//===-- Scalar.h ------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLDB_UTILITY_SCALAR_H #define LLDB_UTILITY_SCALAR_H #include "lldb/Utility/Status.h" #include "lldb/lldb-enumerations.h" #include "lldb/lldb-private-types.h" #include "lldb/Utility/LLDBAssert.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include #include namespace lldb_private { class DataExtractor; class Stream; } // namespace lldb_private #define NUM_OF_WORDS_INT128 2 #define BITWIDTH_INT128 128 #define NUM_OF_WORDS_INT256 4 #define BITWIDTH_INT256 256 #define NUM_OF_WORDS_INT512 8 #define BITWIDTH_INT512 512 namespace lldb_private { // A class designed to hold onto values and their corresponding types. // Operators are defined and Scalar objects will correctly promote their types // and values before performing these operations. Type promotion currently // follows the ANSI C type promotion rules. class Scalar { public: enum Type { e_void = 0, e_sint, e_uint, e_slong, e_ulong, e_slonglong, e_ulonglong, e_sint128, e_uint128, e_sint256, e_uint256, e_sint512, e_uint512, e_float, e_double, e_long_double }; // Constructors and Destructors Scalar(); Scalar(int v) : m_type(e_sint), m_float(static_cast(0)) { m_integer = llvm::APInt(sizeof(int) * 8, v, true); } Scalar(unsigned int v) : m_type(e_uint), m_float(static_cast(0)) { m_integer = llvm::APInt(sizeof(int) * 8, v); } Scalar(long v) : m_type(e_slong), m_float(static_cast(0)) { m_integer = llvm::APInt(sizeof(long) * 8, v, true); } Scalar(unsigned long v) : m_type(e_ulong), m_float(static_cast(0)) { m_integer = llvm::APInt(sizeof(long) * 8, v); } Scalar(long long v) : m_type(e_slonglong), m_float(static_cast(0)) { m_integer = llvm::APInt(sizeof(long long) * 8, v, true); } Scalar(unsigned long long v) : m_type(e_ulonglong), m_float(static_cast(0)) { m_integer = llvm::APInt(sizeof(long long) * 8, v); } Scalar(float v) : m_type(e_float), m_float(v) { m_float = llvm::APFloat(v); } Scalar(double v) : m_type(e_double), m_float(v) { m_float = llvm::APFloat(v); } Scalar(long double v, bool ieee_quad) : m_type(e_long_double), m_float(static_cast(0)), m_ieee_quad(ieee_quad) { if (ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, (reinterpret_cast(&v))->x)); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, (reinterpret_cast(&v))->x)); } Scalar(llvm::APInt v) : m_type(), m_float(static_cast(0)) { m_integer = llvm::APInt(v); switch (m_integer.getBitWidth()) { case 8: case 16: case 32: m_type = e_sint; return; case 64: m_type = e_slonglong; return; case 128: m_type = e_sint128; return; case 256: m_type = e_sint256; return; case 512: m_type = e_sint512; return; } lldbassert(false && "unsupported bitwidth"); } // Scalar(const RegisterValue& reg_value); virtual ~Scalar(); bool SignExtend(uint32_t bit_pos); bool ExtractBitfield(uint32_t bit_size, uint32_t bit_offset); bool SetBit(uint32_t bit); bool ClearBit(uint32_t bit); const void *GetBytes() const; size_t GetByteSize() const; bool GetData(DataExtractor &data, size_t limit_byte_size = UINT32_MAX) const; size_t GetAsMemoryData(void *dst, size_t dst_len, lldb::ByteOrder dst_byte_order, Status &error) const; bool IsZero() const; void Clear() { m_type = e_void; m_integer.clearAllBits(); } const char *GetTypeAsCString() const; void GetValue(Stream *s, bool show_type) const; bool IsValid() const { return (m_type >= e_sint) && (m_type <= e_long_double); } bool Promote(Scalar::Type type); bool MakeSigned(); bool MakeUnsigned(); static const char *GetValueTypeAsCString(Scalar::Type value_type); static Scalar::Type GetValueTypeForSignedIntegerWithByteSize(size_t byte_size); static Scalar::Type GetValueTypeForUnsignedIntegerWithByteSize(size_t byte_size); static Scalar::Type GetValueTypeForFloatWithByteSize(size_t byte_size); // All operators can benefits from the implicit conversions that will happen // automagically by the compiler, so no temporary objects will need to be // created. As a result, we currently don't need a variety of overloaded set // value accessors. Scalar &operator=(const int i); Scalar &operator=(unsigned int v); Scalar &operator=(long v); Scalar &operator=(unsigned long v); Scalar &operator=(long long v); Scalar &operator=(unsigned long long v); Scalar &operator=(float v); Scalar &operator=(double v); Scalar &operator=(long double v); Scalar &operator=(llvm::APInt v); Scalar &operator=(const Scalar &rhs); // Assignment operator Scalar &operator+=(const Scalar &rhs); Scalar &operator<<=(const Scalar &rhs); // Shift left Scalar &operator>>=(const Scalar &rhs); // Shift right (arithmetic) Scalar &operator&=(const Scalar &rhs); // Shifts the current value to the right without maintaining the current sign // of the value (if it is signed). bool ShiftRightLogical(const Scalar &rhs); // Returns true on success // Takes the absolute value of the current value if it is signed, else the // value remains unchanged. Returns false if the contained value has a void // type. bool AbsoluteValue(); // Returns true on success // Negates the current value (even for unsigned values). Returns false if the // contained value has a void type. bool UnaryNegate(); // Returns true on success // Inverts all bits in the current value as long as it isn't void or a // float/double/long double type. Returns false if the contained value has a // void/float/double/long double type, else the value is inverted and true is // returned. bool OnesComplement(); // Returns true on success // Access the type of the current value. Scalar::Type GetType() const { return m_type; } // Returns a casted value of the current contained data without modifying the // current value. FAIL_VALUE will be returned if the type of the value is // void or invalid. int SInt(int fail_value = 0) const; unsigned char UChar(unsigned char fail_value = 0) const; signed char SChar(char fail_value = 0) const; unsigned short UShort(unsigned short fail_value = 0) const; short SShort(short fail_value = 0) const; unsigned int UInt(unsigned int fail_value = 0) const; long SLong(long fail_value = 0) const; unsigned long ULong(unsigned long fail_value = 0) const; long long SLongLong(long long fail_value = 0) const; unsigned long long ULongLong(unsigned long long fail_value = 0) const; llvm::APInt SInt128(llvm::APInt &fail_value) const; llvm::APInt UInt128(const llvm::APInt &fail_value) const; float Float(float fail_value = 0.0f) const; double Double(double fail_value = 0.0) const; long double LongDouble(long double fail_value = 0.0) const; Status SetValueFromCString(const char *s, lldb::Encoding encoding, size_t byte_size); Status SetValueFromData(DataExtractor &data, lldb::Encoding encoding, size_t byte_size); static bool UIntValueIsValidForSize(uint64_t uval64, size_t total_byte_size) { if (total_byte_size > 8) return false; if (total_byte_size == 8) return true; const uint64_t max = (static_cast(1) << static_cast(total_byte_size * 8)) - 1; return uval64 <= max; } static bool SIntValueIsValidForSize(int64_t sval64, size_t total_byte_size) { if (total_byte_size > 8) return false; if (total_byte_size == 8) return true; const int64_t max = (static_cast(1) << static_cast(total_byte_size * 8 - 1)) - 1; const int64_t min = ~(max); return min <= sval64 && sval64 <= max; } protected: typedef char schar_t; typedef unsigned char uchar_t; typedef short sshort_t; typedef unsigned short ushort_t; typedef int sint_t; typedef unsigned int uint_t; typedef long slong_t; typedef unsigned long ulong_t; typedef long long slonglong_t; typedef unsigned long long ulonglong_t; typedef float float_t; typedef double double_t; typedef long double long_double_t; // Classes that inherit from Scalar can see and modify these Scalar::Type m_type; llvm::APInt m_integer; llvm::APFloat m_float; bool m_ieee_quad = false; private: friend const Scalar operator+(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator-(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator/(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator*(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator&(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator|(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator%(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator^(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator<<(const Scalar &lhs, const Scalar &rhs); friend const Scalar operator>>(const Scalar &lhs, const Scalar &rhs); friend bool operator==(const Scalar &lhs, const Scalar &rhs); friend bool operator!=(const Scalar &lhs, const Scalar &rhs); friend bool operator<(const Scalar &lhs, const Scalar &rhs); friend bool operator<=(const Scalar &lhs, const Scalar &rhs); friend bool operator>(const Scalar &lhs, const Scalar &rhs); friend bool operator>=(const Scalar &lhs, const Scalar &rhs); }; // Split out the operators into a format where the compiler will be able to // implicitly convert numbers into Scalar objects. // // This allows code like: // Scalar two(2); // Scalar four = two * 2; // Scalar eight = 2 * four; // This would cause an error if the // // operator* was implemented as a // // member function. // SEE: // Item 19 of "Effective C++ Second Edition" by Scott Meyers // Differentiate among members functions, non-member functions, and // friend functions const Scalar operator+(const Scalar &lhs, const Scalar &rhs); const Scalar operator-(const Scalar &lhs, const Scalar &rhs); const Scalar operator/(const Scalar &lhs, const Scalar &rhs); const Scalar operator*(const Scalar &lhs, const Scalar &rhs); const Scalar operator&(const Scalar &lhs, const Scalar &rhs); const Scalar operator|(const Scalar &lhs, const Scalar &rhs); const Scalar operator%(const Scalar &lhs, const Scalar &rhs); const Scalar operator^(const Scalar &lhs, const Scalar &rhs); const Scalar operator<<(const Scalar &lhs, const Scalar &rhs); const Scalar operator>>(const Scalar &lhs, const Scalar &rhs); bool operator==(const Scalar &lhs, const Scalar &rhs); bool operator!=(const Scalar &lhs, const Scalar &rhs); bool operator<(const Scalar &lhs, const Scalar &rhs); bool operator<=(const Scalar &lhs, const Scalar &rhs); bool operator>(const Scalar &lhs, const Scalar &rhs); bool operator>=(const Scalar &lhs, const Scalar &rhs); llvm::raw_ostream &operator<<(llvm::raw_ostream &os, const Scalar &scalar); } // namespace lldb_private #endif // LLDB_UTILITY_SCALAR_H