//===- Target.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Machine-specific things, such as applying relocations, creation of // GOT or PLT entries, etc., are handled in this file. // // Refer the ELF spec for the single letter variables, S, A or P, used // in this file. // // Some functions defined in this file has "relaxTls" as part of their names. // They do peephole optimization for TLS variables by rewriting instructions. // They are not part of the ABI but optional optimization, so you can skip // them if you are not interested in how TLS variables are optimized. // See the following paper for the details. // // Ulrich Drepper, ELF Handling For Thread-Local Storage // http://www.akkadia.org/drepper/tls.pdf // //===----------------------------------------------------------------------===// #include "Target.h" #include "Error.h" #include "InputFiles.h" #include "Memory.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Thunks.h" #include "Writer.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Object/ELF.h" #include "llvm/Support/ELF.h" #include "llvm/Support/Endian.h" using namespace llvm; using namespace llvm::object; using namespace llvm::support::endian; using namespace llvm::ELF; std::string lld::toString(uint32_t Type) { StringRef S = getELFRelocationTypeName(elf::Config->EMachine, Type); if (S == "Unknown") return ("Unknown (" + Twine(Type) + ")").str(); return S; } namespace lld { namespace elf { TargetInfo *Target; static void or32le(uint8_t *P, int32_t V) { write32le(P, read32le(P) | V); } static void or32be(uint8_t *P, int32_t V) { write32be(P, read32be(P) | V); } template static std::string getErrorLoc(const uint8_t *Loc) { for (InputSectionBase *D : InputSections) { auto *IS = dyn_cast_or_null(D); if (!IS || !IS->OutSec) continue; uint8_t *ISLoc = cast(IS->OutSec)->Loc + IS->OutSecOff; if (ISLoc <= Loc && Loc < ISLoc + IS->getSize()) return IS->template getLocation(Loc - ISLoc) + ": "; } return ""; } static std::string getErrorLocation(const uint8_t *Loc) { switch (Config->EKind) { case ELF32LEKind: return getErrorLoc(Loc); case ELF32BEKind: return getErrorLoc(Loc); case ELF64LEKind: return getErrorLoc(Loc); case ELF64BEKind: return getErrorLoc(Loc); default: llvm_unreachable("unknown ELF type"); } } template static void checkInt(uint8_t *Loc, int64_t V, uint32_t Type) { if (!isInt(V)) error(getErrorLocation(Loc) + "relocation " + toString(Type) + " out of range"); } template static void checkUInt(uint8_t *Loc, uint64_t V, uint32_t Type) { if (!isUInt(V)) error(getErrorLocation(Loc) + "relocation " + toString(Type) + " out of range"); } template static void checkIntUInt(uint8_t *Loc, uint64_t V, uint32_t Type) { if (!isInt(V) && !isUInt(V)) error(getErrorLocation(Loc) + "relocation " + toString(Type) + " out of range"); } template static void checkAlignment(uint8_t *Loc, uint64_t V, uint32_t Type) { if ((V & (N - 1)) != 0) error(getErrorLocation(Loc) + "improper alignment for relocation " + toString(Type)); } namespace { class X86TargetInfo final : public TargetInfo { public: X86TargetInfo(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; void writeGotPltHeader(uint8_t *Buf) const override; uint32_t getDynRel(uint32_t Type) const override; bool isTlsLocalDynamicRel(uint32_t Type) const override; bool isTlsInitialExecRel(uint32_t Type) const override; void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr Expr) const override; void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; }; template class X86_64TargetInfo final : public TargetInfo { public: X86_64TargetInfo(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; bool isPicRel(uint32_t Type) const override; bool isTlsLocalDynamicRel(uint32_t Type) const override; bool isTlsInitialExecRel(uint32_t Type) const override; void writeGotPltHeader(uint8_t *Buf) const override; void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr Expr) const override; void relaxGot(uint8_t *Loc, uint64_t Val) const override; void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; private: void relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, uint8_t ModRm) const; }; class PPCTargetInfo final : public TargetInfo { public: PPCTargetInfo(); void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; }; class PPC64TargetInfo final : public TargetInfo { public: PPC64TargetInfo(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; }; class AArch64TargetInfo final : public TargetInfo { public: AArch64TargetInfo(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; bool isPicRel(uint32_t Type) const override; bool isTlsInitialExecRel(uint32_t Type) const override; void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; bool usesOnlyLowPageBits(uint32_t Type) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr Expr) const override; void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; }; class AMDGPUTargetInfo final : public TargetInfo { public: AMDGPUTargetInfo(); void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; }; class ARMTargetInfo final : public TargetInfo { public: ARMTargetInfo(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; bool isPicRel(uint32_t Type) const override; uint32_t getDynRel(uint32_t Type) const override; int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; bool isTlsLocalDynamicRel(uint32_t Type) const override; bool isTlsInitialExecRel(uint32_t Type) const override; void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; void addPltSymbols(InputSectionBase *IS, uint64_t Off) const override; void addPltHeaderSymbols(InputSectionBase *ISD) const override; bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File, const SymbolBody &S) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; }; template class MipsTargetInfo final : public TargetInfo { public: MipsTargetInfo(); RelExpr getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const override; int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override; bool isPicRel(uint32_t Type) const override; uint32_t getDynRel(uint32_t Type) const override; bool isTlsLocalDynamicRel(uint32_t Type) const override; void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override; void writePltHeader(uint8_t *Buf) const override; void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const override; bool needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File, const SymbolBody &S) const override; void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override; bool usesOnlyLowPageBits(uint32_t Type) const override; }; } // anonymous namespace TargetInfo *createTarget() { switch (Config->EMachine) { case EM_386: case EM_IAMCU: return make(); case EM_AARCH64: return make(); case EM_AMDGPU: return make(); case EM_ARM: return make(); case EM_MIPS: switch (Config->EKind) { case ELF32LEKind: return make>(); case ELF32BEKind: return make>(); case ELF64LEKind: return make>(); case ELF64BEKind: return make>(); default: fatal("unsupported MIPS target"); } case EM_PPC: return make(); case EM_PPC64: return make(); case EM_X86_64: if (Config->EKind == ELF32LEKind) return make>(); return make>(); } fatal("unknown target machine"); } TargetInfo::~TargetInfo() {} int64_t TargetInfo::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const { return 0; } bool TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return false; } bool TargetInfo::needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File, const SymbolBody &S) const { return false; } bool TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return false; } bool TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return false; } void TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { writeGotPlt(Buf, S); } RelExpr TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr Expr) const { return Expr; } void TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { llvm_unreachable("Should not have claimed to be relaxable"); } void TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { llvm_unreachable("Should not have claimed to be relaxable"); } void TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { llvm_unreachable("Should not have claimed to be relaxable"); } void TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { llvm_unreachable("Should not have claimed to be relaxable"); } void TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { llvm_unreachable("Should not have claimed to be relaxable"); } X86TargetInfo::X86TargetInfo() { CopyRel = R_386_COPY; GotRel = R_386_GLOB_DAT; PltRel = R_386_JUMP_SLOT; IRelativeRel = R_386_IRELATIVE; RelativeRel = R_386_RELATIVE; TlsGotRel = R_386_TLS_TPOFF; TlsModuleIndexRel = R_386_TLS_DTPMOD32; TlsOffsetRel = R_386_TLS_DTPOFF32; GotEntrySize = 4; GotPltEntrySize = 4; PltEntrySize = 16; PltHeaderSize = 16; TlsGdRelaxSkip = 2; // 0xCC is the "int3" (call debug exception handler) instruction. TrapInstr = 0xcccccccc; } RelExpr X86TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { case R_386_8: case R_386_16: case R_386_32: case R_386_TLS_LDO_32: return R_ABS; case R_386_TLS_GD: return R_TLSGD; case R_386_TLS_LDM: return R_TLSLD; case R_386_PLT32: return R_PLT_PC; case R_386_PC8: case R_386_PC16: case R_386_PC32: return R_PC; case R_386_GOTPC: return R_GOTONLY_PC_FROM_END; case R_386_TLS_IE: return R_GOT; case R_386_GOT32: case R_386_GOT32X: // These relocations can be calculated in two different ways. // Usual calculation is G + A - GOT what means an offset in GOT table // (R_GOT_FROM_END). When instruction pointed by relocation has no base // register, then relocations can be used when PIC code is disabled. In that // case calculation is G + A, it resolves to an address of entry in GOT // (R_GOT) and not an offset. // // To check that instruction has no base register we scan ModR/M byte. // See "Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte" // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) if ((Loc[-1] & 0xc7) != 0x5) return R_GOT_FROM_END; if (Config->Pic) error(toString(S.File) + ": relocation " + toString(Type) + " against '" + S.getName() + "' without base register can not be used when PIC enabled"); return R_GOT; case R_386_TLS_GOTIE: return R_GOT_FROM_END; case R_386_GOTOFF: return R_GOTREL_FROM_END; case R_386_TLS_LE: return R_TLS; case R_386_TLS_LE_32: return R_NEG_TLS; case R_386_NONE: return R_NONE; default: error(toString(S.File) + ": unknown relocation type: " + toString(Type)); return R_HINT; } } RelExpr X86TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr Expr) const { switch (Expr) { default: return Expr; case R_RELAX_TLS_GD_TO_IE: return R_RELAX_TLS_GD_TO_IE_END; case R_RELAX_TLS_GD_TO_LE: return R_RELAX_TLS_GD_TO_LE_NEG; } } void X86TargetInfo::writeGotPltHeader(uint8_t *Buf) const { write32le(Buf, In::Dynamic->getVA()); } void X86TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { // Entries in .got.plt initially points back to the corresponding // PLT entries with a fixed offset to skip the first instruction. write32le(Buf, S.getPltVA() + 6); } void X86TargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { // An x86 entry is the address of the ifunc resolver function. write32le(Buf, S.getVA()); } uint32_t X86TargetInfo::getDynRel(uint32_t Type) const { if (Type == R_386_TLS_LE) return R_386_TLS_TPOFF; if (Type == R_386_TLS_LE_32) return R_386_TLS_TPOFF32; return Type; } bool X86TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return Type == R_386_TLS_LDO_32 || Type == R_386_TLS_LDM; } bool X86TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return Type == R_386_TLS_IE || Type == R_386_TLS_GOTIE; } void X86TargetInfo::writePltHeader(uint8_t *Buf) const { if (Config->Pic) { const uint8_t V[] = { 0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl GOTPLT+4(%ebx) 0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *GOTPLT+8(%ebx) 0x90, 0x90, 0x90, 0x90 // nop }; memcpy(Buf, V, sizeof(V)); uint32_t Ebx = In::Got->getVA() + In::Got->getSize(); uint32_t GotPlt = In::GotPlt->getVA() - Ebx; write32le(Buf + 2, GotPlt + 4); write32le(Buf + 8, GotPlt + 8); return; } const uint8_t PltData[] = { 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOTPLT+4) 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOTPLT+8) 0x90, 0x90, 0x90, 0x90 // nop }; memcpy(Buf, PltData, sizeof(PltData)); uint32_t GotPlt = In::GotPlt->getVA(); write32le(Buf + 2, GotPlt + 4); write32le(Buf + 8, GotPlt + 8); } void X86TargetInfo::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const uint8_t Inst[] = { 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx) 0x68, 0x00, 0x00, 0x00, 0x00, // pushl $reloc_offset 0xe9, 0x00, 0x00, 0x00, 0x00 // jmp .PLT0@PC }; memcpy(Buf, Inst, sizeof(Inst)); if (Config->Pic) { // jmp *foo@GOT(%ebx) uint32_t Ebx = In::Got->getVA() + In::Got->getSize(); Buf[1] = 0xa3; write32le(Buf + 2, GotPltEntryAddr - Ebx); } else { // jmp *foo_in_GOT Buf[1] = 0x25; write32le(Buf + 2, GotPltEntryAddr); } write32le(Buf + 7, RelOff); write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); } int64_t X86TargetInfo::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const { switch (Type) { default: return 0; case R_386_8: case R_386_PC8: return SignExtend64<8>(*Buf); case R_386_16: case R_386_PC16: return SignExtend64<16>(read16le(Buf)); case R_386_32: case R_386_GOT32: case R_386_GOT32X: case R_386_GOTOFF: case R_386_GOTPC: case R_386_PC32: case R_386_PLT32: case R_386_TLS_LE: return SignExtend64<32>(read32le(Buf)); } } void X86TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are // being used for some 16-bit programs such as boot loaders, so // we want to support them. switch (Type) { case R_386_8: checkUInt<8>(Loc, Val, Type); *Loc = Val; break; case R_386_PC8: checkInt<8>(Loc, Val, Type); *Loc = Val; break; case R_386_16: checkUInt<16>(Loc, Val, Type); write16le(Loc, Val); break; case R_386_PC16: checkInt<16>(Loc, Val, Type); write16le(Loc, Val); break; default: checkInt<32>(Loc, Val, Type); write32le(Loc, Val); } } void X86TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // Convert // leal x@tlsgd(, %ebx, 1), // call __tls_get_addr@plt // to // movl %gs:0,%eax // subl $x@ntpoff,%eax const uint8_t Inst[] = { 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 0x81, 0xe8, 0x00, 0x00, 0x00, 0x00 // subl 0(%ebx), %eax }; memcpy(Loc - 3, Inst, sizeof(Inst)); write32le(Loc + 5, Val); } void X86TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // Convert // leal x@tlsgd(, %ebx, 1), // call __tls_get_addr@plt // to // movl %gs:0, %eax // addl x@gotntpoff(%ebx), %eax const uint8_t Inst[] = { 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax 0x03, 0x83, 0x00, 0x00, 0x00, 0x00 // addl 0(%ebx), %eax }; memcpy(Loc - 3, Inst, sizeof(Inst)); write32le(Loc + 5, Val); } // In some conditions, relocations can be optimized to avoid using GOT. // This function does that for Initial Exec to Local Exec case. void X86TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // Ulrich's document section 6.2 says that @gotntpoff can // be used with MOVL or ADDL instructions. // @indntpoff is similar to @gotntpoff, but for use in // position dependent code. uint8_t Reg = (Loc[-1] >> 3) & 7; if (Type == R_386_TLS_IE) { if (Loc[-1] == 0xa1) { // "movl foo@indntpoff,%eax" -> "movl $foo,%eax" // This case is different from the generic case below because // this is a 5 byte instruction while below is 6 bytes. Loc[-1] = 0xb8; } else if (Loc[-2] == 0x8b) { // "movl foo@indntpoff,%reg" -> "movl $foo,%reg" Loc[-2] = 0xc7; Loc[-1] = 0xc0 | Reg; } else { // "addl foo@indntpoff,%reg" -> "addl $foo,%reg" Loc[-2] = 0x81; Loc[-1] = 0xc0 | Reg; } } else { assert(Type == R_386_TLS_GOTIE); if (Loc[-2] == 0x8b) { // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg" Loc[-2] = 0xc7; Loc[-1] = 0xc0 | Reg; } else { // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg" Loc[-2] = 0x8d; Loc[-1] = 0x80 | (Reg << 3) | Reg; } } write32le(Loc, Val); } void X86TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { if (Type == R_386_TLS_LDO_32) { write32le(Loc, Val); return; } // Convert // leal foo(%reg),%eax // call ___tls_get_addr // to // movl %gs:0,%eax // nop // leal 0(%esi,1),%esi const uint8_t Inst[] = { 0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax 0x90, // nop 0x8d, 0x74, 0x26, 0x00 // leal 0(%esi,1),%esi }; memcpy(Loc - 2, Inst, sizeof(Inst)); } template X86_64TargetInfo::X86_64TargetInfo() { CopyRel = R_X86_64_COPY; GotRel = R_X86_64_GLOB_DAT; PltRel = R_X86_64_JUMP_SLOT; RelativeRel = R_X86_64_RELATIVE; IRelativeRel = R_X86_64_IRELATIVE; TlsGotRel = R_X86_64_TPOFF64; TlsModuleIndexRel = R_X86_64_DTPMOD64; TlsOffsetRel = R_X86_64_DTPOFF64; GotEntrySize = 8; GotPltEntrySize = 8; PltEntrySize = 16; PltHeaderSize = 16; TlsGdRelaxSkip = 2; // Align to the large page size (known as a superpage or huge page). // FreeBSD automatically promotes large, superpage-aligned allocations. DefaultImageBase = 0x200000; // 0xCC is the "int3" (call debug exception handler) instruction. TrapInstr = 0xcccccccc; } template RelExpr X86_64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { case R_X86_64_8: case R_X86_64_16: case R_X86_64_32: case R_X86_64_32S: case R_X86_64_64: case R_X86_64_DTPOFF32: case R_X86_64_DTPOFF64: return R_ABS; case R_X86_64_TPOFF32: return R_TLS; case R_X86_64_TLSLD: return R_TLSLD_PC; case R_X86_64_TLSGD: return R_TLSGD_PC; case R_X86_64_SIZE32: case R_X86_64_SIZE64: return R_SIZE; case R_X86_64_PLT32: return R_PLT_PC; case R_X86_64_PC32: case R_X86_64_PC64: return R_PC; case R_X86_64_GOT32: case R_X86_64_GOT64: return R_GOT_FROM_END; case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_GOTTPOFF: return R_GOT_PC; case R_X86_64_NONE: return R_NONE; default: error(toString(S.File) + ": unknown relocation type: " + toString(Type)); return R_HINT; } } template void X86_64TargetInfo::writeGotPltHeader(uint8_t *Buf) const { // The first entry holds the value of _DYNAMIC. It is not clear why that is // required, but it is documented in the psabi and the glibc dynamic linker // seems to use it (note that this is relevant for linking ld.so, not any // other program). write64le(Buf, In::Dynamic->getVA()); } template void X86_64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const { // See comments in X86TargetInfo::writeGotPlt. write32le(Buf, S.getPltVA() + 6); } template void X86_64TargetInfo::writePltHeader(uint8_t *Buf) const { const uint8_t PltData[] = { 0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushq GOTPLT+8(%rip) 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *GOTPLT+16(%rip) 0x0f, 0x1f, 0x40, 0x00 // nop }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t GotPlt = In::GotPlt->getVA(); uint64_t Plt = In::Plt->getVA(); write32le(Buf + 2, GotPlt - Plt + 2); // GOTPLT+8 write32le(Buf + 8, GotPlt - Plt + 4); // GOTPLT+16 } template void X86_64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const uint8_t Inst[] = { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmpq *got(%rip) 0x68, 0x00, 0x00, 0x00, 0x00, // pushq 0xe9, 0x00, 0x00, 0x00, 0x00 // jmpq plt[0] }; memcpy(Buf, Inst, sizeof(Inst)); write32le(Buf + 2, GotPltEntryAddr - PltEntryAddr - 6); write32le(Buf + 7, Index); write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16); } template bool X86_64TargetInfo::isPicRel(uint32_t Type) const { return Type != R_X86_64_PC32 && Type != R_X86_64_32; } template bool X86_64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return Type == R_X86_64_GOTTPOFF; } template bool X86_64TargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return Type == R_X86_64_DTPOFF32 || Type == R_X86_64_DTPOFF64 || Type == R_X86_64_TLSLD; } template void X86_64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // Convert // .byte 0x66 // leaq x@tlsgd(%rip), %rdi // .word 0x6666 // rex64 // call __tls_get_addr@plt // to // mov %fs:0x0,%rax // lea x@tpoff,%rax const uint8_t Inst[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff,%rax }; memcpy(Loc - 4, Inst, sizeof(Inst)); // The original code used a pc relative relocation and so we have to // compensate for the -4 in had in the addend. write32le(Loc + 8, Val + 4); } template void X86_64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // Convert // .byte 0x66 // leaq x@tlsgd(%rip), %rdi // .word 0x6666 // rex64 // call __tls_get_addr@plt // to // mov %fs:0x0,%rax // addq x@tpoff,%rax const uint8_t Inst[] = { 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0x0,%rax 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // addq x@tpoff,%rax }; memcpy(Loc - 4, Inst, sizeof(Inst)); // Both code sequences are PC relatives, but since we are moving the constant // forward by 8 bytes we have to subtract the value by 8. write32le(Loc + 8, Val - 8); } // In some conditions, R_X86_64_GOTTPOFF relocation can be optimized to // R_X86_64_TPOFF32 so that it does not use GOT. template void X86_64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { uint8_t *Inst = Loc - 3; uint8_t Reg = Loc[-1] >> 3; uint8_t *RegSlot = Loc - 1; // Note that ADD with RSP or R12 is converted to ADD instead of LEA // because LEA with these registers needs 4 bytes to encode and thus // wouldn't fit the space. if (memcmp(Inst, "\x48\x03\x25", 3) == 0) { // "addq foo@gottpoff(%rip),%rsp" -> "addq $foo,%rsp" memcpy(Inst, "\x48\x81\xc4", 3); } else if (memcmp(Inst, "\x4c\x03\x25", 3) == 0) { // "addq foo@gottpoff(%rip),%r12" -> "addq $foo,%r12" memcpy(Inst, "\x49\x81\xc4", 3); } else if (memcmp(Inst, "\x4c\x03", 2) == 0) { // "addq foo@gottpoff(%rip),%r[8-15]" -> "leaq foo(%r[8-15]),%r[8-15]" memcpy(Inst, "\x4d\x8d", 2); *RegSlot = 0x80 | (Reg << 3) | Reg; } else if (memcmp(Inst, "\x48\x03", 2) == 0) { // "addq foo@gottpoff(%rip),%reg -> "leaq foo(%reg),%reg" memcpy(Inst, "\x48\x8d", 2); *RegSlot = 0x80 | (Reg << 3) | Reg; } else if (memcmp(Inst, "\x4c\x8b", 2) == 0) { // "movq foo@gottpoff(%rip),%r[8-15]" -> "movq $foo,%r[8-15]" memcpy(Inst, "\x49\xc7", 2); *RegSlot = 0xc0 | Reg; } else if (memcmp(Inst, "\x48\x8b", 2) == 0) { // "movq foo@gottpoff(%rip),%reg" -> "movq $foo,%reg" memcpy(Inst, "\x48\xc7", 2); *RegSlot = 0xc0 | Reg; } else { error(getErrorLocation(Loc - 3) + "R_X86_64_GOTTPOFF must be used in MOVQ or ADDQ instructions only"); } // The original code used a PC relative relocation. // Need to compensate for the -4 it had in the addend. write32le(Loc, Val + 4); } template void X86_64TargetInfo::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // Convert // leaq bar@tlsld(%rip), %rdi // callq __tls_get_addr@PLT // leaq bar@dtpoff(%rax), %rcx // to // .word 0x6666 // .byte 0x66 // mov %fs:0,%rax // leaq bar@tpoff(%rax), %rcx if (Type == R_X86_64_DTPOFF64) { write64le(Loc, Val); return; } if (Type == R_X86_64_DTPOFF32) { write32le(Loc, Val); return; } const uint8_t Inst[] = { 0x66, 0x66, // .word 0x6666 0x66, // .byte 0x66 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax }; memcpy(Loc - 3, Inst, sizeof(Inst)); } template void X86_64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { switch (Type) { case R_X86_64_8: checkUInt<8>(Loc, Val, Type); *Loc = Val; break; case R_X86_64_16: checkUInt<16>(Loc, Val, Type); write16le(Loc, Val); break; case R_X86_64_32: checkUInt<32>(Loc, Val, Type); write32le(Loc, Val); break; case R_X86_64_32S: case R_X86_64_TPOFF32: case R_X86_64_GOT32: case R_X86_64_GOTPCREL: case R_X86_64_GOTPCRELX: case R_X86_64_REX_GOTPCRELX: case R_X86_64_PC32: case R_X86_64_GOTTPOFF: case R_X86_64_PLT32: case R_X86_64_TLSGD: case R_X86_64_TLSLD: case R_X86_64_DTPOFF32: case R_X86_64_SIZE32: checkInt<32>(Loc, Val, Type); write32le(Loc, Val); break; case R_X86_64_64: case R_X86_64_DTPOFF64: case R_X86_64_GLOB_DAT: case R_X86_64_PC64: case R_X86_64_SIZE64: case R_X86_64_GOT64: write64le(Loc, Val); break; default: llvm_unreachable("unexpected relocation"); } } template RelExpr X86_64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr RelExpr) const { if (Type != R_X86_64_GOTPCRELX && Type != R_X86_64_REX_GOTPCRELX) return RelExpr; const uint8_t Op = Data[-2]; const uint8_t ModRm = Data[-1]; // FIXME: When PIC is disabled and foo is defined locally in the // lower 32 bit address space, memory operand in mov can be converted into // immediate operand. Otherwise, mov must be changed to lea. We support only // latter relaxation at this moment. if (Op == 0x8b) return R_RELAX_GOT_PC; // Relax call and jmp. if (Op == 0xff && (ModRm == 0x15 || ModRm == 0x25)) return R_RELAX_GOT_PC; // Relaxation of test, adc, add, and, cmp, or, sbb, sub, xor. // If PIC then no relaxation is available. // We also don't relax test/binop instructions without REX byte, // they are 32bit operations and not common to have. assert(Type == R_X86_64_REX_GOTPCRELX); return Config->Pic ? RelExpr : R_RELAX_GOT_PC_NOPIC; } // A subset of relaxations can only be applied for no-PIC. This method // handles such relaxations. Instructions encoding information was taken from: // "Intel 64 and IA-32 Architectures Software Developer's Manual V2" // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/ // 64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf) template void X86_64TargetInfo::relaxGotNoPic(uint8_t *Loc, uint64_t Val, uint8_t Op, uint8_t ModRm) const { const uint8_t Rex = Loc[-3]; // Convert "test %reg, foo@GOTPCREL(%rip)" to "test $foo, %reg". if (Op == 0x85) { // See "TEST-Logical Compare" (4-428 Vol. 2B), // TEST r/m64, r64 uses "full" ModR / M byte (no opcode extension). // ModR/M byte has form XX YYY ZZZ, where // YYY is MODRM.reg(register 2), ZZZ is MODRM.rm(register 1). // XX has different meanings: // 00: The operand's memory address is in reg1. // 01: The operand's memory address is reg1 + a byte-sized displacement. // 10: The operand's memory address is reg1 + a word-sized displacement. // 11: The operand is reg1 itself. // If an instruction requires only one operand, the unused reg2 field // holds extra opcode bits rather than a register code // 0xC0 == 11 000 000 binary. // 0x38 == 00 111 000 binary. // We transfer reg2 to reg1 here as operand. // See "2.1.3 ModR/M and SIB Bytes" (Vol. 2A 2-3). Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3; // ModR/M byte. // Change opcode from TEST r/m64, r64 to TEST r/m64, imm32 // See "TEST-Logical Compare" (4-428 Vol. 2B). Loc[-2] = 0xf7; // Move R bit to the B bit in REX byte. // REX byte is encoded as 0100WRXB, where // 0100 is 4bit fixed pattern. // REX.W When 1, a 64-bit operand size is used. Otherwise, when 0, the // default operand size is used (which is 32-bit for most but not all // instructions). // REX.R This 1-bit value is an extension to the MODRM.reg field. // REX.X This 1-bit value is an extension to the SIB.index field. // REX.B This 1-bit value is an extension to the MODRM.rm field or the // SIB.base field. // See "2.2.1.2 More on REX Prefix Fields " (2-8 Vol. 2A). Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; write32le(Loc, Val); return; } // If we are here then we need to relax the adc, add, and, cmp, or, sbb, sub // or xor operations. // Convert "binop foo@GOTPCREL(%rip), %reg" to "binop $foo, %reg". // Logic is close to one for test instruction above, but we also // write opcode extension here, see below for details. Loc[-1] = 0xc0 | (ModRm & 0x38) >> 3 | (Op & 0x3c); // ModR/M byte. // Primary opcode is 0x81, opcode extension is one of: // 000b = ADD, 001b is OR, 010b is ADC, 011b is SBB, // 100b is AND, 101b is SUB, 110b is XOR, 111b is CMP. // This value was wrote to MODRM.reg in a line above. // See "3.2 INSTRUCTIONS (A-M)" (Vol. 2A 3-15), // "INSTRUCTION SET REFERENCE, N-Z" (Vol. 2B 4-1) for // descriptions about each operation. Loc[-2] = 0x81; Loc[-3] = (Rex & ~0x4) | (Rex & 0x4) >> 2; write32le(Loc, Val); } template void X86_64TargetInfo::relaxGot(uint8_t *Loc, uint64_t Val) const { const uint8_t Op = Loc[-2]; const uint8_t ModRm = Loc[-1]; // Convert "mov foo@GOTPCREL(%rip),%reg" to "lea foo(%rip),%reg". if (Op == 0x8b) { Loc[-2] = 0x8d; write32le(Loc, Val); return; } if (Op != 0xff) { // We are relaxing a rip relative to an absolute, so compensate // for the old -4 addend. assert(!Config->Pic); relaxGotNoPic(Loc, Val + 4, Op, ModRm); return; } // Convert call/jmp instructions. if (ModRm == 0x15) { // ABI says we can convert "call *foo@GOTPCREL(%rip)" to "nop; call foo". // Instead we convert to "addr32 call foo" where addr32 is an instruction // prefix. That makes result expression to be a single instruction. Loc[-2] = 0x67; // addr32 prefix Loc[-1] = 0xe8; // call write32le(Loc, Val); return; } // Convert "jmp *foo@GOTPCREL(%rip)" to "jmp foo; nop". // jmp doesn't return, so it is fine to use nop here, it is just a stub. assert(ModRm == 0x25); Loc[-2] = 0xe9; // jmp Loc[3] = 0x90; // nop write32le(Loc - 1, Val + 1); } // Relocation masks following the #lo(value), #hi(value), #ha(value), // #higher(value), #highera(value), #highest(value), and #highesta(value) // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi // document. static uint16_t applyPPCLo(uint64_t V) { return V; } static uint16_t applyPPCHi(uint64_t V) { return V >> 16; } static uint16_t applyPPCHa(uint64_t V) { return (V + 0x8000) >> 16; } static uint16_t applyPPCHigher(uint64_t V) { return V >> 32; } static uint16_t applyPPCHighera(uint64_t V) { return (V + 0x8000) >> 32; } static uint16_t applyPPCHighest(uint64_t V) { return V >> 48; } static uint16_t applyPPCHighesta(uint64_t V) { return (V + 0x8000) >> 48; } PPCTargetInfo::PPCTargetInfo() {} void PPCTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { switch (Type) { case R_PPC_ADDR16_HA: write16be(Loc, applyPPCHa(Val)); break; case R_PPC_ADDR16_LO: write16be(Loc, applyPPCLo(Val)); break; case R_PPC_ADDR32: case R_PPC_REL32: write32be(Loc, Val); break; case R_PPC_REL24: or32be(Loc, Val & 0x3FFFFFC); break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } RelExpr PPCTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { case R_PPC_REL24: case R_PPC_REL32: return R_PC; default: return R_ABS; } } PPC64TargetInfo::PPC64TargetInfo() { PltRel = GotRel = R_PPC64_GLOB_DAT; RelativeRel = R_PPC64_RELATIVE; GotEntrySize = 8; GotPltEntrySize = 8; PltEntrySize = 32; PltHeaderSize = 0; // We need 64K pages (at least under glibc/Linux, the loader won't // set different permissions on a finer granularity than that). DefaultMaxPageSize = 65536; // The PPC64 ELF ABI v1 spec, says: // // It is normally desirable to put segments with different characteristics // in separate 256 Mbyte portions of the address space, to give the // operating system full paging flexibility in the 64-bit address space. // // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers // use 0x10000000 as the starting address. DefaultImageBase = 0x10000000; } static uint64_t PPC64TocOffset = 0x8000; uint64_t getPPC64TocBase() { // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The // TOC starts where the first of these sections starts. We always create a // .got when we see a relocation that uses it, so for us the start is always // the .got. uint64_t TocVA = In::Got->getVA(); // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 // thus permitting a full 64 Kbytes segment. Note that the glibc startup // code (crt1.o) assumes that you can get from the TOC base to the // start of the .toc section with only a single (signed) 16-bit relocation. return TocVA + PPC64TocOffset; } RelExpr PPC64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { default: return R_ABS; case R_PPC64_TOC16: case R_PPC64_TOC16_DS: case R_PPC64_TOC16_HA: case R_PPC64_TOC16_HI: case R_PPC64_TOC16_LO: case R_PPC64_TOC16_LO_DS: return R_GOTREL; case R_PPC64_TOC: return R_PPC_TOC; case R_PPC64_REL24: return R_PPC_PLT_OPD; } } void PPC64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { uint64_t Off = GotPltEntryAddr - getPPC64TocBase(); // FIXME: What we should do, in theory, is get the offset of the function // descriptor in the .opd section, and use that as the offset from %r2 (the // TOC-base pointer). Instead, we have the GOT-entry offset, and that will // be a pointer to the function descriptor in the .opd section. Using // this scheme is simpler, but requires an extra indirection per PLT dispatch. write32be(Buf, 0xf8410028); // std %r2, 40(%r1) write32be(Buf + 4, 0x3d620000 | applyPPCHa(Off)); // addis %r11, %r2, X@ha write32be(Buf + 8, 0xe98b0000 | applyPPCLo(Off)); // ld %r12, X@l(%r11) write32be(Buf + 12, 0xe96c0000); // ld %r11,0(%r12) write32be(Buf + 16, 0x7d6903a6); // mtctr %r11 write32be(Buf + 20, 0xe84c0008); // ld %r2,8(%r12) write32be(Buf + 24, 0xe96c0010); // ld %r11,16(%r12) write32be(Buf + 28, 0x4e800420); // bctr } static std::pair toAddr16Rel(uint32_t Type, uint64_t Val) { uint64_t V = Val - PPC64TocOffset; switch (Type) { case R_PPC64_TOC16: return {R_PPC64_ADDR16, V}; case R_PPC64_TOC16_DS: return {R_PPC64_ADDR16_DS, V}; case R_PPC64_TOC16_HA: return {R_PPC64_ADDR16_HA, V}; case R_PPC64_TOC16_HI: return {R_PPC64_ADDR16_HI, V}; case R_PPC64_TOC16_LO: return {R_PPC64_ADDR16_LO, V}; case R_PPC64_TOC16_LO_DS: return {R_PPC64_ADDR16_LO_DS, V}; default: return {Type, Val}; } } void PPC64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // For a TOC-relative relocation, proceed in terms of the corresponding // ADDR16 relocation type. std::tie(Type, Val) = toAddr16Rel(Type, Val); switch (Type) { case R_PPC64_ADDR14: { checkAlignment<4>(Loc, Val, Type); // Preserve the AA/LK bits in the branch instruction uint8_t AALK = Loc[3]; write16be(Loc + 2, (AALK & 3) | (Val & 0xfffc)); break; } case R_PPC64_ADDR16: checkInt<16>(Loc, Val, Type); write16be(Loc, Val); break; case R_PPC64_ADDR16_DS: checkInt<16>(Loc, Val, Type); write16be(Loc, (read16be(Loc) & 3) | (Val & ~3)); break; case R_PPC64_ADDR16_HA: case R_PPC64_REL16_HA: write16be(Loc, applyPPCHa(Val)); break; case R_PPC64_ADDR16_HI: case R_PPC64_REL16_HI: write16be(Loc, applyPPCHi(Val)); break; case R_PPC64_ADDR16_HIGHER: write16be(Loc, applyPPCHigher(Val)); break; case R_PPC64_ADDR16_HIGHERA: write16be(Loc, applyPPCHighera(Val)); break; case R_PPC64_ADDR16_HIGHEST: write16be(Loc, applyPPCHighest(Val)); break; case R_PPC64_ADDR16_HIGHESTA: write16be(Loc, applyPPCHighesta(Val)); break; case R_PPC64_ADDR16_LO: write16be(Loc, applyPPCLo(Val)); break; case R_PPC64_ADDR16_LO_DS: case R_PPC64_REL16_LO: write16be(Loc, (read16be(Loc) & 3) | (applyPPCLo(Val) & ~3)); break; case R_PPC64_ADDR32: case R_PPC64_REL32: checkInt<32>(Loc, Val, Type); write32be(Loc, Val); break; case R_PPC64_ADDR64: case R_PPC64_REL64: case R_PPC64_TOC: write64be(Loc, Val); break; case R_PPC64_REL24: { uint32_t Mask = 0x03FFFFFC; checkInt<24>(Loc, Val, Type); write32be(Loc, (read32be(Loc) & ~Mask) | (Val & Mask)); break; } default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } AArch64TargetInfo::AArch64TargetInfo() { CopyRel = R_AARCH64_COPY; RelativeRel = R_AARCH64_RELATIVE; IRelativeRel = R_AARCH64_IRELATIVE; GotRel = R_AARCH64_GLOB_DAT; PltRel = R_AARCH64_JUMP_SLOT; TlsDescRel = R_AARCH64_TLSDESC; TlsGotRel = R_AARCH64_TLS_TPREL64; GotEntrySize = 8; GotPltEntrySize = 8; PltEntrySize = 16; PltHeaderSize = 32; DefaultMaxPageSize = 65536; // It doesn't seem to be documented anywhere, but tls on aarch64 uses variant // 1 of the tls structures and the tcb size is 16. TcbSize = 16; } RelExpr AArch64TargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { default: return R_ABS; case R_AARCH64_TLSDESC_ADR_PAGE21: return R_TLSDESC_PAGE; case R_AARCH64_TLSDESC_LD64_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: return R_TLSDESC; case R_AARCH64_TLSDESC_CALL: return R_TLSDESC_CALL; case R_AARCH64_TLSLE_ADD_TPREL_HI12: case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: return R_TLS; case R_AARCH64_CALL26: case R_AARCH64_CONDBR19: case R_AARCH64_JUMP26: case R_AARCH64_TSTBR14: return R_PLT_PC; case R_AARCH64_PREL16: case R_AARCH64_PREL32: case R_AARCH64_PREL64: case R_AARCH64_ADR_PREL_LO21: return R_PC; case R_AARCH64_ADR_PREL_PG_HI21: return R_PAGE_PC; case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: return R_GOT; case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: return R_GOT_PAGE_PC; case R_AARCH64_NONE: return R_NONE; } } RelExpr AArch64TargetInfo::adjustRelaxExpr(uint32_t Type, const uint8_t *Data, RelExpr Expr) const { if (Expr == R_RELAX_TLS_GD_TO_IE) { if (Type == R_AARCH64_TLSDESC_ADR_PAGE21) return R_RELAX_TLS_GD_TO_IE_PAGE_PC; return R_RELAX_TLS_GD_TO_IE_ABS; } return Expr; } bool AArch64TargetInfo::usesOnlyLowPageBits(uint32_t Type) const { switch (Type) { default: return false; case R_AARCH64_ADD_ABS_LO12_NC: case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_LDST128_ABS_LO12_NC: case R_AARCH64_LDST16_ABS_LO12_NC: case R_AARCH64_LDST32_ABS_LO12_NC: case R_AARCH64_LDST64_ABS_LO12_NC: case R_AARCH64_LDST8_ABS_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_LD64_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: return true; } } bool AArch64TargetInfo::isTlsInitialExecRel(uint32_t Type) const { return Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 || Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC; } bool AArch64TargetInfo::isPicRel(uint32_t Type) const { return Type == R_AARCH64_ABS32 || Type == R_AARCH64_ABS64; } void AArch64TargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { write64le(Buf, In::Plt->getVA()); } // Page(Expr) is the page address of the expression Expr, defined // as (Expr & ~0xFFF). (This applies even if the machine page size // supported by the platform has a different value.) uint64_t getAArch64Page(uint64_t Expr) { return Expr & (~static_cast(0xFFF)); } void AArch64TargetInfo::writePltHeader(uint8_t *Buf) const { const uint8_t PltData[] = { 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[2])) 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[2]))] 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[2])) 0x20, 0x02, 0x1f, 0xd6, // br x17 0x1f, 0x20, 0x03, 0xd5, // nop 0x1f, 0x20, 0x03, 0xd5, // nop 0x1f, 0x20, 0x03, 0xd5 // nop }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t Got = In::GotPlt->getVA(); uint64_t Plt = In::Plt->getVA(); relocateOne(Buf + 4, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(Got + 16) - getAArch64Page(Plt + 4)); relocateOne(Buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, Got + 16); relocateOne(Buf + 12, R_AARCH64_ADD_ABS_LO12_NC, Got + 16); } void AArch64TargetInfo::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const uint8_t Inst[] = { 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.plt.got[n])) 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.plt.got[n]))] 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.plt.got[n])) 0x20, 0x02, 0x1f, 0xd6 // br x17 }; memcpy(Buf, Inst, sizeof(Inst)); relocateOne(Buf, R_AARCH64_ADR_PREL_PG_HI21, getAArch64Page(GotPltEntryAddr) - getAArch64Page(PltEntryAddr)); relocateOne(Buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, GotPltEntryAddr); relocateOne(Buf + 8, R_AARCH64_ADD_ABS_LO12_NC, GotPltEntryAddr); } static void write32AArch64Addr(uint8_t *L, uint64_t Imm) { uint32_t ImmLo = (Imm & 0x3) << 29; uint32_t ImmHi = (Imm & 0x1FFFFC) << 3; uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3); write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi); } // Return the bits [Start, End] from Val shifted Start bits. // For instance, getBits(0xF0, 4, 8) returns 0xF. static uint64_t getBits(uint64_t Val, int Start, int End) { uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1; return (Val >> Start) & Mask; } // Update the immediate field in a AARCH64 ldr, str, and add instruction. static void or32AArch64Imm(uint8_t *L, uint64_t Imm) { or32le(L, (Imm & 0xFFF) << 10); } void AArch64TargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { switch (Type) { case R_AARCH64_ABS16: case R_AARCH64_PREL16: checkIntUInt<16>(Loc, Val, Type); write16le(Loc, Val); break; case R_AARCH64_ABS32: case R_AARCH64_PREL32: checkIntUInt<32>(Loc, Val, Type); write32le(Loc, Val); break; case R_AARCH64_ABS64: case R_AARCH64_GLOB_DAT: case R_AARCH64_PREL64: write64le(Loc, Val); break; case R_AARCH64_ADD_ABS_LO12_NC: or32AArch64Imm(Loc, Val); break; case R_AARCH64_ADR_GOT_PAGE: case R_AARCH64_ADR_PREL_PG_HI21: case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: case R_AARCH64_TLSDESC_ADR_PAGE21: checkInt<33>(Loc, Val, Type); write32AArch64Addr(Loc, Val >> 12); break; case R_AARCH64_ADR_PREL_LO21: checkInt<21>(Loc, Val, Type); write32AArch64Addr(Loc, Val); break; case R_AARCH64_CALL26: case R_AARCH64_JUMP26: checkInt<28>(Loc, Val, Type); or32le(Loc, (Val & 0x0FFFFFFC) >> 2); break; case R_AARCH64_CONDBR19: checkInt<21>(Loc, Val, Type); or32le(Loc, (Val & 0x1FFFFC) << 3); break; case R_AARCH64_LD64_GOT_LO12_NC: case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: case R_AARCH64_TLSDESC_LD64_LO12_NC: checkAlignment<8>(Loc, Val, Type); or32le(Loc, (Val & 0xFF8) << 7); break; case R_AARCH64_LDST8_ABS_LO12_NC: or32AArch64Imm(Loc, getBits(Val, 0, 11)); break; case R_AARCH64_LDST16_ABS_LO12_NC: or32AArch64Imm(Loc, getBits(Val, 1, 11)); break; case R_AARCH64_LDST32_ABS_LO12_NC: or32AArch64Imm(Loc, getBits(Val, 2, 11)); break; case R_AARCH64_LDST64_ABS_LO12_NC: or32AArch64Imm(Loc, getBits(Val, 3, 11)); break; case R_AARCH64_LDST128_ABS_LO12_NC: or32AArch64Imm(Loc, getBits(Val, 4, 11)); break; case R_AARCH64_MOVW_UABS_G0_NC: or32le(Loc, (Val & 0xFFFF) << 5); break; case R_AARCH64_MOVW_UABS_G1_NC: or32le(Loc, (Val & 0xFFFF0000) >> 11); break; case R_AARCH64_MOVW_UABS_G2_NC: or32le(Loc, (Val & 0xFFFF00000000) >> 27); break; case R_AARCH64_MOVW_UABS_G3: or32le(Loc, (Val & 0xFFFF000000000000) >> 43); break; case R_AARCH64_TSTBR14: checkInt<16>(Loc, Val, Type); or32le(Loc, (Val & 0xFFFC) << 3); break; case R_AARCH64_TLSLE_ADD_TPREL_HI12: checkInt<24>(Loc, Val, Type); or32AArch64Imm(Loc, Val >> 12); break; case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: case R_AARCH64_TLSDESC_ADD_LO12_NC: or32AArch64Imm(Loc, Val); break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } void AArch64TargetInfo::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // TLSDESC Global-Dynamic relocation are in the form: // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] // .tlsdesccall [R_AARCH64_TLSDESC_CALL] // blr x1 // And it can optimized to: // movz x0, #0x0, lsl #16 // movk x0, #0x10 // nop // nop checkUInt<32>(Loc, Val, Type); switch (Type) { case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_CALL: write32le(Loc, 0xd503201f); // nop return; case R_AARCH64_TLSDESC_ADR_PAGE21: write32le(Loc, 0xd2a00000 | (((Val >> 16) & 0xffff) << 5)); // movz return; case R_AARCH64_TLSDESC_LD64_LO12_NC: write32le(Loc, 0xf2800000 | ((Val & 0xffff) << 5)); // movk return; default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void AArch64TargetInfo::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { // TLSDESC Global-Dynamic relocation are in the form: // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12_NC] // add x0, x0, :tlsdesc_los:v [_AARCH64_TLSDESC_ADD_LO12_NC] // .tlsdesccall [R_AARCH64_TLSDESC_CALL] // blr x1 // And it can optimized to: // adrp x0, :gottprel:v // ldr x0, [x0, :gottprel_lo12:v] // nop // nop switch (Type) { case R_AARCH64_TLSDESC_ADD_LO12_NC: case R_AARCH64_TLSDESC_CALL: write32le(Loc, 0xd503201f); // nop break; case R_AARCH64_TLSDESC_ADR_PAGE21: write32le(Loc, 0x90000000); // adrp relocateOne(Loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, Val); break; case R_AARCH64_TLSDESC_LD64_LO12_NC: write32le(Loc, 0xf9400000); // ldr relocateOne(Loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, Val); break; default: llvm_unreachable("unsupported relocation for TLS GD to LE relaxation"); } } void AArch64TargetInfo::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const { checkUInt<32>(Loc, Val, Type); if (Type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { // Generate MOVZ. uint32_t RegNo = read32le(Loc) & 0x1f; write32le(Loc, (0xd2a00000 | RegNo) | (((Val >> 16) & 0xffff) << 5)); return; } if (Type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { // Generate MOVK. uint32_t RegNo = read32le(Loc) & 0x1f; write32le(Loc, (0xf2800000 | RegNo) | ((Val & 0xffff) << 5)); return; } llvm_unreachable("invalid relocation for TLS IE to LE relaxation"); } AMDGPUTargetInfo::AMDGPUTargetInfo() { RelativeRel = R_AMDGPU_REL64; GotRel = R_AMDGPU_ABS64; GotEntrySize = 8; } void AMDGPUTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { switch (Type) { case R_AMDGPU_ABS32: case R_AMDGPU_GOTPCREL: case R_AMDGPU_GOTPCREL32_LO: case R_AMDGPU_REL32: case R_AMDGPU_REL32_LO: write32le(Loc, Val); break; case R_AMDGPU_ABS64: write64le(Loc, Val); break; case R_AMDGPU_GOTPCREL32_HI: case R_AMDGPU_REL32_HI: write32le(Loc, Val >> 32); break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } RelExpr AMDGPUTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { case R_AMDGPU_ABS32: case R_AMDGPU_ABS64: return R_ABS; case R_AMDGPU_REL32: case R_AMDGPU_REL32_LO: case R_AMDGPU_REL32_HI: return R_PC; case R_AMDGPU_GOTPCREL: case R_AMDGPU_GOTPCREL32_LO: case R_AMDGPU_GOTPCREL32_HI: return R_GOT_PC; default: error(toString(S.File) + ": unknown relocation type: " + toString(Type)); return R_HINT; } } ARMTargetInfo::ARMTargetInfo() { CopyRel = R_ARM_COPY; RelativeRel = R_ARM_RELATIVE; IRelativeRel = R_ARM_IRELATIVE; GotRel = R_ARM_GLOB_DAT; PltRel = R_ARM_JUMP_SLOT; TlsGotRel = R_ARM_TLS_TPOFF32; TlsModuleIndexRel = R_ARM_TLS_DTPMOD32; TlsOffsetRel = R_ARM_TLS_DTPOFF32; GotEntrySize = 4; GotPltEntrySize = 4; PltEntrySize = 16; PltHeaderSize = 20; // ARM uses Variant 1 TLS TcbSize = 8; NeedsThunks = true; } RelExpr ARMTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { switch (Type) { default: return R_ABS; case R_ARM_THM_JUMP11: return R_PC; case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_PREL31: case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: case R_ARM_THM_CALL: return R_PLT_PC; case R_ARM_GOTOFF32: // (S + A) - GOT_ORG return R_GOTREL; case R_ARM_GOT_BREL: // GOT(S) + A - GOT_ORG return R_GOT_OFF; case R_ARM_GOT_PREL: case R_ARM_TLS_IE32: // GOT(S) + A - P return R_GOT_PC; case R_ARM_TARGET1: return Config->Target1Rel ? R_PC : R_ABS; case R_ARM_TARGET2: if (Config->Target2 == Target2Policy::Rel) return R_PC; if (Config->Target2 == Target2Policy::Abs) return R_ABS; return R_GOT_PC; case R_ARM_TLS_GD32: return R_TLSGD_PC; case R_ARM_TLS_LDM32: return R_TLSLD_PC; case R_ARM_BASE_PREL: // B(S) + A - P // FIXME: currently B(S) assumed to be .got, this may not hold for all // platforms. return R_GOTONLY_PC; case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: case R_ARM_REL32: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: return R_PC; case R_ARM_NONE: return R_NONE; case R_ARM_TLS_LE32: return R_TLS; } } bool ARMTargetInfo::isPicRel(uint32_t Type) const { return (Type == R_ARM_TARGET1 && !Config->Target1Rel) || (Type == R_ARM_ABS32); } uint32_t ARMTargetInfo::getDynRel(uint32_t Type) const { if (Type == R_ARM_TARGET1 && !Config->Target1Rel) return R_ARM_ABS32; if (Type == R_ARM_ABS32) return Type; // Keep it going with a dummy value so that we can find more reloc errors. return R_ARM_ABS32; } void ARMTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { write32le(Buf, In::Plt->getVA()); } void ARMTargetInfo::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const { // An ARM entry is the address of the ifunc resolver function. write32le(Buf, S.getVA()); } void ARMTargetInfo::writePltHeader(uint8_t *Buf) const { const uint8_t PltData[] = { 0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]! 0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2 0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr 0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8] 0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8 }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t GotPlt = In::GotPlt->getVA(); uint64_t L1 = In::Plt->getVA() + 8; write32le(Buf + 16, GotPlt - L1 - 8); } void ARMTargetInfo::addPltHeaderSymbols(InputSectionBase *ISD) const { auto *IS = cast(ISD); addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS); addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS); } void ARMTargetInfo::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { // FIXME: Using simple code sequence with simple relocations. // There is a more optimal sequence but it requires support for the group // relocations. See ELF for the ARM Architecture Appendix A.3 const uint8_t PltData[] = { 0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2 0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc 0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip] 0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8 }; memcpy(Buf, PltData, sizeof(PltData)); uint64_t L1 = PltEntryAddr + 4; write32le(Buf + 12, GotPltEntryAddr - L1 - 8); } void ARMTargetInfo::addPltSymbols(InputSectionBase *ISD, uint64_t Off) const { auto *IS = cast(ISD); addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS); addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS); } bool ARMTargetInfo::needsThunk(RelExpr Expr, uint32_t RelocType, const InputFile *File, const SymbolBody &S) const { // If S is an undefined weak symbol in an executable we don't need a Thunk. // In a DSO calls to undefined symbols, including weak ones get PLT entries // which may need a thunk. if (S.isUndefined() && !S.isLocal() && S.symbol()->isWeak() && !Config->Shared) return false; // A state change from ARM to Thumb and vice versa must go through an // interworking thunk if the relocation type is not R_ARM_CALL or // R_ARM_THM_CALL. switch (RelocType) { case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_JUMP24: // Source is ARM, all PLT entries are ARM so no interworking required. // Otherwise we need to interwork if Symbol has bit 0 set (Thumb). if (Expr == R_PC && ((S.getVA() & 1) == 1)) return true; break; case R_ARM_THM_JUMP19: case R_ARM_THM_JUMP24: // Source is Thumb, all PLT entries are ARM so interworking is required. // Otherwise we need to interwork if Symbol has bit 0 clear (ARM). if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0)) return true; break; } return false; } void ARMTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { switch (Type) { case R_ARM_ABS32: case R_ARM_BASE_PREL: case R_ARM_GLOB_DAT: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: case R_ARM_REL32: case R_ARM_RELATIVE: case R_ARM_TARGET1: case R_ARM_TARGET2: case R_ARM_TLS_GD32: case R_ARM_TLS_IE32: case R_ARM_TLS_LDM32: case R_ARM_TLS_LDO32: case R_ARM_TLS_LE32: case R_ARM_TLS_TPOFF32: case R_ARM_TLS_DTPOFF32: write32le(Loc, Val); break; case R_ARM_TLS_DTPMOD32: write32le(Loc, 1); break; case R_ARM_PREL31: checkInt<31>(Loc, Val, Type); write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000)); break; case R_ARM_CALL: // R_ARM_CALL is used for BL and BLX instructions, depending on the // value of bit 0 of Val, we must select a BL or BLX instruction if (Val & 1) { // If bit 0 of Val is 1 the target is Thumb, we must select a BLX. // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1' checkInt<26>(Loc, Val, Type); write32le(Loc, 0xfa000000 | // opcode ((Val & 2) << 23) | // H ((Val >> 2) & 0x00ffffff)); // imm24 break; } if ((read32le(Loc) & 0xfe000000) == 0xfa000000) // BLX (always unconditional) instruction to an ARM Target, select an // unconditional BL. write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff)); // fall through as BL encoding is shared with B case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: checkInt<26>(Loc, Val, Type); write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff)); break; case R_ARM_THM_JUMP11: checkInt<12>(Loc, Val, Type); write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff)); break; case R_ARM_THM_JUMP19: // Encoding T3: Val = S:J2:J1:imm6:imm11:0 checkInt<21>(Loc, Val, Type); write16le(Loc, (read16le(Loc) & 0xfbc0) | // opcode cond ((Val >> 10) & 0x0400) | // S ((Val >> 12) & 0x003f)); // imm6 write16le(Loc + 2, 0x8000 | // opcode ((Val >> 8) & 0x0800) | // J2 ((Val >> 5) & 0x2000) | // J1 ((Val >> 1) & 0x07ff)); // imm11 break; case R_ARM_THM_CALL: // R_ARM_THM_CALL is used for BL and BLX instructions, depending on the // value of bit 0 of Val, we must select a BL or BLX instruction if ((Val & 1) == 0) { // Ensure BLX destination is 4-byte aligned. As BLX instruction may // only be two byte aligned. This must be done before overflow check Val = alignTo(Val, 4); } // Bit 12 is 0 for BLX, 1 for BL write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12); // Fall through as rest of encoding is the same as B.W case R_ARM_THM_JUMP24: // Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0 // FIXME: Use of I1 and I2 require v6T2ops checkInt<25>(Loc, Val, Type); write16le(Loc, 0xf000 | // opcode ((Val >> 14) & 0x0400) | // S ((Val >> 12) & 0x03ff)); // imm10 write16le(Loc + 2, (read16le(Loc + 2) & 0xd000) | // opcode (((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1 (((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2 ((Val >> 1) & 0x07ff)); // imm11 break; case R_ARM_MOVW_ABS_NC: case R_ARM_MOVW_PREL_NC: write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) | (Val & 0x0fff)); break; case R_ARM_MOVT_ABS: case R_ARM_MOVT_PREL: checkInt<32>(Loc, Val, Type); write32le(Loc, (read32le(Loc) & ~0x000f0fff) | (((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff)); break; case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVT_PREL: // Encoding T1: A = imm4:i:imm3:imm8 checkInt<32>(Loc, Val, Type); write16le(Loc, 0xf2c0 | // opcode ((Val >> 17) & 0x0400) | // i ((Val >> 28) & 0x000f)); // imm4 write16le(Loc + 2, (read16le(Loc + 2) & 0x8f00) | // opcode ((Val >> 12) & 0x7000) | // imm3 ((Val >> 16) & 0x00ff)); // imm8 break; case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVW_PREL_NC: // Encoding T3: A = imm4:i:imm3:imm8 write16le(Loc, 0xf240 | // opcode ((Val >> 1) & 0x0400) | // i ((Val >> 12) & 0x000f)); // imm4 write16le(Loc + 2, (read16le(Loc + 2) & 0x8f00) | // opcode ((Val << 4) & 0x7000) | // imm3 (Val & 0x00ff)); // imm8 break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } int64_t ARMTargetInfo::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const { switch (Type) { default: return 0; case R_ARM_ABS32: case R_ARM_BASE_PREL: case R_ARM_GOTOFF32: case R_ARM_GOT_BREL: case R_ARM_GOT_PREL: case R_ARM_REL32: case R_ARM_TARGET1: case R_ARM_TARGET2: case R_ARM_TLS_GD32: case R_ARM_TLS_LDM32: case R_ARM_TLS_LDO32: case R_ARM_TLS_IE32: case R_ARM_TLS_LE32: return SignExtend64<32>(read32le(Buf)); case R_ARM_PREL31: return SignExtend64<31>(read32le(Buf)); case R_ARM_CALL: case R_ARM_JUMP24: case R_ARM_PC24: case R_ARM_PLT32: return SignExtend64<26>(read32le(Buf) << 2); case R_ARM_THM_JUMP11: return SignExtend64<12>(read16le(Buf) << 1); case R_ARM_THM_JUMP19: { // Encoding T3: A = S:J2:J1:imm10:imm6:0 uint16_t Hi = read16le(Buf); uint16_t Lo = read16le(Buf + 2); return SignExtend64<20>(((Hi & 0x0400) << 10) | // S ((Lo & 0x0800) << 8) | // J2 ((Lo & 0x2000) << 5) | // J1 ((Hi & 0x003f) << 12) | // imm6 ((Lo & 0x07ff) << 1)); // imm11:0 } case R_ARM_THM_CALL: case R_ARM_THM_JUMP24: { // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0 // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S) // FIXME: I1 and I2 require v6T2ops uint16_t Hi = read16le(Buf); uint16_t Lo = read16le(Buf + 2); return SignExtend64<24>(((Hi & 0x0400) << 14) | // S (~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1 (~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2 ((Hi & 0x003ff) << 12) | // imm0 ((Lo & 0x007ff) << 1)); // imm11:0 } // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and // MOVT is in the range -32768 <= A < 32768 case R_ARM_MOVW_ABS_NC: case R_ARM_MOVT_ABS: case R_ARM_MOVW_PREL_NC: case R_ARM_MOVT_PREL: { uint64_t Val = read32le(Buf) & 0x000f0fff; return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff)); } case R_ARM_THM_MOVW_ABS_NC: case R_ARM_THM_MOVT_ABS: case R_ARM_THM_MOVW_PREL_NC: case R_ARM_THM_MOVT_PREL: { // Encoding T3: A = imm4:i:imm3:imm8 uint16_t Hi = read16le(Buf); uint16_t Lo = read16le(Buf + 2); return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4 ((Hi & 0x0400) << 1) | // i ((Lo & 0x7000) >> 4) | // imm3 (Lo & 0x00ff)); // imm8 } } } bool ARMTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return Type == R_ARM_TLS_LDO32 || Type == R_ARM_TLS_LDM32; } bool ARMTargetInfo::isTlsInitialExecRel(uint32_t Type) const { return Type == R_ARM_TLS_IE32; } template MipsTargetInfo::MipsTargetInfo() { GotPltHeaderEntriesNum = 2; DefaultMaxPageSize = 65536; GotEntrySize = sizeof(typename ELFT::uint); GotPltEntrySize = sizeof(typename ELFT::uint); PltEntrySize = 16; PltHeaderSize = 32; CopyRel = R_MIPS_COPY; PltRel = R_MIPS_JUMP_SLOT; NeedsThunks = true; if (ELFT::Is64Bits) { RelativeRel = (R_MIPS_64 << 8) | R_MIPS_REL32; TlsGotRel = R_MIPS_TLS_TPREL64; TlsModuleIndexRel = R_MIPS_TLS_DTPMOD64; TlsOffsetRel = R_MIPS_TLS_DTPREL64; } else { RelativeRel = R_MIPS_REL32; TlsGotRel = R_MIPS_TLS_TPREL32; TlsModuleIndexRel = R_MIPS_TLS_DTPMOD32; TlsOffsetRel = R_MIPS_TLS_DTPREL32; } } template RelExpr MipsTargetInfo::getRelExpr(uint32_t Type, const SymbolBody &S, const uint8_t *Loc) const { // See comment in the calculateMipsRelChain. if (ELFT::Is64Bits || Config->MipsN32Abi) Type &= 0xff; switch (Type) { default: return R_ABS; case R_MIPS_JALR: return R_HINT; case R_MIPS_GPREL16: case R_MIPS_GPREL32: return R_MIPS_GOTREL; case R_MIPS_26: return R_PLT; case R_MIPS_HI16: case R_MIPS_LO16: // R_MIPS_HI16/R_MIPS_LO16 relocations against _gp_disp calculate // offset between start of function and 'gp' value which by default // equal to the start of .got section. In that case we consider these // relocations as relative. if (&S == ElfSym::MipsGpDisp) return R_MIPS_GOT_GP_PC; if (&S == ElfSym::MipsLocalGp) return R_MIPS_GOT_GP; // fallthrough case R_MIPS_GOT_OFST: return R_ABS; case R_MIPS_PC32: case R_MIPS_PC16: case R_MIPS_PC19_S2: case R_MIPS_PC21_S2: case R_MIPS_PC26_S2: case R_MIPS_PCHI16: case R_MIPS_PCLO16: return R_PC; case R_MIPS_GOT16: if (S.isLocal()) return R_MIPS_GOT_LOCAL_PAGE; // fallthrough case R_MIPS_CALL16: case R_MIPS_GOT_DISP: case R_MIPS_TLS_GOTTPREL: return R_MIPS_GOT_OFF; case R_MIPS_CALL_HI16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_HI16: case R_MIPS_GOT_LO16: return R_MIPS_GOT_OFF32; case R_MIPS_GOT_PAGE: return R_MIPS_GOT_LOCAL_PAGE; case R_MIPS_TLS_GD: return R_MIPS_TLSGD; case R_MIPS_TLS_LDM: return R_MIPS_TLSLD; } } template bool MipsTargetInfo::isPicRel(uint32_t Type) const { return Type == R_MIPS_32 || Type == R_MIPS_64; } template uint32_t MipsTargetInfo::getDynRel(uint32_t Type) const { return RelativeRel; } template bool MipsTargetInfo::isTlsLocalDynamicRel(uint32_t Type) const { return Type == R_MIPS_TLS_LDM; } template void MipsTargetInfo::writeGotPlt(uint8_t *Buf, const SymbolBody &) const { write32(Buf, In::Plt->getVA()); } template static int64_t getPcRelocAddend(const uint8_t *Loc) { uint32_t Instr = read32(Loc); uint32_t Mask = 0xffffffff >> (32 - BSIZE); return SignExtend64((Instr & Mask) << SHIFT); } template static void applyMipsPcReloc(uint8_t *Loc, uint32_t Type, uint64_t V) { uint32_t Mask = 0xffffffff >> (32 - BSIZE); uint32_t Instr = read32(Loc); if (SHIFT > 0) checkAlignment<(1 << SHIFT)>(Loc, V, Type); checkInt(Loc, V, Type); write32(Loc, (Instr & ~Mask) | ((V >> SHIFT) & Mask)); } template static void writeMipsHi16(uint8_t *Loc, uint64_t V) { uint32_t Instr = read32(Loc); uint16_t Res = ((V + 0x8000) >> 16) & 0xffff; write32(Loc, (Instr & 0xffff0000) | Res); } template static void writeMipsHigher(uint8_t *Loc, uint64_t V) { uint32_t Instr = read32(Loc); uint16_t Res = ((V + 0x80008000) >> 32) & 0xffff; write32(Loc, (Instr & 0xffff0000) | Res); } template static void writeMipsHighest(uint8_t *Loc, uint64_t V) { uint32_t Instr = read32(Loc); uint16_t Res = ((V + 0x800080008000) >> 48) & 0xffff; write32(Loc, (Instr & 0xffff0000) | Res); } template static void writeMipsLo16(uint8_t *Loc, uint64_t V) { uint32_t Instr = read32(Loc); write32(Loc, (Instr & 0xffff0000) | (V & 0xffff)); } template static bool isMipsR6() { const auto &FirstObj = cast>(*Config->FirstElf); uint32_t Arch = FirstObj.getObj().getHeader()->e_flags & EF_MIPS_ARCH; return Arch == EF_MIPS_ARCH_32R6 || Arch == EF_MIPS_ARCH_64R6; } template void MipsTargetInfo::writePltHeader(uint8_t *Buf) const { const endianness E = ELFT::TargetEndianness; if (Config->MipsN32Abi) { write32(Buf, 0x3c0e0000); // lui $14, %hi(&GOTPLT[0]) write32(Buf + 4, 0x8dd90000); // lw $25, %lo(&GOTPLT[0])($14) write32(Buf + 8, 0x25ce0000); // addiu $14, $14, %lo(&GOTPLT[0]) write32(Buf + 12, 0x030ec023); // subu $24, $24, $14 } else { write32(Buf, 0x3c1c0000); // lui $28, %hi(&GOTPLT[0]) write32(Buf + 4, 0x8f990000); // lw $25, %lo(&GOTPLT[0])($28) write32(Buf + 8, 0x279c0000); // addiu $28, $28, %lo(&GOTPLT[0]) write32(Buf + 12, 0x031cc023); // subu $24, $24, $28 } write32(Buf + 16, 0x03e07825); // move $15, $31 write32(Buf + 20, 0x0018c082); // srl $24, $24, 2 write32(Buf + 24, 0x0320f809); // jalr $25 write32(Buf + 28, 0x2718fffe); // subu $24, $24, 2 uint64_t GotPlt = In::GotPlt->getVA(); writeMipsHi16(Buf, GotPlt); writeMipsLo16(Buf + 4, GotPlt); writeMipsLo16(Buf + 8, GotPlt); } template void MipsTargetInfo::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr, int32_t Index, unsigned RelOff) const { const endianness E = ELFT::TargetEndianness; write32(Buf, 0x3c0f0000); // lui $15, %hi(.got.plt entry) write32(Buf + 4, 0x8df90000); // l[wd] $25, %lo(.got.plt entry)($15) // jr $25 write32(Buf + 8, isMipsR6() ? 0x03200009 : 0x03200008); write32(Buf + 12, 0x25f80000); // addiu $24, $15, %lo(.got.plt entry) writeMipsHi16(Buf, GotPltEntryAddr); writeMipsLo16(Buf + 4, GotPltEntryAddr); writeMipsLo16(Buf + 12, GotPltEntryAddr); } template bool MipsTargetInfo::needsThunk(RelExpr Expr, uint32_t Type, const InputFile *File, const SymbolBody &S) const { // Any MIPS PIC code function is invoked with its address in register $t9. // So if we have a branch instruction from non-PIC code to the PIC one // we cannot make the jump directly and need to create a small stubs // to save the target function address. // See page 3-38 ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (Type != R_MIPS_26) return false; auto *F = dyn_cast_or_null>(File); if (!F) return false; // If current file has PIC code, LA25 stub is not required. if (F->getObj().getHeader()->e_flags & EF_MIPS_PIC) return false; auto *D = dyn_cast(&S); // LA25 is required if target file has PIC code // or target symbol is a PIC symbol. return D && D->isMipsPIC(); } template int64_t MipsTargetInfo::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const { const endianness E = ELFT::TargetEndianness; switch (Type) { default: return 0; case R_MIPS_32: case R_MIPS_GPREL32: case R_MIPS_TLS_DTPREL32: case R_MIPS_TLS_TPREL32: return SignExtend64<32>(read32(Buf)); case R_MIPS_26: // FIXME (simon): If the relocation target symbol is not a PLT entry // we should use another expression for calculation: // ((A << 2) | (P & 0xf0000000)) >> 2 return SignExtend64<28>((read32(Buf) & 0x3ffffff) << 2); case R_MIPS_GPREL16: case R_MIPS_LO16: case R_MIPS_PCLO16: case R_MIPS_TLS_DTPREL_HI16: case R_MIPS_TLS_DTPREL_LO16: case R_MIPS_TLS_TPREL_HI16: case R_MIPS_TLS_TPREL_LO16: return SignExtend64<16>(read32(Buf)); case R_MIPS_PC16: return getPcRelocAddend(Buf); case R_MIPS_PC19_S2: return getPcRelocAddend(Buf); case R_MIPS_PC21_S2: return getPcRelocAddend(Buf); case R_MIPS_PC26_S2: return getPcRelocAddend(Buf); case R_MIPS_PC32: return getPcRelocAddend(Buf); } } static std::pair calculateMipsRelChain(uint8_t *Loc, uint32_t Type, uint64_t Val) { // MIPS N64 ABI packs multiple relocations into the single relocation // record. In general, all up to three relocations can have arbitrary // types. In fact, Clang and GCC uses only a few combinations. For now, // we support two of them. That is allow to pass at least all LLVM // test suite cases. // / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16 // / R_MIPS_64 / R_MIPS_NONE // The first relocation is a 'real' relocation which is calculated // using the corresponding symbol's value. The second and the third // relocations used to modify result of the first one: extend it to // 64-bit, extract high or low part etc. For details, see part 2.9 Relocation // at the https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf uint32_t Type2 = (Type >> 8) & 0xff; uint32_t Type3 = (Type >> 16) & 0xff; if (Type2 == R_MIPS_NONE && Type3 == R_MIPS_NONE) return std::make_pair(Type, Val); if (Type2 == R_MIPS_64 && Type3 == R_MIPS_NONE) return std::make_pair(Type2, Val); if (Type2 == R_MIPS_SUB && (Type3 == R_MIPS_HI16 || Type3 == R_MIPS_LO16)) return std::make_pair(Type3, -Val); error(getErrorLocation(Loc) + "unsupported relocations combination " + Twine(Type)); return std::make_pair(Type & 0xff, Val); } template void MipsTargetInfo::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const { const endianness E = ELFT::TargetEndianness; // Thread pointer and DRP offsets from the start of TLS data area. // https://www.linux-mips.org/wiki/NPTL if (Type == R_MIPS_TLS_DTPREL_HI16 || Type == R_MIPS_TLS_DTPREL_LO16 || Type == R_MIPS_TLS_DTPREL32 || Type == R_MIPS_TLS_DTPREL64) Val -= 0x8000; else if (Type == R_MIPS_TLS_TPREL_HI16 || Type == R_MIPS_TLS_TPREL_LO16 || Type == R_MIPS_TLS_TPREL32 || Type == R_MIPS_TLS_TPREL64) Val -= 0x7000; if (ELFT::Is64Bits || Config->MipsN32Abi) std::tie(Type, Val) = calculateMipsRelChain(Loc, Type, Val); switch (Type) { case R_MIPS_32: case R_MIPS_GPREL32: case R_MIPS_TLS_DTPREL32: case R_MIPS_TLS_TPREL32: write32(Loc, Val); break; case R_MIPS_64: case R_MIPS_TLS_DTPREL64: case R_MIPS_TLS_TPREL64: write64(Loc, Val); break; case R_MIPS_26: write32(Loc, (read32(Loc) & ~0x3ffffff) | ((Val >> 2) & 0x3ffffff)); break; case R_MIPS_GOT16: // The R_MIPS_GOT16 relocation's value in "relocatable" linking mode // is updated addend (not a GOT index). In that case write high 16 bits // to store a correct addend value. if (Config->Relocatable) writeMipsHi16(Loc, Val); else { checkInt<16>(Loc, Val, Type); writeMipsLo16(Loc, Val); } break; case R_MIPS_GOT_DISP: case R_MIPS_GOT_PAGE: case R_MIPS_GPREL16: case R_MIPS_TLS_GD: case R_MIPS_TLS_LDM: checkInt<16>(Loc, Val, Type); // fallthrough case R_MIPS_CALL16: case R_MIPS_CALL_LO16: case R_MIPS_GOT_LO16: case R_MIPS_GOT_OFST: case R_MIPS_LO16: case R_MIPS_PCLO16: case R_MIPS_TLS_DTPREL_LO16: case R_MIPS_TLS_GOTTPREL: case R_MIPS_TLS_TPREL_LO16: writeMipsLo16(Loc, Val); break; case R_MIPS_CALL_HI16: case R_MIPS_GOT_HI16: case R_MIPS_HI16: case R_MIPS_PCHI16: case R_MIPS_TLS_DTPREL_HI16: case R_MIPS_TLS_TPREL_HI16: writeMipsHi16(Loc, Val); break; case R_MIPS_HIGHER: writeMipsHigher(Loc, Val); break; case R_MIPS_HIGHEST: writeMipsHighest(Loc, Val); break; case R_MIPS_JALR: // Ignore this optimization relocation for now break; case R_MIPS_PC16: applyMipsPcReloc(Loc, Type, Val); break; case R_MIPS_PC19_S2: applyMipsPcReloc(Loc, Type, Val); break; case R_MIPS_PC21_S2: applyMipsPcReloc(Loc, Type, Val); break; case R_MIPS_PC26_S2: applyMipsPcReloc(Loc, Type, Val); break; case R_MIPS_PC32: applyMipsPcReloc(Loc, Type, Val); break; default: error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type)); } } template bool MipsTargetInfo::usesOnlyLowPageBits(uint32_t Type) const { return Type == R_MIPS_LO16 || Type == R_MIPS_GOT_OFST; } } }