatable) return S->Binding; uint8_t Visibility = S->Visibility; if (Visibility != STV_DEFAULT && Visibility != STV_PROTECTED) return STB_LOCAL; if (Config->NoGnuUnique && S->Binding == STB_GNU_UNIQUE) return STB_GLOBAL; return S->Binding; } template void SymbolTableSection::finalize() { this->OutSec->Link = this->Link = StrTabSec.OutSec->SectionIndex; this->OutSec->Info = this->Info = NumLocals + 1; this->OutSec->Entsize = this->Entsize; if (Config->Relocatable) { size_t I = NumLocals; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; return; } if (!StrTabSec.isDynamic()) { std::stable_sort(Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &L, const SymbolTableEntry &R) { return getSymbolBinding(L.Symbol) == STB_LOCAL && getSymbolBinding(R.Symbol) != STB_LOCAL; }); return; } if (In::GnuHashTab) // NB: It also sorts Symbols to meet the GNU hash table requirements. In::GnuHashTab->addSymbols(Symbols); else if (Config->EMachine == EM_MIPS) std::stable_sort(Symbols.begin(), Symbols.end(), [](const SymbolTableEntry &L, const SymbolTableEntry &R) { return sortMipsSymbols(L.Symbol, R.Symbol); }); size_t I = 0; for (const SymbolTableEntry &S : Symbols) S.Symbol->DynsymIndex = ++I; } template void SymbolTableSection::addSymbol(SymbolBody *B) { Symbols.push_back({B, StrTabSec.addString(B->getName(), false)}); } template void SymbolTableSection::writeTo(uint8_t *Buf) { Buf += sizeof(Elf_Sym); // All symbols with STB_LOCAL binding precede the weak and global symbols. // .dynsym only contains global symbols. if (Config->Discard != DiscardPolicy::All && !StrTabSec.isDynamic()) writeLocalSymbols(Buf); writeGlobalSymbols(Buf); } template void SymbolTableSection::writeLocalSymbols(uint8_t *&Buf) { // Iterate over all input object files to copy their local symbols // to the output symbol table pointed by Buf. for (ObjectFile *File : Symtab::X->getObjectFiles()) { for (const std::pair *, size_t> &P : File->KeptLocalSyms) { const DefinedRegular &Body = *P.first; InputSectionBase *Section = Body.Section; auto *ESym = reinterpret_cast(Buf); if (!Section) { ESym->st_shndx = SHN_ABS; ESym->st_value = Body.Value; } else { const OutputSectionBase *OutSec = Section->OutSec; ESym->st_shndx = OutSec->SectionIndex; ESym->st_value = OutSec->Addr + Section->getOffset(Body); } ESym->st_name = P.second; ESym->st_size = Body.template getSize(); ESym->setBindingAndType(STB_LOCAL, Body.Type); Buf += sizeof(*ESym); } } } template void SymbolTableSection::writeGlobalSymbols(uint8_t *Buf) { // Write the internal symbol table contents to the output symbol table // pointed by Buf. auto *ESym = reinterpret_cast(Buf); for (const SymbolTableEntry &S : Symbols) { SymbolBody *Body = S.Symbol; size_t StrOff = S.StrTabOffset; uint8_t Type = Body->Type; uintX_t Size = Body->getSize(); ESym->setBindingAndType(getSymbolBinding(Body), Type); ESym->st_size = Size; ESym->st_name = StrOff; ESym->setVisibility(Body->symbol()->Visibility); ESym->st_value = Body->getVA(); if (const OutputSectionBase *OutSec = getOutputSection(Body)) ESym->st_shndx = OutSec->SectionIndex; else if (isa>(Body)) ESym->st_shndx = SHN_ABS; if (Config->EMachine == EM_MIPS) { // On MIPS we need to mark symbol which has a PLT entry and requires // pointer equality by STO_MIPS_PLT flag. That is necessary to help // dynamic linker distinguish such symbols and MIPS lazy-binding stubs. // https://sourceware.org/ml/binutils/2008-07/txt00000.txt if (Body->isInPlt() && Body->NeedsCopyOrPltAddr) ESym->st_other |= STO_MIPS_PLT; if (Config->Relocatable) { auto *D = dyn_cast>(Body); if (D && D->isMipsPIC()) ESym->st_other |= STO_MIPS_PIC; } } ++ESym; } } template const OutputSectionBase * SymbolTableSection::getOutputSection(SymbolBody *Sym) { switch (Sym->kind()) { case SymbolBody::DefinedSyntheticKind: return cast(Sym)->Section; case SymbolBody::DefinedRegularKind: { auto &D = cast>(*Sym); if (D.Section) return D.Section->OutSec; break; } case SymbolBody::DefinedCommonKind: return In::Common->OutSec; case SymbolBody::SharedKind: if (cast>(Sym)->needsCopy()) return Out::Bss; break; case SymbolBody::UndefinedKind: case SymbolBody::LazyArchiveKind: case SymbolBody::LazyObjectKind: break; } return nullptr; } template GnuHashTableSection::GnuHashTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, sizeof(uintX_t), ".gnu.hash") { this->Entsize = ELFT::Is64Bits ? 0 : 4; } template unsigned GnuHashTableSection::calcNBuckets(unsigned NumHashed) { if (!NumHashed) return 0; // These values are prime numbers which are not greater than 2^(N-1) + 1. // In result, for any particular NumHashed we return a prime number // which is not greater than NumHashed. static const unsigned Primes[] = { 1, 1, 3, 3, 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, 65521, 131071}; return Primes[std::min(Log2_32_Ceil(NumHashed), array_lengthof(Primes) - 1)]; } // Bloom filter estimation: at least 8 bits for each hashed symbol. // GNU Hash table requirement: it should be a power of 2, // the minimum value is 1, even for an empty table. // Expected results for a 32-bit target: // calcMaskWords(0..4) = 1 // calcMaskWords(5..8) = 2 // calcMaskWords(9..16) = 4 // For a 64-bit target: // calcMaskWords(0..8) = 1 // calcMaskWords(9..16) = 2 // calcMaskWords(17..32) = 4 template unsigned GnuHashTableSection::calcMaskWords(unsigned NumHashed) { if (!NumHashed) return 1; return NextPowerOf2((NumHashed - 1) / sizeof(Elf_Off)); } template void GnuHashTableSection::finalize() { unsigned NumHashed = Symbols.size(); NBuckets = calcNBuckets(NumHashed); MaskWords = calcMaskWords(NumHashed); // Second hash shift estimation: just predefined values. Shift2 = ELFT::Is64Bits ? 6 : 5; this->OutSec->Entsize = this->Entsize; this->OutSec->Link = this->Link = In::DynSymTab->OutSec->SectionIndex; this->Size = sizeof(Elf_Word) * 4 // Header + sizeof(Elf_Off) * MaskWords // Bloom Filter + sizeof(Elf_Word) * NBuckets // Hash Buckets + sizeof(Elf_Word) * NumHashed; // Hash Values } template void GnuHashTableSection::writeTo(uint8_t *Buf) { writeHeader(Buf); if (Symbols.empty()) return; writeBloomFilter(Buf); writeHashTable(Buf); } template void GnuHashTableSection::writeHeader(uint8_t *&Buf) { auto *P = reinterpret_cast(Buf); *P++ = NBuckets; *P++ = In::DynSymTab->getNumSymbols() - Symbols.size(); *P++ = MaskWords; *P++ = Shift2; Buf = reinterpret_cast(P); } template void GnuHashTableSection::writeBloomFilter(uint8_t *&Buf) { unsigned C = sizeof(Elf_Off) * 8; auto *Masks = reinterpret_cast(Buf); for (const SymbolData &Sym : Symbols) { size_t Pos = (Sym.Hash / C) & (MaskWords - 1); uintX_t V = (uintX_t(1) << (Sym.Hash % C)) | (uintX_t(1) << ((Sym.Hash >> Shift2) % C)); Masks[Pos] |= V; } Buf += sizeof(Elf_Off) * MaskWords; } template void GnuHashTableSection::writeHashTable(uint8_t *Buf) { Elf_Word *Buckets = reinterpret_cast(Buf); Elf_Word *Values = Buckets + NBuckets; int PrevBucket = -1; int I = 0; for (const SymbolData &Sym : Symbols) { int Bucket = Sym.Hash % NBuckets; assert(PrevBucket <= Bucket); if (Bucket != PrevBucket) { Buckets[Bucket] = Sym.Body->DynsymIndex; PrevBucket = Bucket; if (I > 0) Values[I - 1] |= 1; } Values[I] = Sym.Hash & ~1; ++I; } if (I > 0) Values[I - 1] |= 1; } static uint32_t hashGnu(StringRef Name) { uint32_t H = 5381; for (uint8_t C : Name) H = (H << 5) + H + C; return H; } // Add symbols to this symbol hash table. Note that this function // destructively sort a given vector -- which is needed because // GNU-style hash table places some sorting requirements. template void GnuHashTableSection::addSymbols(std::vector &V) { // Ideally this will just be 'auto' but GCC 6.1 is not able // to deduce it correctly. std::vector::iterator Mid = std::stable_partition(V.begin(), V.end(), [](const SymbolTableEntry &S) { return S.Symbol->isUndefined(); }); if (Mid == V.end()) return; for (auto I = Mid, E = V.end(); I != E; ++I) { SymbolBody *B = I->Symbol; size_t StrOff = I->StrTabOffset; Symbols.push_back({B, StrOff, hashGnu(B->getName())}); } unsigned NBuckets = calcNBuckets(Symbols.size()); std::stable_sort(Symbols.begin(), Symbols.end(), [&](const SymbolData &L, const SymbolData &R) { return L.Hash % NBuckets < R.Hash % NBuckets; }); V.erase(Mid, V.end()); for (const SymbolData &Sym : Symbols) V.push_back({Sym.Body, Sym.STName}); } template HashTableSection::HashTableSection() : SyntheticSection(SHF_ALLOC, SHT_HASH, sizeof(Elf_Word), ".hash") { this->Entsize = sizeof(Elf_Word); } template void HashTableSection::finalize() { this->OutSec->Link = this->Link = In::DynSymTab->OutSec->SectionIndex; this->OutSec->Entsize = this->Entsize; unsigned NumEntries = 2; // nbucket and nchain. NumEntries += In::DynSymTab->getNumSymbols(); // The chain entries. // Create as many buckets as there are symbols. // FIXME: This is simplistic. We can try to optimize it, but implementing // support for SHT_GNU_HASH is probably even more profitable. NumEntries += In::DynSymTab->getNumSymbols(); this->Size = NumEntries * sizeof(Elf_Word); } template void HashTableSection::writeTo(uint8_t *Buf) { unsigned NumSymbols = In::DynSymTab->getNumSymbols(); auto *P = reinterpret_cast(Buf); *P++ = NumSymbols; // nbucket *P++ = NumSymbols; // nchain Elf_Word *Buckets = P; Elf_Word *Chains = P + NumSymbols; for (const SymbolTableEntry &S : In::DynSymTab->getSymbols()) { SymbolBody *Body = S.Symbol; StringRef Name = Body->getName(); unsigned I = Body->DynsymIndex; uint32_t Hash = hashSysV(Name) % NumSymbols; Chains[I] = Buckets[Hash]; Buckets[Hash] = I; } } template PltSection::PltSection() : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} template void PltSection::writeTo(uint8_t *Buf) { // At beginning of PLT, we have code to call the dynamic linker // to resolve dynsyms at runtime. Write such code. Target->writePltHeader(Buf); size_t Off = Target->PltHeaderSize; for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second; uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void PltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); unsigned RelOff = In::RelaPlt->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } template size_t PltSection::getSize() const { return Target->PltHeaderSize + Entries.size() * Target->PltEntrySize; } template IpltSection::IpltSection() : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {} template void IpltSection::writeTo(uint8_t *Buf) { // The IRelative relocations do not support lazy binding so no header is // needed size_t Off = 0; for (auto &I : Entries) { const SymbolBody *B = I.first; unsigned RelOff = I.second + In::Plt->getSize(); uint64_t Got = B->getGotPltVA(); uint64_t Plt = this->getVA() + Off; Target->writePlt(Buf + Off, Got, Plt, B->PltIndex, RelOff); Off += Target->PltEntrySize; } } template void IpltSection::addEntry(SymbolBody &Sym) { Sym.PltIndex = Entries.size(); Sym.IsInIplt = true; unsigned RelOff = In::RelaIplt->getRelocOffset(); Entries.push_back(std::make_pair(&Sym, RelOff)); } template size_t IpltSection::getSize() const { return Entries.size() * Target->PltEntrySize; } template GdbIndexSection::GdbIndexSection() : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index"), StringPool(llvm::StringTableBuilder::ELF) {} template void GdbIndexSection::parseDebugSections() { for (InputSectionBase *S : Symtab::X->Sections) if (InputSection *IS = dyn_cast>(S)) if (IS->OutSec && IS->Name == ".debug_info") readDwarf(IS); } // Iterative hash function for symbol's name is described in .gdb_index format // specification. Note that we use one for version 5 to 7 here, it is different // for version 4. static uint32_t hash(StringRef Str) { uint32_t R = 0; for (uint8_t C : Str) R = R * 67 + tolower(C) - 113; return R; } template void GdbIndexSection::readDwarf(InputSection *I) { GdbIndexBuilder Builder(I); if (ErrorCount) return; size_t CuId = CompilationUnits.size(); std::vector> CuList = Builder.readCUList(); CompilationUnits.insert(CompilationUnits.end(), CuList.begin(), CuList.end()); std::vector> AddrArea = Builder.readAddressArea(CuId); AddressArea.insert(AddressArea.end(), AddrArea.begin(), AddrArea.end()); std::vector> NamesAndTypes = Builder.readPubNamesAndTypes(); for (std::pair &Pair : NamesAndTypes) { uint32_t Hash = hash(Pair.first); size_t Offset = StringPool.add(Pair.first); bool IsNew; GdbSymbol *Sym; std::tie(IsNew, Sym) = SymbolTable.add(Hash, Offset); if (IsNew) { Sym->CuVectorIndex = CuVectors.size(); CuVectors.push_back({{CuId, Pair.second}}); continue; } std::vector> &CuVec = CuVectors[Sym->CuVectorIndex]; CuVec.push_back({CuId, Pair.second}); } } template void GdbIndexSection::finalize() { if (Finalized) return; Finalized = true; parseDebugSections(); // GdbIndex header consist from version fields // and 5 more fields with different kinds of offsets. CuTypesOffset = CuListOffset + CompilationUnits.size() * CompilationUnitSize; SymTabOffset = CuTypesOffset + AddressArea.size() * AddressEntrySize; ConstantPoolOffset = SymTabOffset + SymbolTable.getCapacity() * SymTabEntrySize; for (std::vector> &CuVec : CuVectors) { CuVectorsOffset.push_back(CuVectorsSize); CuVectorsSize += OffsetTypeSize * (CuVec.size() + 1); } StringPoolOffset = ConstantPoolOffset + CuVectorsSize; StringPool.finalizeInOrder(); } template size_t GdbIndexSection::getSize() const { const_cast *>(this)->finalize(); return StringPoolOffset + StringPool.getSize(); } template void GdbIndexSection::writeTo(uint8_t *Buf) { write32le(Buf, 7); // Write version. write32le(Buf + 4, CuListOffset); // CU list offset. write32le(Buf + 8, CuTypesOffset); // Types CU list offset. write32le(Buf + 12, CuTypesOffset); // Address area offset. write32le(Buf + 16, SymTabOffset); // Symbol table offset. write32le(Buf + 20, ConstantPoolOffset); // Constant pool offset. Buf += 24; // Write the CU list. for (std::pair CU : CompilationUnits) { write64le(Buf, CU.first); write64le(Buf + 8, CU.second); Buf += 16; } // Write the address area. for (AddressEntry &E : AddressArea) { uintX_t BaseAddr = E.Section->OutSec->Addr + E.Section->getOffset(0); write64le(Buf, BaseAddr + E.LowAddress); write64le(Buf + 8, BaseAddr + E.HighAddress); write32le(Buf + 16, E.CuIndex); Buf += 20; } // Write the symbol table. for (size_t I = 0; I < SymbolTable.getCapacity(); ++I) { GdbSymbol *Sym = SymbolTable.getSymbol(I); if (Sym) { size_t NameOffset = Sym->NameOffset + StringPoolOffset - ConstantPoolOffset; size_t CuVectorOffset = CuVectorsOffset[Sym->CuVectorIndex]; write32le(Buf, NameOffset); write32le(Buf + 4, CuVectorOffset); } Buf += 8; } // Write the CU vectors into the constant pool. for (std::vector> &CuVec : CuVectors) { write32le(Buf, CuVec.size()); Buf += 4; for (std::pair &P : CuVec) { uint32_t Index = P.first; uint8_t Flags = P.second; Index |= Flags << 24; write32le(Buf, Index); Buf += 4; } } StringPool.write(Buf); } template bool GdbIndexSection::empty() const { return !Out::DebugInfo; } template EhFrameHeader::EhFrameHeader() : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame_hdr") {} // .eh_frame_hdr contains a binary search table of pointers to FDEs. // Each entry of the search table consists of two values, // the starting PC from where FDEs covers, and the FDE's address. // It is sorted by PC. template void EhFrameHeader::writeTo(uint8_t *Buf) { const endianness E = ELFT::TargetEndianness; // Sort the FDE list by their PC and uniqueify. Usually there is only // one FDE for a PC (i.e. function), but if ICF merges two functions // into one, there can be more than one FDEs pointing to the address. auto Less = [](const FdeData &A, const FdeData &B) { return A.Pc < B.Pc; }; std::stable_sort(Fdes.begin(), Fdes.end(), Less); auto Eq = [](const FdeData &A, const FdeData &B) { return A.Pc == B.Pc; }; Fdes.erase(std::unique(Fdes.begin(), Fdes.end(), Eq), Fdes.end()); Buf[0] = 1; Buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4; Buf[2] = DW_EH_PE_udata4; Buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; write32(Buf + 4, Out::EhFrame->Addr - this->getVA() - 4); write32(Buf + 8, Fdes.size()); Buf += 12; uintX_t VA = this->getVA(); for (FdeData &Fde : Fdes) { write32(Buf, Fde.Pc - VA); write32(Buf + 4, Fde.FdeVA - VA); Buf += 8; } } template size_t EhFrameHeader::getSize() const { // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs. return 12 + Out::EhFrame->NumFdes * 8; } template void EhFrameHeader::addFde(uint32_t Pc, uint32_t FdeVA) { Fdes.push_back({Pc, FdeVA}); } template bool EhFrameHeader::empty() const { return Out::EhFrame->empty(); } template VersionDefinitionSection::VersionDefinitionSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t), ".gnu.version_d") {} static StringRef getFileDefName() { if (!Config->SoName.empty()) return Config->SoName; return Config->OutputFile; } template void VersionDefinitionSection::finalize() { FileDefNameOff = In::DynStrTab->addString(getFileDefName()); for (VersionDefinition &V : Config->VersionDefinitions) V.NameOff = In::DynStrTab->addString(V.Name); this->OutSec->Link = this->Link = In::DynStrTab->OutSec->SectionIndex; // sh_info should be set to the number of definitions. This fact is missed in // documentation, but confirmed by binutils community: // https://sourceware.org/ml/binutils/2014-11/msg00355.html this->OutSec->Info = this->Info = getVerDefNum(); } template void VersionDefinitionSection::writeOne(uint8_t *Buf, uint32_t Index, StringRef Name, size_t NameOff) { auto *Verdef = reinterpret_cast(Buf); Verdef->vd_version = 1; Verdef->vd_cnt = 1; Verdef->vd_aux = sizeof(Elf_Verdef); Verdef->vd_next = sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); Verdef->vd_flags = (Index == 1 ? VER_FLG_BASE : 0); Verdef->vd_ndx = Index; Verdef->vd_hash = hashSysV(Name); auto *Verdaux = reinterpret_cast(Buf + sizeof(Elf_Verdef)); Verdaux->vda_name = NameOff; Verdaux->vda_next = 0; } template void VersionDefinitionSection::writeTo(uint8_t *Buf) { writeOne(Buf, 1, getFileDefName(), FileDefNameOff); for (VersionDefinition &V : Config->VersionDefinitions) { Buf += sizeof(Elf_Verdef) + sizeof(Elf_Verdaux); writeOne(Buf, V.Id, V.Name, V.NameOff); } // Need to terminate the last version definition. Elf_Verdef *Verdef = reinterpret_cast(Buf); Verdef->vd_next = 0; } template size_t VersionDefinitionSection::getSize() const { return (sizeof(Elf_Verdef) + sizeof(Elf_Verdaux)) * getVerDefNum(); } template VersionTableSection::VersionTableSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t), ".gnu.version") {} template void VersionTableSection::finalize() { this->OutSec->Entsize = this->Entsize = sizeof(Elf_Versym); // At the moment of june 2016 GNU docs does not mention that sh_link field // should be set, but Sun docs do. Also readelf relies on this field. this->OutSec->Link = this->Link = In::DynSymTab->OutSec->SectionIndex; } template size_t VersionTableSection::getSize() const { return sizeof(Elf_Versym) * (In::DynSymTab->getSymbols().size() + 1); } template void VersionTableSection::writeTo(uint8_t *Buf) { auto *OutVersym = reinterpret_cast(Buf) + 1; for (const SymbolTableEntry &S : In::DynSymTab->getSymbols()) { OutVersym->vs_index = S.Symbol->symbol()->VersionId; ++OutVersym; } } template bool VersionTableSection::empty() const { return !In::VerDef && In::VerNeed->empty(); } template VersionNeedSection::VersionNeedSection() : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t), ".gnu.version_r") { // Identifiers in verneed section start at 2 because 0 and 1 are reserved // for VER_NDX_LOCAL and VER_NDX_GLOBAL. // First identifiers are reserved by verdef section if it exist. NextIndex = getVerDefNum() + 1; } template void VersionNeedSection::addSymbol(SharedSymbol *SS) { if (!SS->Verdef) { SS->symbol()->VersionId = VER_NDX_GLOBAL; return; } SharedFile *F = SS->file(); // If we don't already know that we need an Elf_Verneed for this DSO, prepare // to create one by adding it to our needed list and creating a dynstr entry // for the soname. if (F->VerdefMap.empty()) Needed.push_back({F, In::DynStrTab->addString(F->getSoName())}); typename SharedFile::NeededVer &NV = F->VerdefMap[SS->Verdef]; // If we don't already know that we need an Elf_Vernaux for this Elf_Verdef, // prepare to create one by allocating a version identifier and creating a // dynstr entry for the version name. if (NV.Index == 0) { NV.StrTab = In::DynStrTab->addString( SS->file()->getStringTable().data() + SS->Verdef->getAux()->vda_name); NV.Index = NextIndex++; } SS->symbol()->VersionId = NV.Index; } template void VersionNeedSection::writeTo(uint8_t *Buf) { // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs. auto *Verneed = reinterpret_cast(Buf); auto *Vernaux = reinterpret_cast(Verneed + Needed.size()); for (std::pair *, size_t> &P : Needed) { // Create an Elf_Verneed for this DSO. Verneed->vn_version = 1; Verneed->vn_cnt = P.first->VerdefMap.size(); Verneed->vn_file = P.second; Verneed->vn_aux = reinterpret_cast(Vernaux) - reinterpret_cast(Verneed); Verneed->vn_next = sizeof(Elf_Verneed); ++Verneed; // Create the Elf_Vernauxs for this Elf_Verneed. The loop iterates over // VerdefMap, which will only contain references to needed version // definitions. Each Elf_Vernaux is based on the information contained in // the Elf_Verdef in the source DSO. This loop iterates over a std::map of // pointers, but is deterministic because the pointers refer to Elf_Verdef // data structures within a single input file. for (auto &NV : P.first->VerdefMap) { Vernaux->vna_hash = NV.first->vd_hash; Vernaux->vna_flags = 0; Vernaux->vna_other = NV.second.Index; Vernaux->vna_name = NV.second.StrTab; Vernaux->vna_next = sizeof(Elf_Vernaux); ++Vernaux; } Vernaux[-1].vna_next = 0; } Verneed[-1].vn_next = 0; } template void VersionNeedSection::finalize() { this->OutSec->Link = this->Link = In::DynStrTab->OutSec->SectionIndex; this->OutSec->Info = this->Info = Needed.size(); } template size_t VersionNeedSection::getSize() const { unsigned Size = Needed.size() * sizeof(Elf_Verneed); for (const std::pair *, size_t> &P : Needed) Size += P.first->VerdefMap.size() * sizeof(Elf_Vernaux); return Size; } template bool VersionNeedSection::empty() const { return getNeedNum() == 0; } template MipsRldMapSection::MipsRldMapSection() : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, sizeof(typename ELFT::uint), ".rld_map") {} template void MipsRldMapSection::writeTo(uint8_t *Buf) { // Apply filler from linker script. uint64_t Filler = Script::X->getFiller(this->Name); Filler = (Filler << 32) | Filler; memcpy(Buf, &Filler, getSize()); } template ARMExidxSentinelSection::ARMExidxSentinelSection() : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX, sizeof(typename ELFT::uint), ".ARM.exidx") {} // Write a terminating sentinel entry to the end of the .ARM.exidx table. // This section will have been sorted last in the .ARM.exidx table. // This table entry will have the form: // | PREL31 upper bound of code that has exception tables | EXIDX_CANTUNWIND | template void ARMExidxSentinelSection::writeTo(uint8_t *Buf) { // Get the InputSection before us, we are by definition last auto RI = cast>(this->OutSec)->Sections.rbegin(); InputSection *LE = *(++RI); InputSection *LC = cast>(LE->getLinkOrderDep()); uint64_t S = LC->OutSec->Addr + LC->getOffset(LC->getSize()); uint64_t P = this->getVA(); Target->relocateOne(Buf, R_ARM_PREL31, S - P); write32le(Buf + 4, 0x1); } template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createCommonSection(); template InputSection *elf::createInterpSection(); template InputSection *elf::createInterpSection(); template InputSection *elf::createInterpSection(); template InputSection *elf::createInterpSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template MergeInputSection *elf::createCommentSection(); template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsAbiFlagsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsOptionsSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::MipsReginfoSection; template class elf::BuildIdSection; template class elf::BuildIdSection; template class elf::BuildIdSection; template class elf::BuildIdSection; template class elf::GotSection; template class elf::GotSection; template class elf::GotSection; template class elf::GotSection; template class elf::MipsGotSection; template class elf::MipsGotSection; template class elf::MipsGotSection; template class elf::MipsGotSection; template class elf::GotPltSection; template class elf::GotPltSection; template class elf::GotPltSection; template class elf::GotPltSection; template class elf::IgotPltSection; template class elf::IgotPltSection; template class elf::IgotPltSection; template class elf::IgotPltSection; template class elf::StringTableSection; template class elf::StringTableSection; template class elf::StringTableSection; template class elf::StringTableSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::DynamicSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::RelocationSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::SymbolTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::GnuHashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::HashTableSection; template class elf::PltSection; template class elf::PltSection; template class elf::PltSection; template class elf::PltSection; template class elf::IpltSection; template class elf::IpltSection; template class elf::IpltSection; template class elf::IpltSection; template class elf::GdbIndexSection; template class elf::GdbIndexSection; template class elf::GdbIndexSection; template class elf::GdbIndexSection; template class elf::EhFrameHeader; template class elf::EhFrameHeader; template class elf::EhFrameHeader; template class elf::EhFrameHeader; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionTableSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionNeedSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::VersionDefinitionSection; template class elf::MipsRldMapSection; template class elf::MipsRldMapSection; template class elf::MipsRldMapSection; template class elf::MipsRldMapSection; template class elf::ARMExidxSentinelSection; template class elf::ARMExidxSentinelSection; template class elf::ARMExidxSentinelSection; template class elf::ARMExidxSentinelSection;