//===- Writer.cpp ---------------------------------------------------------===// // // The LLVM Linker // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "Writer.h" #include "Config.h" #include "Filesystem.h" #include "LinkerScript.h" #include "MapFile.h" #include "Memory.h" #include "OutputSections.h" #include "Relocations.h" #include "Strings.h" #include "SymbolTable.h" #include "SyntheticSections.h" #include "Target.h" #include "Threads.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/FileOutputBuffer.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support; using namespace llvm::support::endian; using namespace lld; using namespace lld::elf; namespace { // The writer writes a SymbolTable result to a file. template class Writer { public: typedef typename ELFT::Shdr Elf_Shdr; typedef typename ELFT::Ehdr Elf_Ehdr; typedef typename ELFT::Phdr Elf_Phdr; void run(); private: void createSyntheticSections(); void copyLocalSymbols(); void addSectionSymbols(); void addReservedSymbols(); void createSections(); void forEachRelSec(std::function Fn); void sortSections(); void finalizeSections(); void addPredefinedSections(); std::vector createPhdrs(); void removeEmptyPTLoad(); void addPtArmExid(std::vector &Phdrs); void assignFileOffsets(); void assignFileOffsetsBinary(); void setPhdrs(); void fixHeaders(); void fixSectionAlignments(); void fixPredefinedSymbols(); void openFile(); void writeHeader(); void writeSections(); void writeSectionsBinary(); void writeBuildId(); std::unique_ptr Buffer; std::vector OutputSections; OutputSectionFactory Factory{OutputSections}; void addRelIpltSymbols(); void addStartEndSymbols(); void addStartStopSymbols(OutputSection *Sec); uint64_t getEntryAddr(); OutputSection *findSection(StringRef Name); std::vector Phdrs; uint64_t FileSize; uint64_t SectionHeaderOff; bool AllocateHeader = true; }; } // anonymous namespace StringRef elf::getOutputSectionName(StringRef Name) { if (Config->Relocatable) return Name; // If -emit-relocs is given (which is rare), we need to copy // relocation sections to the output. If input section .foo is // output as .bar, we want to rename .rel.foo .rel.bar as well. if (Config->EmitRelocs) { for (StringRef V : {".rel.", ".rela."}) { if (Name.startswith(V)) { StringRef Inner = getOutputSectionName(Name.substr(V.size() - 1)); return Saver.save(V.drop_back() + Inner); } } } for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.", ".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.", ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) { StringRef Prefix = V.drop_back(); if (Name.startswith(V) || Name == Prefix) return Prefix; } // CommonSection is identified as "COMMON" in linker scripts. // By default, it should go to .bss section. if (Name == "COMMON") return ".bss"; // ".zdebug_" is a prefix for ZLIB-compressed sections. // Because we decompressed input sections, we want to remove 'z'. if (Name.startswith(".zdebug_")) return Saver.save("." + Name.substr(2)); return Name; } template static bool needsInterpSection() { return !Symtab::X->getSharedFiles().empty() && !Config->DynamicLinker.empty() && !Script->ignoreInterpSection(); } template void elf::writeResult() { Writer().run(); } template void Writer::removeEmptyPTLoad() { auto I = std::remove_if(Phdrs.begin(), Phdrs.end(), [&](const PhdrEntry &P) { if (P.p_type != PT_LOAD) return false; if (!P.First) return true; uint64_t Size = P.Last->Addr + P.Last->Size - P.First->Addr; return Size == 0; }); Phdrs.erase(I, Phdrs.end()); } // This function scans over the input sections and creates mergeable // synthetic sections. It removes MergeInputSections from array and // adds new synthetic ones. Each synthetic section is added to the // location of the first input section it replaces. static void combineMergableSections() { std::vector MergeSections; for (InputSectionBase *&S : InputSections) { MergeInputSection *MS = dyn_cast(S); if (!MS) continue; // We do not want to handle sections that are not alive, so just remove // them instead of trying to merge. if (!MS->Live) continue; StringRef OutsecName = getOutputSectionName(MS->Name); uint64_t Flags = MS->Flags & ~(uint64_t)(SHF_GROUP | SHF_COMPRESSED); uint32_t Alignment = std::max(MS->Alignment, MS->Entsize); auto I = llvm::find_if(MergeSections, [=](MergeSyntheticSection *Sec) { return Sec->Name == OutsecName && Sec->Flags == Flags && Sec->Alignment == Alignment; }); if (I == MergeSections.end()) { MergeSyntheticSection *Syn = make(OutsecName, MS->Type, Flags, Alignment); MergeSections.push_back(Syn); I = std::prev(MergeSections.end()); S = Syn; } else { S = nullptr; } (*I)->addSection(MS); } std::vector &V = InputSections; V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); } template static void combineEhFrameSections() { for (InputSectionBase *&S : InputSections) { EhInputSection *ES = dyn_cast(S); if (!ES || !ES->Live) continue; In::EhFrame->addSection(ES); S = nullptr; } std::vector &V = InputSections; V.erase(std::remove(V.begin(), V.end(), nullptr), V.end()); } // The main function of the writer. template void Writer::run() { // Create linker-synthesized sections such as .got or .plt. // Such sections are of type input section. createSyntheticSections(); combineMergableSections(); if (!Config->Relocatable) combineEhFrameSections(); // We need to create some reserved symbols such as _end. Create them. if (!Config->Relocatable) addReservedSymbols(); // Create output sections. Script->OutputSections = &OutputSections; if (Script->Opt.HasSections) { // If linker script contains SECTIONS commands, let it create sections. Script->processCommands(Factory); // Linker scripts may have left some input sections unassigned. // Assign such sections using the default rule. Script->addOrphanSections(Factory); } else { // If linker script does not contain SECTIONS commands, create // output sections by default rules. We still need to give the // linker script a chance to run, because it might contain // non-SECTIONS commands such as ASSERT. createSections(); Script->processCommands(Factory); } if (Config->Discard != DiscardPolicy::All) copyLocalSymbols(); if (Config->CopyRelocs) addSectionSymbols(); // Now that we have a complete set of output sections. This function // completes section contents. For example, we need to add strings // to the string table, and add entries to .got and .plt. // finalizeSections does that. finalizeSections(); if (ErrorCount) return; if (Config->Relocatable) { assignFileOffsets(); } else { if (!Script->Opt.HasSections) { fixSectionAlignments(); Script->fabricateDefaultCommands(AllocateHeader); } Script->synchronize(); Script->assignAddresses(Phdrs); // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a // 0 sized region. This has to be done late since only after assignAddresses // we know the size of the sections. removeEmptyPTLoad(); if (!Config->OFormatBinary) assignFileOffsets(); else assignFileOffsetsBinary(); setPhdrs(); fixPredefinedSymbols(); } // It does not make sense try to open the file if we have error already. if (ErrorCount) return; // Write the result down to a file. openFile(); if (ErrorCount) return; if (!Config->OFormatBinary) { writeHeader(); writeSections(); } else { writeSectionsBinary(); } // Backfill .note.gnu.build-id section content. This is done at last // because the content is usually a hash value of the entire output file. writeBuildId(); if (ErrorCount) return; // Handle -Map option. writeMapFile(OutputSections); if (ErrorCount) return; if (auto EC = Buffer->commit()) error("failed to write to the output file: " + EC.message()); // Flush the output streams and exit immediately. A full shutdown // is a good test that we are keeping track of all allocated memory, // but actually freeing it is a waste of time in a regular linker run. if (Config->ExitEarly) exitLld(0); } // Initialize Out members. template void Writer::createSyntheticSections() { // Initialize all pointers with NULL. This is needed because // you can call lld::elf::main more than once as a library. memset(&Out::First, 0, sizeof(Out)); auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); }; In::DynStrTab = make(".dynstr", true); In::Dynamic = make>(); In::RelaDyn = make>( Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc); In::ShStrTab = make(".shstrtab", false); Out::ElfHeader = make("", 0, SHF_ALLOC); Out::ElfHeader->Size = sizeof(Elf_Ehdr); Out::ProgramHeaders = make("", 0, SHF_ALLOC); Out::ProgramHeaders->updateAlignment(Config->Wordsize); if (needsInterpSection()) { In::Interp = createInterpSection(); Add(In::Interp); } else { In::Interp = nullptr; } if (!Config->Relocatable) Add(createCommentSection()); if (Config->Strip != StripPolicy::All) { In::StrTab = make(".strtab", false); In::SymTab = make>(*In::StrTab); } if (Config->BuildId != BuildIdKind::None) { In::BuildId = make(); Add(In::BuildId); } In::Common = createCommonSection(); if (In::Common) Add(InX::Common); In::Bss = make(".bss"); Add(In::Bss); In::BssRelRo = make(".bss.rel.ro"); Add(In::BssRelRo); // Add MIPS-specific sections. bool HasDynSymTab = !Symtab::X->getSharedFiles().empty() || Config->Pic || Config->ExportDynamic; if (Config->EMachine == EM_MIPS) { if (!Config->Shared && HasDynSymTab) { In::MipsRldMap = make(); Add(In::MipsRldMap); } if (auto *Sec = MipsAbiFlagsSection::create()) Add(Sec); if (auto *Sec = MipsOptionsSection::create()) Add(Sec); if (auto *Sec = MipsReginfoSection::create()) Add(Sec); } if (HasDynSymTab) { In::DynSymTab = make>(*In::DynStrTab); Add(In::DynSymTab); In::VerSym = make>(); Add(In::VerSym); if (!Config->VersionDefinitions.empty()) { In::VerDef = make>(); Add(In::VerDef); } In::VerNeed = make>(); Add(In::VerNeed); if (Config->GnuHash) { In::GnuHashTab = make>(); Add(In::GnuHashTab); } if (Config->SysvHash) { In::HashTab = make>(); Add(In::HashTab); } Add(In::Dynamic); Add(In::DynStrTab); Add(In::RelaDyn); } // Add .got. MIPS' .got is so different from the other archs, // it has its own class. if (Config->EMachine == EM_MIPS) { In::MipsGot = make(); Add(In::MipsGot); } else { In::Got = make>(); Add(In::Got); } In::GotPlt = make(); Add(In::GotPlt); In::IgotPlt = make(); Add(In::IgotPlt); if (Config->GdbIndex) { In::GdbIndex = make(); Add(In::GdbIndex); } // We always need to add rel[a].plt to output if it has entries. // Even for static linking it can contain R_[*]_IRELATIVE relocations. In::RelaPlt = make>( Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/); Add(In::RelaPlt); // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure // that the IRelative relocations are processed last by the dynamic loader In::RelaIplt = make>( (Config->EMachine == EM_ARM) ? ".rel.dyn" : In::RelaPlt->Name, false /*Sort*/); Add(In::RelaIplt); In::Plt = make(Target->PltHeaderSize); Add(In::Plt); In::Iplt = make(0); Add(In::Iplt); if (!Config->Relocatable) { if (Config->EhFrameHdr) { In::EhFrameHdr = make>(); Add(In::EhFrameHdr); } In::EhFrame = make>(); Add(In::EhFrame); } if (In::SymTab) Add(In::SymTab); Add(In::ShStrTab); if (In::StrTab) Add(In::StrTab); } static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName, const SymbolBody &B) { if (B.isFile() || B.isSection()) return false; // If sym references a section in a discarded group, don't keep it. if (Sec == &InputSection::Discarded) return false; if (Config->Discard == DiscardPolicy::None) return true; // In ELF assembly .L symbols are normally discarded by the assembler. // If the assembler fails to do so, the linker discards them if // * --discard-locals is used. // * The symbol is in a SHF_MERGE section, which is normally the reason for // the assembler keeping the .L symbol. if (!SymName.startswith(".L") && !SymName.empty()) return true; if (Config->Discard == DiscardPolicy::Locals) return false; return !Sec || !(Sec->Flags & SHF_MERGE); } static bool includeInSymtab(const SymbolBody &B) { if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) return false; if (auto *D = dyn_cast(&B)) { // Always include absolute symbols. SectionBase *Sec = D->Section; if (!Sec) return true; if (auto *IS = dyn_cast(Sec)) { Sec = IS->Repl; IS = cast(Sec); // Exclude symbols pointing to garbage-collected sections. if (!IS->Live) return false; } if (auto *S = dyn_cast(Sec)) if (!S->getSectionPiece(D->Value)->Live) return false; } return true; } // Local symbols are not in the linker's symbol table. This function scans // each object file's symbol table to copy local symbols to the output. template void Writer::copyLocalSymbols() { if (!In::SymTab) return; for (elf::ObjectFile *F : Symtab::X->getObjectFiles()) { for (SymbolBody *B : F->getLocalSymbols()) { if (!B->IsLocal) fatal(toString(F) + ": broken object: getLocalSymbols returns a non-local symbol"); auto *DR = dyn_cast(B); // No reason to keep local undefined symbol in symtab. if (!DR) continue; if (!includeInSymtab(*B)) continue; SectionBase *Sec = DR->Section; if (!shouldKeepInSymtab(Sec, B->getName(), *B)) continue; In::SymTab->addSymbol(B); } } } template void Writer::addSectionSymbols() { // Create one STT_SECTION symbol for each output section we might // have a relocation with. for (OutputSection *Sec : OutputSections) { if (Sec->Sections.empty()) continue; InputSection *IS = Sec->Sections[0]; if (isa(IS) || IS->Type == SHT_REL || IS->Type == SHT_RELA) continue; auto *Sym = make("", /*IsLocal=*/true, /*StOther=*/0, STT_SECTION, /*Value=*/0, /*Size=*/0, IS, nullptr); In::SymTab->addSymbol(Sym); } } // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that // we would like to make sure appear is a specific order to maximize their // coverage by a single signed 16-bit offset from the TOC base pointer. // Conversely, the special .tocbss section should be first among all SHT_NOBITS // sections. This will put it next to the loaded special PPC64 sections (and, // thus, within reach of the TOC base pointer). static int getPPC64SectionRank(StringRef SectionName) { return StringSwitch(SectionName) .Case(".tocbss", 0) .Case(".branch_lt", 2) .Case(".toc", 3) .Case(".toc1", 4) .Case(".opd", 5) .Default(1); } // All sections with SHF_MIPS_GPREL flag should be grouped together // because data in these sections is addressable with a gp relative address. static int getMipsSectionRank(const OutputSection *S) { if ((S->Flags & SHF_MIPS_GPREL) == 0) return 0; if (S->Name == ".got") return 1; return 2; } // Today's loaders have a feature to make segments read-only after // processing dynamic relocations to enhance security. PT_GNU_RELRO // is defined for that. // // This function returns true if a section needs to be put into a // PT_GNU_RELRO segment. template bool elf::isRelroSection(const OutputSection *Sec) { if (!Config->ZRelro) return false; uint64_t Flags = Sec->Flags; // Non-allocatable or non-writable sections don't need RELRO because // they are not writable or not even mapped to memory in the first place. // RELRO is for sections that are essentially read-only but need to // be writable only at process startup to allow dynamic linker to // apply relocations. if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) return false; // Once initialized, TLS data segments are used as data templates // for a thread-local storage. For each new thread, runtime // allocates memory for a TLS and copy templates there. No thread // are supposed to use templates directly. Thus, it can be in RELRO. if (Flags & SHF_TLS) return true; // .init_array, .preinit_array and .fini_array contain pointers to // functions that are executed on process startup or exit. These // pointers are set by the static linker, and they are not expected // to change at runtime. But if you are an attacker, you could do // interesting things by manipulating pointers in .fini_array, for // example. So they are put into RELRO. uint32_t Type = Sec->Type; if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || Type == SHT_PREINIT_ARRAY) return true; // .got contains pointers to external symbols. They are resolved by // the dynamic linker when a module is loaded into memory, and after // that they are not expected to change. So, it can be in RELRO. if (In::Got && Sec == In::Got->OutSec) return true; // .got.plt contains pointers to external function symbols. They are // by default resolved lazily, so we usually cannot put it into RELRO. // However, if "-z now" is given, the lazy symbol resolution is // disabled, which enables us to put it into RELRO. if (Sec == In::GotPlt->OutSec) return Config->ZNow; // .dynamic section contains data for the dynamic linker, and // there's no need to write to it at runtime, so it's better to put // it into RELRO. if (Sec == In::Dynamic->OutSec) return true; // .bss.rel.ro is used for copy relocations for read-only symbols. // Since the dynamic linker needs to process copy relocations, the // section cannot be read-only, but once initialized, they shouldn't // change. if (Sec == In::BssRelRo->OutSec) return true; // Sections with some special names are put into RELRO. This is a // bit unfortunate because section names shouldn't be significant in // ELF in spirit. But in reality many linker features depend on // magic section names. StringRef S = Sec->Name; return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || S == ".eh_frame" || S == ".openbsd.randomdata"; } template static bool compareSectionsNonScript(const OutputSection *A, const OutputSection *B) { // Put .interp first because some loaders want to see that section // on the first page of the executable file when loaded into memory. bool AIsInterp = A->Name == ".interp"; bool BIsInterp = B->Name == ".interp"; if (AIsInterp != BIsInterp) return AIsInterp; // Allocatable sections go first to reduce the total PT_LOAD size and // so debug info doesn't change addresses in actual code. bool AIsAlloc = A->Flags & SHF_ALLOC; bool BIsAlloc = B->Flags & SHF_ALLOC; if (AIsAlloc != BIsAlloc) return AIsAlloc; // We don't have any special requirements for the relative order of two non // allocatable sections. if (!AIsAlloc) return false; // We want to put section specified by -T option first, so we // can start assigning VA starting from them later. auto AAddrSetI = Config->SectionStartMap.find(A->Name); auto BAddrSetI = Config->SectionStartMap.find(B->Name); bool AHasAddrSet = AAddrSetI != Config->SectionStartMap.end(); bool BHasAddrSet = BAddrSetI != Config->SectionStartMap.end(); if (AHasAddrSet != BHasAddrSet) return AHasAddrSet; if (AHasAddrSet) return AAddrSetI->second < BAddrSetI->second; // We want the read only sections first so that they go in the PT_LOAD // covering the program headers at the start of the file. bool AIsWritable = A->Flags & SHF_WRITE; bool BIsWritable = B->Flags & SHF_WRITE; if (AIsWritable != BIsWritable) return BIsWritable; if (!Config->SingleRoRx) { // For a corresponding reason, put non exec sections first (the program // header PT_LOAD is not executable). // We only do that if we are not using linker scripts, since with linker // scripts ro and rx sections are in the same PT_LOAD, so their relative // order is not important. The same applies for -no-rosegment. bool AIsExec = A->Flags & SHF_EXECINSTR; bool BIsExec = B->Flags & SHF_EXECINSTR; if (AIsExec != BIsExec) return BIsExec; } // If we got here we know that both A and B are in the same PT_LOAD. bool AIsTls = A->Flags & SHF_TLS; bool BIsTls = B->Flags & SHF_TLS; bool AIsNoBits = A->Type == SHT_NOBITS; bool BIsNoBits = B->Type == SHT_NOBITS; // The first requirement we have is to put (non-TLS) nobits sections last. The // reason is that the only thing the dynamic linker will see about them is a // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the // PT_LOAD, so that has to correspond to the nobits sections. bool AIsNonTlsNoBits = AIsNoBits && !AIsTls; bool BIsNonTlsNoBits = BIsNoBits && !BIsTls; if (AIsNonTlsNoBits != BIsNonTlsNoBits) return BIsNonTlsNoBits; // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo // sections after r/w ones, so that the RelRo sections are contiguous. bool AIsRelRo = isRelroSection(A); bool BIsRelRo = isRelroSection(B); if (AIsRelRo != BIsRelRo) return AIsNonTlsNoBits ? AIsRelRo : BIsRelRo; // The TLS initialization block needs to be a single contiguous block in a R/W // PT_LOAD, so stick TLS sections directly before the other RelRo R/W // sections. The TLS NOBITS sections are placed here as they don't take up // virtual address space in the PT_LOAD. if (AIsTls != BIsTls) return AIsTls; // Within the TLS initialization block, the non-nobits sections need to appear // first. if (AIsNoBits != BIsNoBits) return BIsNoBits; // Some architectures have additional ordering restrictions for sections // within the same PT_LOAD. if (Config->EMachine == EM_PPC64) return getPPC64SectionRank(A->Name) < getPPC64SectionRank(B->Name); if (Config->EMachine == EM_MIPS) return getMipsSectionRank(A) < getMipsSectionRank(B); return false; } // Output section ordering is determined by this function. template static bool compareSections(const OutputSection *A, const OutputSection *B) { // For now, put sections mentioned in a linker script first. int AIndex = Script->getSectionIndex(A->Name); int BIndex = Script->getSectionIndex(B->Name); bool AInScript = AIndex != INT_MAX; bool BInScript = BIndex != INT_MAX; if (AInScript != BInScript) return AInScript; // If both are in the script, use that order. if (AInScript) return AIndex < BIndex; return compareSectionsNonScript(A, B); } // Program header entry PhdrEntry::PhdrEntry(unsigned Type, unsigned Flags) { p_type = Type; p_flags = Flags; } void PhdrEntry::add(OutputSection *Sec) { Last = Sec; if (!First) First = Sec; p_align = std::max(p_align, Sec->Alignment); if (p_type == PT_LOAD) Sec->FirstInPtLoad = First; } template static Symbol *addRegular(StringRef Name, SectionBase *Sec, uint64_t Value, uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_WEAK) { // The linker generated symbols are added as STB_WEAK to allow user defined // ones to override them. return Symtab::X->addRegular(Name, StOther, STT_NOTYPE, Value, /*Size=*/0, Binding, Sec, /*File=*/nullptr); } template static DefinedRegular * addOptionalRegular(StringRef Name, SectionBase *Sec, uint64_t Val, uint8_t StOther = STV_HIDDEN, uint8_t Binding = STB_GLOBAL) { SymbolBody *S = Symtab::X->find(Name); if (!S) return nullptr; if (S->isInCurrentDSO()) return nullptr; return cast( addRegular(Name, Sec, Val, StOther, Binding)->body()); } // The beginning and the ending of .rel[a].plt section are marked // with __rel[a]_iplt_{start,end} symbols if it is a statically linked // executable. The runtime needs these symbols in order to resolve // all IRELATIVE relocs on startup. For dynamic executables, we don't // need these symbols, since IRELATIVE relocs are resolved through GOT // and PLT. For details, see http://www.airs.com/blog/archives/403. template void Writer::addRelIpltSymbols() { if (In::DynSymTab) return; StringRef S = Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start"; addOptionalRegular(S, In::RelaIplt, 0, STV_HIDDEN, STB_WEAK); S = Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end"; addOptionalRegular(S, In::RelaIplt, -1, STV_HIDDEN, STB_WEAK); } // The linker is expected to define some symbols depending on // the linking result. This function defines such symbols. template void Writer::addReservedSymbols() { if (Config->EMachine == EM_MIPS) { // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer // so that it points to an absolute address which by default is relative // to GOT. Default offset is 0x7ff0. // See "Global Data Symbols" in Chapter 6 in the following document: // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf ElfSym::MipsGp = Symtab::X->addAbsolute("_gp", STV_HIDDEN, STB_LOCAL); // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between // start of function and 'gp' pointer into GOT. if (Symtab::X->find("_gp_disp")) ElfSym::MipsGpDisp = Symtab::X->addAbsolute("_gp_disp", STV_HIDDEN, STB_LOCAL); // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' // pointer. This symbol is used in the code generated by .cpload pseudo-op // in case of using -mno-shared option. // https://sourceware.org/ml/binutils/2004-12/msg00094.html if (Symtab::X->find("__gnu_local_gp")) ElfSym::MipsLocalGp = Symtab::X->addAbsolute("__gnu_local_gp", STV_HIDDEN, STB_LOCAL); } // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol // is magical and is used to produce a R_386_GOTPC relocation. // The R_386_GOTPC relocation value doesn't actually depend on the // symbol value, so it could use an index of STN_UNDEF which, according // to the spec, means the symbol value is 0. // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in // the object file. // The situation is even stranger on x86_64 where the assembly doesn't // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as // an undefined symbol in the .o files. // Given that the symbol is effectively unused, we just create a dummy // hidden one to avoid the undefined symbol error. Symtab::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For // static linking the linker is required to optimize away any references to // __tls_get_addr, so it's not defined anywhere. Create a hidden definition // to avoid the undefined symbol error. if (!In::DynSymTab) Symtab::X->addIgnored("__tls_get_addr"); // If linker script do layout we do not need to create any standart symbols. if (Script->Opt.HasSections) return; // __ehdr_start is the location of ELF file headers. addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN); auto Add = [](StringRef S) { return addOptionalRegular(S, Out::ElfHeader, 0, STV_DEFAULT); }; ElfSym::Bss = Add("__bss_start"); ElfSym::End1 = Add("end"); ElfSym::End2 = Add("_end"); ElfSym::Etext1 = Add("etext"); ElfSym::Etext2 = Add("_etext"); ElfSym::Edata1 = Add("edata"); ElfSym::Edata2 = Add("_edata"); } // Sort input sections by section name suffixes for // __attribute__((init_priority(N))). static void sortInitFini(OutputSection *S) { if (S) reinterpret_cast(S)->sortInitFini(); } // Sort input sections by the special rule for .ctors and .dtors. static void sortCtorsDtors(OutputSection *S) { if (S) reinterpret_cast(S)->sortCtorsDtors(); } // Sort input sections using the list provided by --symbol-ordering-file. template static void sortBySymbolsOrder(ArrayRef OutputSections) { if (Config->SymbolOrderingFile.empty()) return; // Build a map from symbols to their priorities. Symbols that didn't // appear in the symbol ordering file have the lowest priority 0. // All explicitly mentioned symbols have negative (higher) priorities. DenseMap SymbolOrder; int Priority = -Config->SymbolOrderingFile.size(); for (StringRef S : Config->SymbolOrderingFile) SymbolOrder.insert({S, Priority++}); // Build a map from sections to their priorities. DenseMap SectionOrder; for (elf::ObjectFile *File : Symtab::X->getObjectFiles()) { for (SymbolBody *Body : File->getSymbols()) { auto *D = dyn_cast(Body); if (!D || !D->Section) continue; int &Priority = SectionOrder[D->Section]; Priority = std::min(Priority, SymbolOrder.lookup(D->getName())); } } // Sort sections by priority. for (OutputSection *Base : OutputSections) if (auto *Sec = dyn_cast(Base)) Sec->sort([&](InputSectionBase *S) { return SectionOrder.lookup(S); }); } template void Writer::forEachRelSec(std::function Fn) { for (InputSectionBase *IS : InputSections) { if (!IS->Live) continue; // Scan all relocations. Each relocation goes through a series // of tests to determine if it needs special treatment, such as // creating GOT, PLT, copy relocations, etc. // Note that relocations for non-alloc sections are directly // processed by InputSection::relocateNonAlloc. if (!(IS->Flags & SHF_ALLOC)) continue; if (isa(IS) || isa(IS)) Fn(*IS); } if (!Config->Relocatable) { for (EhInputSection *ES : In::EhFrame->Sections) Fn(*ES); } } template void Writer::createSections() { for (InputSectionBase *IS : InputSections) if (IS) Factory.addInputSec(IS, getOutputSectionName(IS->Name)); sortBySymbolsOrder(OutputSections); sortInitFini(findSection(".init_array")); sortInitFini(findSection(".fini_array")); sortCtorsDtors(findSection(".ctors")); sortCtorsDtors(findSection(".dtors")); for (OutputSection *Sec : OutputSections) Sec->assignOffsets(); } static bool canSharePtLoad(const OutputSection &S1, const OutputSection &S2) { if (!(S1.Flags & SHF_ALLOC) || !(S2.Flags & SHF_ALLOC)) return false; bool S1IsWrite = S1.Flags & SHF_WRITE; bool S2IsWrite = S2.Flags & SHF_WRITE; if (S1IsWrite != S2IsWrite) return false; if (!S1IsWrite) return true; // RO and RX share a PT_LOAD with linker scripts. return (S1.Flags & SHF_EXECINSTR) == (S2.Flags & SHF_EXECINSTR); } template void Writer::sortSections() { // Don't sort if using -r. It is not necessary and we want to preserve the // relative order for SHF_LINK_ORDER sections. if (Config->Relocatable) return; if (!Script->Opt.HasSections) { std::stable_sort(OutputSections.begin(), OutputSections.end(), compareSectionsNonScript); return; } Script->adjustSectionsBeforeSorting(); // The order of the sections in the script is arbitrary and may not agree with // compareSectionsNonScript. This means that we cannot easily define a // strict weak ordering. To see why, consider a comparison of a section in the // script and one not in the script. We have a two simple options: // * Make them equivalent (a is not less than b, and b is not less than a). // The problem is then that equivalence has to be transitive and we can // have sections a, b and c with only b in a script and a less than c // which breaks this property. // * Use compareSectionsNonScript. Given that the script order doesn't have // to match, we can end up with sections a, b, c, d where b and c are in the // script and c is compareSectionsNonScript less than b. In which case d // can be equivalent to c, a to b and d < a. As a concrete example: // .a (rx) # not in script // .b (rx) # in script // .c (ro) # in script // .d (ro) # not in script // // The way we define an order then is: // * First put script sections at the start and sort the script and // non-script sections independently. // * Move each non-script section to its preferred position. We try // to put each section in the last position where it it can share // a PT_LOAD. std::stable_sort(OutputSections.begin(), OutputSections.end(), compareSections); auto I = OutputSections.begin(); auto E = OutputSections.end(); auto NonScriptI = std::find_if(OutputSections.begin(), E, [](OutputSection *S) { return Script->getSectionIndex(S->Name) == INT_MAX; }); while (NonScriptI != E) { auto BestPos = std::max_element( I, NonScriptI, [&](OutputSection *&A, OutputSection *&B) { bool ACanSharePtLoad = canSharePtLoad(**NonScriptI, *A); bool BCanSharePtLoad = canSharePtLoad(**NonScriptI, *B); if (ACanSharePtLoad != BCanSharePtLoad) return BCanSharePtLoad; bool ACmp = compareSectionsNonScript(*NonScriptI, A); bool BCmp = compareSectionsNonScript(*NonScriptI, B); if (ACmp != BCmp) return BCmp; // FIXME: missing test size_t PosA = &A - &OutputSections[0]; size_t PosB = &B - &OutputSections[0]; return ACmp ? PosA > PosB : PosA < PosB; }); // max_element only returns NonScriptI if the range is empty. If the range // is not empty we should consider moving the the element forward one // position. if (BestPos != NonScriptI && !compareSectionsNonScript(*NonScriptI, *BestPos)) ++BestPos; std::rotate(BestPos, NonScriptI, NonScriptI + 1); ++NonScriptI; } Script->adjustSectionsAfterSorting(); } static void applySynthetic(const std::vector &Sections, std::function Fn) { for (SyntheticSection *SS : Sections) if (SS && SS->OutSec && !SS->empty()) { Fn(SS); SS->OutSec->assignOffsets(); } } // We need to add input synthetic sections early in createSyntheticSections() // to make them visible from linkescript side. But not all sections are always // required to be in output. For example we don't need dynamic section content // sometimes. This function filters out such unused sections from the output. static void removeUnusedSyntheticSections(std::vector &V) { // All input synthetic sections that can be empty are placed after // all regular ones. We iterate over them all and exit at first // non-synthetic. for (InputSectionBase *S : llvm::reverse(InputSections)) { SyntheticSection *SS = dyn_cast(S); if (!SS) return; if (!SS->empty() || !SS->OutSec) continue; SS->OutSec->Sections.erase(std::find(SS->OutSec->Sections.begin(), SS->OutSec->Sections.end(), SS)); SS->Live = false; // If there are no other sections in the output section, remove it from the // output. if (SS->OutSec->Sections.empty()) V.erase(std::find(V.begin(), V.end(), SS->OutSec)); } } // Create output section objects and add them to OutputSections. template void Writer::finalizeSections() { Out::DebugInfo = findSection(".debug_info"); Out::PreinitArray = findSection(".preinit_array"); Out::InitArray = findSection(".init_array"); Out::FiniArray = findSection(".fini_array"); // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop // symbols for sections, so that the runtime can get the start and end // addresses of each section by section name. Add such symbols. if (!Config->Relocatable) { addStartEndSymbols(); for (OutputSection *Sec : OutputSections) addStartStopSymbols(Sec); } // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. // It should be okay as no one seems to care about the type. // Even the author of gold doesn't remember why gold behaves that way. // https://sourceware.org/ml/binutils/2002-03/msg00360.html if (In::DynSymTab) addRegular("_DYNAMIC", In::Dynamic, 0); // Define __rel[a]_iplt_{start,end} symbols if needed. addRelIpltSymbols(); // This responsible for splitting up .eh_frame section into // pieces. The relocation scan uses those pieces, so this has to be // earlier. applySynthetic({In::EhFrame}, [](SyntheticSection *SS) { SS->finalizeContents(); }); // Scan relocations. This must be done after every symbol is declared so that // we can correctly decide if a dynamic relocation is needed. forEachRelSec(scanRelocations); if (In::Plt && !In::Plt->empty()) In::Plt->addSymbols(); if (In::Iplt && !In::Iplt->empty()) In::Iplt->addSymbols(); // Now that we have defined all possible global symbols including linker- // synthesized ones. Visit all symbols to give the finishing touches. for (Symbol *S : Symtab::X->getSymbols()) { SymbolBody *Body = S->body(); if (!includeInSymtab(*Body)) continue; if (In::SymTab) In::SymTab->addSymbol(Body); if (In::DynSymTab && S->includeInDynsym()) { In::DynSymTab->addSymbol(Body); if (auto *SS = dyn_cast(Body)) if (cast>(SS->File)->isNeeded()) In::VerNeed->addSymbol(SS); } } // Do not proceed if there was an undefined symbol. if (ErrorCount) return; // So far we have added sections from input object files. // This function adds linker-created Out::* sections. addPredefinedSections(); removeUnusedSyntheticSections(OutputSections); sortSections(); // This is a bit of a hack. A value of 0 means undef, so we set it // to 1 t make __ehdr_start defined. The section number is not // particularly relevant. Out::ElfHeader->SectionIndex = 1; unsigned I = 1; for (OutputSection *Sec : OutputSections) { Sec->SectionIndex = I++; Sec->ShName = In::ShStrTab->addString(Sec->Name); } // Binary and relocatable output does not have PHDRS. // The headers have to be created before finalize as that can influence the // image base and the dynamic section on mips includes the image base. if (!Config->Relocatable && !Config->OFormatBinary) { Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs(); addPtArmExid(Phdrs); fixHeaders(); } // Dynamic section must be the last one in this list and dynamic // symbol table section (DynSymTab) must be the first one. applySynthetic({In::DynSymTab, In::Bss, In::BssRelRo, In::GnuHashTab, In::HashTab, In::SymTab, In::ShStrTab, In::StrTab, In::VerDef, In::DynStrTab, In::GdbIndex, In::Got, In::MipsGot, In::IgotPlt, In::GotPlt, In::RelaDyn, In::RelaIplt, In::RelaPlt, In::Plt, In::Iplt, In::Plt, In::EhFrameHdr, In::VerSym, In::VerNeed, In::Dynamic}, [](SyntheticSection *SS) { SS->finalizeContents(); }); // Some architectures use small displacements for jump instructions. // It is linker's responsibility to create thunks containing long // jump instructions if jump targets are too far. Create thunks. if (Target->NeedsThunks) { // FIXME: only ARM Interworking and Mips LA25 Thunks are implemented, // these // do not require address information. To support range extension Thunks // we need to assign addresses so that we can tell if jump instructions // are out of range. This will need to turn into a loop that converges // when no more Thunks are added ThunkCreator TC; if (TC.createThunks(OutputSections)) applySynthetic({In::MipsGot}, [](SyntheticSection *SS) { SS->updateAllocSize(); }); } // Fill other section headers. The dynamic table is finalized // at the end because some tags like RELSZ depend on result // of finalizing other sections. for (OutputSection *Sec : OutputSections) Sec->finalize(); // If -compressed-debug-sections is specified, we need to compress // .debug_* sections. Do it right now because it changes the size of // output sections. parallelForEach(OutputSections.begin(), OutputSections.end(), [](OutputSection *S) { S->maybeCompress(); }); // createThunks may have added local symbols to the static symbol table applySynthetic({In::SymTab, In::ShStrTab, In::StrTab}, [](SyntheticSection *SS) { SS->postThunkContents(); }); } template void Writer::addPredefinedSections() { // ARM ABI requires .ARM.exidx to be terminated by some piece of data. // We have the terminater synthetic section class. Add that at the end. auto *OS = dyn_cast_or_null(findSection(".ARM.exidx")); if (OS && !OS->Sections.empty() && !Config->Relocatable) OS->addSection(make()); } // The linker is expected to define SECNAME_start and SECNAME_end // symbols for a few sections. This function defines them. template void Writer::addStartEndSymbols() { auto Define = [&](StringRef Start, StringRef End, OutputSection *OS) { // These symbols resolve to the image base if the section does not exist. // A special value -1 indicates end of the section. if (OS) { addOptionalRegular(Start, OS, 0); addOptionalRegular(End, OS, -1); } else { if (Config->Pic) OS = Out::ElfHeader; addOptionalRegular(Start, OS, 0); addOptionalRegular(End, OS, 0); } }; Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray); Define("__init_array_start", "__init_array_end", Out::InitArray); Define("__fini_array_start", "__fini_array_end", Out::FiniArray); if (OutputSection *Sec = findSection(".ARM.exidx")) Define("__exidx_start", "__exidx_end", Sec); } // If a section name is valid as a C identifier (which is rare because of // the leading '.'), linkers are expected to define __start_ and // __stop_ symbols. They are at beginning and end of the section, // respectively. This is not requested by the ELF standard, but GNU ld and // gold provide the feature, and used by many programs. template void Writer::addStartStopSymbols(OutputSection *Sec) { StringRef S = Sec->Name; if (!isValidCIdentifier(S)) return; addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_DEFAULT); addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_DEFAULT); } template OutputSection *Writer::findSection(StringRef Name) { for (OutputSection *Sec : OutputSections) if (Sec->Name == Name) return Sec; return nullptr; } static bool needsPtLoad(OutputSection *Sec) { if (!(Sec->Flags & SHF_ALLOC)) return false; // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is // responsible for allocating space for them, not the PT_LOAD that // contains the TLS initialization image. if (Sec->Flags & SHF_TLS && Sec->Type == SHT_NOBITS) return false; return true; } // Linker scripts are responsible for aligning addresses. Unfortunately, most // linker scripts are designed for creating two PT_LOADs only, one RX and one // RW. This means that there is no alignment in the RO to RX transition and we // cannot create a PT_LOAD there. static uint64_t computeFlags(uint64_t Flags) { if (Config->Omagic) return PF_R | PF_W | PF_X; if (Config->SingleRoRx && !(Flags & PF_W)) return Flags | PF_X; return Flags; } // Decide which program headers to create and which sections to include in each // one. template std::vector Writer::createPhdrs() { std::vector Ret; auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * { Ret.emplace_back(Type, Flags); return &Ret.back(); }; // The first phdr entry is PT_PHDR which describes the program header itself. AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders); // PT_INTERP must be the second entry if exists. if (OutputSection *Sec = findSection(".interp")) AddHdr(PT_INTERP, Sec->getPhdrFlags())->add(Sec); // Add the first PT_LOAD segment for regular output sections. uint64_t Flags = computeFlags(PF_R); PhdrEntry *Load = AddHdr(PT_LOAD, Flags); for (OutputSection *Sec : OutputSections) { if (!(Sec->Flags & SHF_ALLOC)) break; if (!needsPtLoad(Sec)) continue; // Segments are contiguous memory regions that has the same attributes // (e.g. executable or writable). There is one phdr for each segment. // Therefore, we need to create a new phdr when the next section has // different flags or is loaded at a discontiguous address using AT linker // script command. uint64_t NewFlags = computeFlags(Sec->getPhdrFlags()); if (Script->hasLMA(Sec->Name) || Flags != NewFlags) { Load = AddHdr(PT_LOAD, NewFlags); Flags = NewFlags; } Load->add(Sec); } // Add a TLS segment if any. PhdrEntry TlsHdr(PT_TLS, PF_R); for (OutputSection *Sec : OutputSections) if (Sec->Flags & SHF_TLS) TlsHdr.add(Sec); if (TlsHdr.First) Ret.push_back(std::move(TlsHdr)); // Add an entry for .dynamic. if (In::DynSymTab) AddHdr(PT_DYNAMIC, In::Dynamic->OutSec->getPhdrFlags()) ->add(In::Dynamic->OutSec); // PT_GNU_RELRO includes all sections that should be marked as // read-only by dynamic linker after proccessing relocations. PhdrEntry RelRo(PT_GNU_RELRO, PF_R); for (OutputSection *Sec : OutputSections) if (needsPtLoad(Sec) && isRelroSection(Sec)) RelRo.add(Sec); if (RelRo.First) Ret.push_back(std::move(RelRo)); // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. if (!In::EhFrame->empty() && In::EhFrameHdr && In::EhFrame->OutSec && In::EhFrameHdr->OutSec) AddHdr(PT_GNU_EH_FRAME, In::EhFrameHdr->OutSec->getPhdrFlags()) ->add(In::EhFrameHdr->OutSec); // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes // the dynamic linker fill the segment with random data. if (OutputSection *Sec = findSection(".openbsd.randomdata")) AddHdr(PT_OPENBSD_RANDOMIZE, Sec->getPhdrFlags())->add(Sec); // PT_GNU_STACK is a special section to tell the loader to make the // pages for the stack non-executable. If you really want an executable // stack, you can pass -z execstack, but that's not recommended for // security reasons. unsigned Perm; if (Config->ZExecstack) Perm = PF_R | PF_W | PF_X; else Perm = PF_R | PF_W; AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize; // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable // is expected to perform W^X violations, such as calling mprotect(2) or // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on // OpenBSD. if (Config->ZWxneeded) AddHdr(PT_OPENBSD_WXNEEDED, PF_X); // Create one PT_NOTE per a group of contiguous .note sections. PhdrEntry *Note = nullptr; for (OutputSection *Sec : OutputSections) { if (Sec->Type == SHT_NOTE) { if (!Note || Script->hasLMA(Sec->Name)) Note = AddHdr(PT_NOTE, PF_R); Note->add(Sec); } else { Note = nullptr; } } return Ret; } template void Writer::addPtArmExid(std::vector &Phdrs) { if (Config->EMachine != EM_ARM) return; auto I = std::find_if( OutputSections.begin(), OutputSections.end(), [](OutputSection *Sec) { return Sec->Type == SHT_ARM_EXIDX; }); if (I == OutputSections.end()) return; // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME PhdrEntry ARMExidx(PT_ARM_EXIDX, PF_R); ARMExidx.add(*I); Phdrs.push_back(ARMExidx); } // The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the // first section after PT_GNU_RELRO have to be page aligned so that the dynamic // linker can set the permissions. template void Writer::fixSectionAlignments() { for (const PhdrEntry &P : Phdrs) if (P.p_type == PT_LOAD && P.First) P.First->PageAlign = true; for (const PhdrEntry &P : Phdrs) { if (P.p_type != PT_GNU_RELRO) continue; if (P.First) P.First->PageAlign = true; // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we // have to align it to a page. auto End = OutputSections.end(); auto I = std::find(OutputSections.begin(), End, P.Last); if (I == End || (I + 1) == End) continue; OutputSection *Sec = *(I + 1); if (needsPtLoad(Sec)) Sec->PageAlign = true; } } bool elf::allocateHeaders(std::vector &Phdrs, ArrayRef OutputSections, uint64_t Min) { auto FirstPTLoad = std::find_if(Phdrs.begin(), Phdrs.end(), [](const PhdrEntry &E) { return E.p_type == PT_LOAD; }); if (FirstPTLoad == Phdrs.end()) return false; uint64_t HeaderSize = getHeaderSize(); if (HeaderSize > Min) { auto PhdrI = std::find_if(Phdrs.begin(), Phdrs.end(), [](const PhdrEntry &E) { return E.p_type == PT_PHDR; }); if (PhdrI != Phdrs.end()) Phdrs.erase(PhdrI); return false; } Min = alignDown(Min - HeaderSize, Config->MaxPageSize); if (!Script->Opt.HasSections) Config->ImageBase = Min = std::min(Min, Config->ImageBase); Out::ElfHeader->Addr = Min; Out::ProgramHeaders->Addr = Min + Out::ElfHeader->Size; if (Script->hasPhdrsCommands()) return true; if (FirstPTLoad->First) for (OutputSection *Sec : OutputSections) if (Sec->FirstInPtLoad == FirstPTLoad->First) Sec->FirstInPtLoad = Out::ElfHeader; FirstPTLoad->First = Out::ElfHeader; if (!FirstPTLoad->Last) FirstPTLoad->Last = Out::ProgramHeaders; return true; } // We should set file offsets and VAs for elf header and program headers // sections. These are special, we do not include them into output sections // list, but have them to simplify the code. template void Writer::fixHeaders() { Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size(); // If the script has SECTIONS, assignAddresses will compute the values. if (Script->Opt.HasSections) return; // When -T
option is specified, lower the base to make room for those // sections. uint64_t Min = -1; if (!Config->SectionStartMap.empty()) for (const auto &P : Config->SectionStartMap) Min = std::min(Min, P.second); AllocateHeader = allocateHeaders(Phdrs, OutputSections, Min); } // Adjusts the file alignment for a given output section and returns // its new file offset. The file offset must be the same with its // virtual address (modulo the page size) so that the loader can load // executables without any address adjustment. static uint64_t getFileAlignment(uint64_t Off, OutputSection *Sec) { OutputSection *First = Sec->FirstInPtLoad; // If the section is not in a PT_LOAD, we just have to align it. if (!First) return alignTo(Off, Sec->Alignment); // The first section in a PT_LOAD has to have congruent offset and address // module the page size. if (Sec == First) return alignTo(Off, Config->MaxPageSize, Sec->Addr); // If two sections share the same PT_LOAD the file offset is calculated // using this formula: Off2 = Off1 + (VA2 - VA1). return First->Offset + Sec->Addr - First->Addr; } static uint64_t setOffset(OutputSection *Sec, uint64_t Off) { if (Sec->Type == SHT_NOBITS) { Sec->Offset = Off; return Off; } Off = getFileAlignment(Off, Sec); Sec->Offset = Off; return Off + Sec->Size; } template void Writer::assignFileOffsetsBinary() { uint64_t Off = 0; for (OutputSection *Sec : OutputSections) if (Sec->Flags & SHF_ALLOC) Off = setOffset(Sec, Off); FileSize = alignTo(Off, Config->Wordsize); } // Assign file offsets to output sections. template void Writer::assignFileOffsets() { uint64_t Off = 0; Off = setOffset(Out::ElfHeader, Off); Off = setOffset(Out::ProgramHeaders, Off); for (OutputSection *Sec : OutputSections) Off = setOffset(Sec, Off); SectionHeaderOff = alignTo(Off, Config->Wordsize); FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); } // Finalize the program headers. We call this function after we assign // file offsets and VAs to all sections. template void Writer::setPhdrs() { for (PhdrEntry &P : Phdrs) { OutputSection *First = P.First; OutputSection *Last = P.Last; if (First) { P.p_filesz = Last->Offset - First->Offset; if (Last->Type != SHT_NOBITS) P.p_filesz += Last->Size; P.p_memsz = Last->Addr + Last->Size - First->Addr; P.p_offset = First->Offset; P.p_vaddr = First->Addr; if (!P.HasLMA) P.p_paddr = First->getLMA(); } if (P.p_type == PT_LOAD) P.p_align = Config->MaxPageSize; else if (P.p_type == PT_GNU_RELRO) P.p_align = 1; // The TLS pointer goes after PT_TLS. At least glibc will align it, // so round up the size to make sure the offsets are correct. if (P.p_type == PT_TLS) { Out::TlsPhdr = &P; if (P.p_memsz) P.p_memsz = alignTo(P.p_memsz, P.p_align); } } } // The entry point address is chosen in the following ways. // // 1. the '-e' entry command-line option; // 2. the ENTRY(symbol) command in a linker control script; // 3. the value of the symbol start, if present; // 4. the address of the first byte of the .text section, if present; // 5. the address 0. template uint64_t Writer::getEntryAddr() { // Case 1, 2 or 3. As a special case, if the symbol is actually // a number, we'll use that number as an address. if (SymbolBody *B = Symtab::X->find(Config->Entry)) return B->getVA(); uint64_t Addr; if (!Config->Entry.getAsInteger(0, Addr)) return Addr; // Case 4 if (OutputSection *Sec = findSection(".text")) { if (Config->WarnMissingEntry) warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" + utohexstr(Sec->Addr)); return Sec->Addr; } // Case 5 if (Config->WarnMissingEntry) warn("cannot find entry symbol " + Config->Entry + "; not setting start address"); return 0; } static uint16_t getELFType() { if (Config->Pic) return ET_DYN; if (Config->Relocatable) return ET_REL; return ET_EXEC; } // This function is called after we have assigned address and size // to each section. This function fixes some predefined // symbol values that depend on section address and size. template void Writer::fixPredefinedSymbols() { auto Set = [](DefinedRegular *S1, DefinedRegular *S2, OutputSection *Sec, uint64_t Value) { if (S1) { S1->Section = Sec; S1->Value = Value; } if (S2) { S2->Section = Sec; S2->Value = Value; } }; // _etext is the first location after the last read-only loadable segment. // _edata is the first location after the last read-write loadable segment. // _end is the first location after the uninitialized data region. PhdrEntry *Last = nullptr; PhdrEntry *LastRO = nullptr; PhdrEntry *LastRW = nullptr; for (PhdrEntry &P : Phdrs) { if (P.p_type != PT_LOAD) continue; Last = &P; if (P.p_flags & PF_W) LastRW = &P; else LastRO = &P; } if (Last) Set(ElfSym::End1, ElfSym::End2, Last->First, Last->p_memsz); if (LastRO) Set(ElfSym::Etext1, ElfSym::Etext2, LastRO->First, LastRO->p_filesz); if (LastRW) Set(ElfSym::Edata1, ElfSym::Edata2, LastRW->First, LastRW->p_filesz); if (ElfSym::Bss) ElfSym::Bss->Section = findSection(".bss"); // Setup MIPS _gp_disp/__gnu_local_gp symbols which should // be equal to the _gp symbol's value. if (Config->EMachine == EM_MIPS) { if (!ElfSym::MipsGp->Value) { // Find GP-relative section with the lowest address // and use this address to calculate default _gp value. uint64_t Gp = -1; for (const OutputSection *OS : OutputSections) if ((OS->Flags & SHF_MIPS_GPREL) && OS->Addr < Gp) Gp = OS->Addr; if (Gp != (uint64_t)-1) ElfSym::MipsGp->Value = Gp + 0x7ff0; } } } template void Writer::writeHeader() { uint8_t *Buf = Buffer->getBufferStart(); memcpy(Buf, "\177ELF", 4); // Write the ELF header. auto *EHdr = reinterpret_cast(Buf); EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32; EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB; EHdr->e_ident[EI_VERSION] = EV_CURRENT; EHdr->e_ident[EI_OSABI] = Config->OSABI; EHdr->e_type = getELFType(); EHdr->e_machine = Config->EMachine; EHdr->e_version = EV_CURRENT; EHdr->e_entry = getEntryAddr(); EHdr->e_shoff = SectionHeaderOff; EHdr->e_ehsize = sizeof(Elf_Ehdr); EHdr->e_phnum = Phdrs.size(); EHdr->e_shentsize = sizeof(Elf_Shdr); EHdr->e_shnum = OutputSections.size() + 1; EHdr->e_shstrndx = In::ShStrTab->OutSec->SectionIndex; if (Config->EMachine == EM_ARM) // We don't currently use any features incompatible with EF_ARM_EABI_VER5, // but we don't have any firm guarantees of conformance. Linux AArch64 // kernels (as of 2016) require an EABI version to be set. EHdr->e_flags = EF_ARM_EABI_VER5; else if (Config->EMachine == EM_MIPS) EHdr->e_flags = getMipsEFlags(); if (!Config->Relocatable) { EHdr->e_phoff = sizeof(Elf_Ehdr); EHdr->e_phentsize = sizeof(Elf_Phdr); } // Write the program header table. auto *HBuf = reinterpret_cast(Buf + EHdr->e_phoff); for (PhdrEntry &P : Phdrs) { HBuf->p_type = P.p_type; HBuf->p_flags = P.p_flags; HBuf->p_offset = P.p_offset; HBuf->p_vaddr = P.p_vaddr; HBuf->p_paddr = P.p_paddr; HBuf->p_filesz = P.p_filesz; HBuf->p_memsz = P.p_memsz; HBuf->p_align = P.p_align; ++HBuf; } // Write the section header table. Note that the first table entry is null. auto *SHdrs = reinterpret_cast(Buf + EHdr->e_shoff); for (OutputSection *Sec : OutputSections) Sec->writeHeaderTo(++SHdrs); } // Open a result file. template void Writer::openFile() { if (!Config->Is64 && FileSize > UINT32_MAX) { error("output file too large: " + Twine(FileSize) + " bytes"); return; } unlinkAsync(Config->OutputFile); ErrorOr> BufferOrErr = FileOutputBuffer::create(Config->OutputFile, FileSize, FileOutputBuffer::F_executable); if (auto EC = BufferOrErr.getError()) error("failed to open " + Config->OutputFile + ": " + EC.message()); else Buffer = std::move(*BufferOrErr); } template void Writer::writeSectionsBinary() { uint8_t *Buf = Buffer->getBufferStart(); for (OutputSection *Sec : OutputSections) if (Sec->Flags & SHF_ALLOC) Sec->writeTo(Buf + Sec->Offset); } // Write section contents to a mmap'ed file. template void Writer::writeSections() { uint8_t *Buf = Buffer->getBufferStart(); // PPC64 needs to process relocations in the .opd section // before processing relocations in code-containing sections. Out::Opd = findSection(".opd"); if (Out::Opd) { Out::OpdBuf = Buf + Out::Opd->Offset; Out::Opd->template writeTo(Buf + Out::Opd->Offset); } OutputSection *EhFrameHdr = In::EhFrameHdr ? In::EhFrameHdr->OutSec : nullptr; // In -r or -emit-relocs mode, write the relocation sections first as in // ELf_Rel targets we might find out that we need to modify the relocated // section while doing it. for (OutputSection *Sec : OutputSections) if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA) Sec->writeTo(Buf + Sec->Offset); for (OutputSection *Sec : OutputSections) if (Sec != Out::Opd && Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA) Sec->writeTo(Buf + Sec->Offset); // The .eh_frame_hdr depends on .eh_frame section contents, therefore // it should be written after .eh_frame is written. if (EhFrameHdr && !EhFrameHdr->Sections.empty()) EhFrameHdr->writeTo(Buf + EhFrameHdr->Offset); } template void Writer::writeBuildId() { if (!In::BuildId || !In::BuildId->OutSec) return; // Compute a hash of all sections of the output file. uint8_t *Start = Buffer->getBufferStart(); uint8_t *End = Start + FileSize; In::BuildId->writeBuildId({Start, End}); } template void elf::writeResult(); template void elf::writeResult(); template void elf::writeResult(); template void elf::writeResult(); template bool elf::isRelroSection(const OutputSection *); template bool elf::isRelroSection(const OutputSection *); template bool elf::isRelroSection(const OutputSection *); template bool elf::isRelroSection(const OutputSection *);