//===-- ArchSpec.cpp --------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/ArchSpec.h" #include #include #include #include "llvm/ADT/STLExtras.h" #include "llvm/Support/COFF.h" #include "llvm/Support/ELF.h" #include "llvm/Support/Host.h" #include "lldb/Utility/SafeMachO.h" #include "lldb/Core/RegularExpression.h" #include "lldb/Core/StringList.h" #include "lldb/Host/Endian.h" #include "lldb/Host/HostInfo.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/Thread.h" #include "Plugins/Process/Utility/ARMDefines.h" #include "Plugins/Process/Utility/InstructionUtils.h" using namespace lldb; using namespace lldb_private; #define ARCH_SPEC_SEPARATOR_CHAR '-' static bool cores_match (const ArchSpec::Core core1, const ArchSpec::Core core2, bool try_inverse, bool enforce_exact_match); namespace lldb_private { struct CoreDefinition { ByteOrder default_byte_order; uint32_t addr_byte_size; uint32_t min_opcode_byte_size; uint32_t max_opcode_byte_size; llvm::Triple::ArchType machine; ArchSpec::Core core; const char * const name; }; } // This core information can be looked using the ArchSpec::Core as the index static const CoreDefinition g_core_definitions[] = { { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_generic , "arm" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4 , "armv4" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv4t , "armv4t" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5 , "armv5" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5e , "armv5e" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv5t , "armv5t" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6 , "armv6" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv6m , "armv6m" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7 , "armv7" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7f , "armv7f" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7s , "armv7s" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7k , "armv7k" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7m , "armv7m" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_armv7em , "armv7em" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::arm , ArchSpec::eCore_arm_xscale , "xscale" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumb , "thumb" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv4t , "thumbv4t" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv5 , "thumbv5" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv5e , "thumbv5e" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv6 , "thumbv6" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv6m , "thumbv6m" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7 , "thumbv7" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7f , "thumbv7f" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7s , "thumbv7s" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7k , "thumbv7k" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7m , "thumbv7m" }, { eByteOrderLittle, 4, 2, 4, llvm::Triple::thumb , ArchSpec::eCore_thumbv7em , "thumbv7em" }, { eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_arm64 , "arm64" }, { eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_armv8 , "armv8" }, { eByteOrderLittle, 8, 4, 4, llvm::Triple::aarch64, ArchSpec::eCore_arm_aarch64 , "aarch64" }, { eByteOrderBig , 8, 4, 4, llvm::Triple::mips64 , ArchSpec::eCore_mips64 , "mips64" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_generic , "powerpc" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc601 , "ppc601" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc602 , "ppc602" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603 , "ppc603" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603e , "ppc603e" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc603ev , "ppc603ev" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604 , "ppc604" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc604e , "ppc604e" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc620 , "ppc620" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc750 , "ppc750" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7400 , "ppc7400" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc7450 , "ppc7450" }, { eByteOrderBig , 4, 4, 4, llvm::Triple::ppc , ArchSpec::eCore_ppc_ppc970 , "ppc970" }, { eByteOrderBig , 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_generic , "powerpc64" }, { eByteOrderBig , 8, 4, 4, llvm::Triple::ppc64 , ArchSpec::eCore_ppc64_ppc970_64 , "ppc970-64" }, { eByteOrderLittle, 4, 4, 4, llvm::Triple::sparc , ArchSpec::eCore_sparc_generic , "sparc" }, { eByteOrderLittle, 8, 4, 4, llvm::Triple::sparcv9, ArchSpec::eCore_sparc9_generic , "sparcv9" }, { eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i386 , "i386" }, { eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486 , "i486" }, { eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i486sx , "i486sx" }, { eByteOrderLittle, 4, 1, 15, llvm::Triple::x86 , ArchSpec::eCore_x86_32_i686 , "i686" }, { eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64 , "x86_64" }, { eByteOrderLittle, 8, 1, 15, llvm::Triple::x86_64 , ArchSpec::eCore_x86_64_x86_64h , "x86_64h" }, { eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_generic, "hexagon" }, { eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv4, "hexagonv4" }, { eByteOrderLittle, 4, 4, 4, llvm::Triple::hexagon , ArchSpec::eCore_hexagon_hexagonv5, "hexagonv5" }, { eByteOrderLittle, 4, 4, 4 , llvm::Triple::UnknownArch , ArchSpec::eCore_uknownMach32 , "unknown-mach-32" }, { eByteOrderLittle, 8, 4, 4 , llvm::Triple::UnknownArch , ArchSpec::eCore_uknownMach64 , "unknown-mach-64" }, { eByteOrderBig , 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba3 , "kalimba3" }, { eByteOrderLittle, 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba4 , "kalimba4" }, { eByteOrderLittle, 4, 1, 1 , llvm::Triple::kalimba , ArchSpec::eCore_kalimba5 , "kalimba5" } }; // Ensure that we have an entry in the g_core_definitions for each core. If you comment out an entry above, // you will need to comment out the corresponding ArchSpec::Core enumeration. static_assert(sizeof(g_core_definitions) / sizeof(CoreDefinition) == ArchSpec::kNumCores, "make sure we have one core definition for each core"); struct ArchDefinitionEntry { ArchSpec::Core core; uint32_t cpu; uint32_t sub; uint32_t cpu_mask; uint32_t sub_mask; }; struct ArchDefinition { ArchitectureType type; size_t num_entries; const ArchDefinitionEntry *entries; const char *name; }; size_t ArchSpec::AutoComplete (const char *name, StringList &matches) { uint32_t i; if (name && name[0]) { for (i = 0; i < llvm::array_lengthof(g_core_definitions); ++i) { if (NameMatches(g_core_definitions[i].name, eNameMatchStartsWith, name)) matches.AppendString (g_core_definitions[i].name); } } else { for (i = 0; i < llvm::array_lengthof(g_core_definitions); ++i) matches.AppendString (g_core_definitions[i].name); } return matches.GetSize(); } #define CPU_ANY (UINT32_MAX) //===----------------------------------------------------------------------===// // A table that gets searched linearly for matches. This table is used to // convert cpu type and subtypes to architecture names, and to convert // architecture names to cpu types and subtypes. The ordering is important and // allows the precedence to be set when the table is built. #define SUBTYPE_MASK 0x00FFFFFFu static const ArchDefinitionEntry g_macho_arch_entries[] = { { ArchSpec::eCore_arm_generic , llvm::MachO::CPU_TYPE_ARM , CPU_ANY, UINT32_MAX , UINT32_MAX }, { ArchSpec::eCore_arm_generic , llvm::MachO::CPU_TYPE_ARM , 0 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv4 , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv4t , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv6 , llvm::MachO::CPU_TYPE_ARM , 6 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv6m , llvm::MachO::CPU_TYPE_ARM , 14 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv5 , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv5e , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv5t , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_xscale , llvm::MachO::CPU_TYPE_ARM , 8 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv7 , llvm::MachO::CPU_TYPE_ARM , 9 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv7f , llvm::MachO::CPU_TYPE_ARM , 10 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv7s , llvm::MachO::CPU_TYPE_ARM , 11 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv7k , llvm::MachO::CPU_TYPE_ARM , 12 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv7m , llvm::MachO::CPU_TYPE_ARM , 15 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_armv7em , llvm::MachO::CPU_TYPE_ARM , 16 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 1 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 0 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , 13 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_arm_arm64 , llvm::MachO::CPU_TYPE_ARM64 , CPU_ANY, UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumb , llvm::MachO::CPU_TYPE_ARM , 0 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv4t , llvm::MachO::CPU_TYPE_ARM , 5 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv5 , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv5e , llvm::MachO::CPU_TYPE_ARM , 7 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv6 , llvm::MachO::CPU_TYPE_ARM , 6 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv6m , llvm::MachO::CPU_TYPE_ARM , 14 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv7 , llvm::MachO::CPU_TYPE_ARM , 9 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv7f , llvm::MachO::CPU_TYPE_ARM , 10 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv7s , llvm::MachO::CPU_TYPE_ARM , 11 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv7k , llvm::MachO::CPU_TYPE_ARM , 12 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv7m , llvm::MachO::CPU_TYPE_ARM , 15 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_thumbv7em , llvm::MachO::CPU_TYPE_ARM , 16 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_generic , llvm::MachO::CPU_TYPE_POWERPC , CPU_ANY, UINT32_MAX , UINT32_MAX }, { ArchSpec::eCore_ppc_generic , llvm::MachO::CPU_TYPE_POWERPC , 0 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc601 , llvm::MachO::CPU_TYPE_POWERPC , 1 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc602 , llvm::MachO::CPU_TYPE_POWERPC , 2 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc603 , llvm::MachO::CPU_TYPE_POWERPC , 3 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc603e , llvm::MachO::CPU_TYPE_POWERPC , 4 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc603ev , llvm::MachO::CPU_TYPE_POWERPC , 5 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc604 , llvm::MachO::CPU_TYPE_POWERPC , 6 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc604e , llvm::MachO::CPU_TYPE_POWERPC , 7 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc620 , llvm::MachO::CPU_TYPE_POWERPC , 8 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc750 , llvm::MachO::CPU_TYPE_POWERPC , 9 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc7400 , llvm::MachO::CPU_TYPE_POWERPC , 10 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc7450 , llvm::MachO::CPU_TYPE_POWERPC , 11 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc_ppc970 , llvm::MachO::CPU_TYPE_POWERPC , 100 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc64_generic , llvm::MachO::CPU_TYPE_POWERPC64 , 0 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_ppc64_ppc970_64 , llvm::MachO::CPU_TYPE_POWERPC64 , 100 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPU_TYPE_I386 , 3 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_32_i486 , llvm::MachO::CPU_TYPE_I386 , 4 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_32_i486sx , llvm::MachO::CPU_TYPE_I386 , 0x84 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_32_i386 , llvm::MachO::CPU_TYPE_I386 , CPU_ANY, UINT32_MAX , UINT32_MAX }, { ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , 3 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , 4 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_64_x86_64h , llvm::MachO::CPU_TYPE_X86_64 , 8 , UINT32_MAX , SUBTYPE_MASK }, { ArchSpec::eCore_x86_64_x86_64 , llvm::MachO::CPU_TYPE_X86_64 , CPU_ANY, UINT32_MAX , UINT32_MAX }, // Catch any unknown mach architectures so we can always use the object and symbol mach-o files { ArchSpec::eCore_uknownMach32 , 0 , 0 , 0xFF000000u, 0x00000000u }, { ArchSpec::eCore_uknownMach64 , llvm::MachO::CPU_ARCH_ABI64 , 0 , 0xFF000000u, 0x00000000u } }; static const ArchDefinition g_macho_arch_def = { eArchTypeMachO, llvm::array_lengthof(g_macho_arch_entries), g_macho_arch_entries, "mach-o" }; //===----------------------------------------------------------------------===// // A table that gets searched linearly for matches. This table is used to // convert cpu type and subtypes to architecture names, and to convert // architecture names to cpu types and subtypes. The ordering is important and // allows the precedence to be set when the table is built. static const ArchDefinitionEntry g_elf_arch_entries[] = { { ArchSpec::eCore_sparc_generic , llvm::ELF::EM_SPARC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Sparc { ArchSpec::eCore_x86_32_i386 , llvm::ELF::EM_386 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 80386 { ArchSpec::eCore_x86_32_i486 , llvm::ELF::EM_486 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 486 (deprecated) { ArchSpec::eCore_ppc_generic , llvm::ELF::EM_PPC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC { ArchSpec::eCore_ppc64_generic , llvm::ELF::EM_PPC64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC64 { ArchSpec::eCore_arm_generic , llvm::ELF::EM_ARM , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM { ArchSpec::eCore_arm_aarch64 , llvm::ELF::EM_AARCH64, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM64 { ArchSpec::eCore_sparc9_generic , llvm::ELF::EM_SPARCV9, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // SPARC V9 { ArchSpec::eCore_x86_64_x86_64 , llvm::ELF::EM_X86_64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // AMD64 { ArchSpec::eCore_mips64 , llvm::ELF::EM_MIPS , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // MIPS { ArchSpec::eCore_hexagon_generic , llvm::ELF::EM_HEXAGON, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // HEXAGON { ArchSpec::eCore_kalimba3 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v3, 0xFFFFFFFFu, 0xFFFFFFFFu }, // KALIMBA { ArchSpec::eCore_kalimba4 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v4, 0xFFFFFFFFu, 0xFFFFFFFFu }, // KALIMBA { ArchSpec::eCore_kalimba5 , llvm::ELF::EM_CSR_KALIMBA, llvm::Triple::KalimbaSubArch_v5, 0xFFFFFFFFu, 0xFFFFFFFFu } // KALIMBA }; static const ArchDefinition g_elf_arch_def = { eArchTypeELF, llvm::array_lengthof(g_elf_arch_entries), g_elf_arch_entries, "elf", }; static const ArchDefinitionEntry g_coff_arch_entries[] = { { ArchSpec::eCore_x86_32_i386 , llvm::COFF::IMAGE_FILE_MACHINE_I386 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // Intel 80x86 { ArchSpec::eCore_ppc_generic , llvm::COFF::IMAGE_FILE_MACHINE_POWERPC , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC { ArchSpec::eCore_ppc_generic , llvm::COFF::IMAGE_FILE_MACHINE_POWERPCFP, LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // PowerPC (with FPU) { ArchSpec::eCore_arm_generic , llvm::COFF::IMAGE_FILE_MACHINE_ARM , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARM { ArchSpec::eCore_arm_armv7 , llvm::COFF::IMAGE_FILE_MACHINE_ARMNT , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARMv7 { ArchSpec::eCore_thumb , llvm::COFF::IMAGE_FILE_MACHINE_THUMB , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu }, // ARMv7 { ArchSpec::eCore_x86_64_x86_64, llvm::COFF::IMAGE_FILE_MACHINE_AMD64 , LLDB_INVALID_CPUTYPE, 0xFFFFFFFFu, 0xFFFFFFFFu } // AMD64 }; static const ArchDefinition g_coff_arch_def = { eArchTypeCOFF, llvm::array_lengthof(g_coff_arch_entries), g_coff_arch_entries, "pe-coff", }; //===----------------------------------------------------------------------===// // Table of all ArchDefinitions static const ArchDefinition *g_arch_definitions[] = { &g_macho_arch_def, &g_elf_arch_def, &g_coff_arch_def }; static const size_t k_num_arch_definitions = llvm::array_lengthof(g_arch_definitions); //===----------------------------------------------------------------------===// // Static helper functions. // Get the architecture definition for a given object type. static const ArchDefinition * FindArchDefinition (ArchitectureType arch_type) { for (unsigned int i = 0; i < k_num_arch_definitions; ++i) { const ArchDefinition *def = g_arch_definitions[i]; if (def->type == arch_type) return def; } return NULL; } // Get an architecture definition by name. static const CoreDefinition * FindCoreDefinition (llvm::StringRef name) { for (unsigned int i = 0; i < llvm::array_lengthof(g_core_definitions); ++i) { if (name.equals_lower(g_core_definitions[i].name)) return &g_core_definitions[i]; } return NULL; } static inline const CoreDefinition * FindCoreDefinition (ArchSpec::Core core) { if (core >= 0 && core < llvm::array_lengthof(g_core_definitions)) return &g_core_definitions[core]; return NULL; } // Get a definition entry by cpu type and subtype. static const ArchDefinitionEntry * FindArchDefinitionEntry (const ArchDefinition *def, uint32_t cpu, uint32_t sub) { if (def == NULL) return NULL; const ArchDefinitionEntry *entries = def->entries; for (size_t i = 0; i < def->num_entries; ++i) { if (entries[i].cpu == (cpu & entries[i].cpu_mask)) if (entries[i].sub == (sub & entries[i].sub_mask)) return &entries[i]; } return NULL; } static const ArchDefinitionEntry * FindArchDefinitionEntry (const ArchDefinition *def, ArchSpec::Core core) { if (def == NULL) return NULL; const ArchDefinitionEntry *entries = def->entries; for (size_t i = 0; i < def->num_entries; ++i) { if (entries[i].core == core) return &entries[i]; } return NULL; } //===----------------------------------------------------------------------===// // Constructors and destructors. ArchSpec::ArchSpec() : m_triple (), m_core (kCore_invalid), m_byte_order (eByteOrderInvalid), m_distribution_id () { } ArchSpec::ArchSpec (const char *triple_cstr, Platform *platform) : m_triple (), m_core (kCore_invalid), m_byte_order (eByteOrderInvalid), m_distribution_id () { if (triple_cstr) SetTriple(triple_cstr, platform); } ArchSpec::ArchSpec (const char *triple_cstr) : m_triple (), m_core (kCore_invalid), m_byte_order (eByteOrderInvalid), m_distribution_id () { if (triple_cstr) SetTriple(triple_cstr); } ArchSpec::ArchSpec(const llvm::Triple &triple) : m_triple (), m_core (kCore_invalid), m_byte_order (eByteOrderInvalid), m_distribution_id () { SetTriple(triple); } ArchSpec::ArchSpec (ArchitectureType arch_type, uint32_t cpu, uint32_t subtype) : m_triple (), m_core (kCore_invalid), m_byte_order (eByteOrderInvalid), m_distribution_id () { SetArchitecture (arch_type, cpu, subtype); } ArchSpec::~ArchSpec() { } //===----------------------------------------------------------------------===// // Assignment and initialization. const ArchSpec& ArchSpec::operator= (const ArchSpec& rhs) { if (this != &rhs) { m_triple = rhs.m_triple; m_core = rhs.m_core; m_byte_order = rhs.m_byte_order; m_distribution_id = rhs.m_distribution_id; } return *this; } void ArchSpec::Clear() { m_triple = llvm::Triple(); m_core = kCore_invalid; m_byte_order = eByteOrderInvalid; m_distribution_id.Clear (); } //===----------------------------------------------------------------------===// // Predicates. const char * ArchSpec::GetArchitectureName () const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) return core_def->name; return "unknown"; } uint32_t ArchSpec::GetMachOCPUType () const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) { const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core); if (arch_def) { return arch_def->cpu; } } return LLDB_INVALID_CPUTYPE; } uint32_t ArchSpec::GetMachOCPUSubType () const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) { const ArchDefinitionEntry *arch_def = FindArchDefinitionEntry (&g_macho_arch_def, core_def->core); if (arch_def) { return arch_def->sub; } } return LLDB_INVALID_CPUTYPE; } uint32_t ArchSpec::GetDataByteSize () const { switch (m_core) { case eCore_kalimba3: return 4; case eCore_kalimba4: return 1; case eCore_kalimba5: return 4; default: return 1; } return 1; } uint32_t ArchSpec::GetCodeByteSize () const { switch (m_core) { case eCore_kalimba3: return 4; case eCore_kalimba4: return 1; case eCore_kalimba5: return 1; default: return 1; } return 1; } llvm::Triple::ArchType ArchSpec::GetMachine () const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) return core_def->machine; return llvm::Triple::UnknownArch; } const ConstString& ArchSpec::GetDistributionId () const { return m_distribution_id; } void ArchSpec::SetDistributionId (const char* distribution_id) { m_distribution_id.SetCString (distribution_id); } uint32_t ArchSpec::GetAddressByteSize() const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) return core_def->addr_byte_size; return 0; } ByteOrder ArchSpec::GetDefaultEndian () const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) return core_def->default_byte_order; return eByteOrderInvalid; } lldb::ByteOrder ArchSpec::GetByteOrder () const { if (m_byte_order == eByteOrderInvalid) return GetDefaultEndian(); return m_byte_order; } //===----------------------------------------------------------------------===// // Mutators. bool ArchSpec::SetTriple (const llvm::Triple &triple) { m_triple = triple; llvm::StringRef arch_name (m_triple.getArchName()); const CoreDefinition *core_def = FindCoreDefinition (arch_name); if (core_def) { m_core = core_def->core; // Set the byte order to the default byte order for an architecture. // This can be modified if needed for cases when cores handle both // big and little endian m_byte_order = core_def->default_byte_order; } else { Clear(); } return IsValid(); } static bool ParseMachCPUDashSubtypeTriple (const char *triple_cstr, ArchSpec &arch) { // Accept "12-10" or "12.10" as cpu type/subtype if (isdigit(triple_cstr[0])) { char *end = NULL; errno = 0; uint32_t cpu = (uint32_t)::strtoul (triple_cstr, &end, 0); if (errno == 0 && cpu != 0 && end && ((*end == '-') || (*end == '.'))) { errno = 0; uint32_t sub = (uint32_t)::strtoul (end + 1, &end, 0); if (errno == 0 && end && ((*end == '-') || (*end == '.') || (*end == '\0'))) { if (arch.SetArchitecture (eArchTypeMachO, cpu, sub)) { if (*end == '-') { llvm::StringRef vendor_os (end + 1); size_t dash_pos = vendor_os.find('-'); if (dash_pos != llvm::StringRef::npos) { llvm::StringRef vendor_str(vendor_os.substr(0, dash_pos)); arch.GetTriple().setVendorName(vendor_str); const size_t vendor_start_pos = dash_pos+1; dash_pos = vendor_os.find('-', vendor_start_pos); if (dash_pos == llvm::StringRef::npos) { if (vendor_start_pos < vendor_os.size()) arch.GetTriple().setOSName(vendor_os.substr(vendor_start_pos)); } else { arch.GetTriple().setOSName(vendor_os.substr(vendor_start_pos, dash_pos - vendor_start_pos)); } } } return true; } } } } return false; } bool ArchSpec::SetTriple (const char *triple_cstr) { if (triple_cstr && triple_cstr[0]) { if (ParseMachCPUDashSubtypeTriple (triple_cstr, *this)) return true; llvm::StringRef triple_stref (triple_cstr); if (triple_stref.startswith (LLDB_ARCH_DEFAULT)) { // Special case for the current host default architectures... if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT)) *this = HostInfo::GetArchitecture(HostInfo::eArchKind32); else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT)) *this = HostInfo::GetArchitecture(HostInfo::eArchKind64); else if (triple_stref.equals (LLDB_ARCH_DEFAULT)) *this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault); } else { std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref)); triple_stref = normalized_triple_sstr; SetTriple (llvm::Triple (triple_stref)); } } else Clear(); return IsValid(); } bool ArchSpec::SetTriple (const char *triple_cstr, Platform *platform) { if (triple_cstr && triple_cstr[0]) { if (ParseMachCPUDashSubtypeTriple (triple_cstr, *this)) return true; llvm::StringRef triple_stref (triple_cstr); if (triple_stref.startswith (LLDB_ARCH_DEFAULT)) { // Special case for the current host default architectures... if (triple_stref.equals (LLDB_ARCH_DEFAULT_32BIT)) *this = HostInfo::GetArchitecture(HostInfo::eArchKind32); else if (triple_stref.equals (LLDB_ARCH_DEFAULT_64BIT)) *this = HostInfo::GetArchitecture(HostInfo::eArchKind64); else if (triple_stref.equals (LLDB_ARCH_DEFAULT)) *this = HostInfo::GetArchitecture(HostInfo::eArchKindDefault); } else { ArchSpec raw_arch (triple_cstr); std::string normalized_triple_sstr (llvm::Triple::normalize(triple_stref)); triple_stref = normalized_triple_sstr; llvm::Triple normalized_triple (triple_stref); const bool os_specified = normalized_triple.getOSName().size() > 0; const bool vendor_specified = normalized_triple.getVendorName().size() > 0; const bool env_specified = normalized_triple.getEnvironmentName().size() > 0; // If we got an arch only, then default the vendor, os, environment // to match the platform if one is supplied if (!(os_specified || vendor_specified || env_specified)) { if (platform) { // If we were given a platform, use the platform's system // architecture. If this is not available (might not be // connected) use the first supported architecture. ArchSpec compatible_arch; if (platform->IsCompatibleArchitecture (raw_arch, false, &compatible_arch)) { if (compatible_arch.IsValid()) { const llvm::Triple &compatible_triple = compatible_arch.GetTriple(); if (!vendor_specified) normalized_triple.setVendor(compatible_triple.getVendor()); if (!os_specified) normalized_triple.setOS(compatible_triple.getOS()); if (!env_specified && compatible_triple.getEnvironmentName().size()) normalized_triple.setEnvironment(compatible_triple.getEnvironment()); } } else { *this = raw_arch; return IsValid(); } } else { // No platform specified, fall back to the host system for // the default vendor, os, and environment. llvm::Triple host_triple(llvm::sys::getDefaultTargetTriple()); if (!vendor_specified) normalized_triple.setVendor(host_triple.getVendor()); if (!vendor_specified) normalized_triple.setOS(host_triple.getOS()); if (!env_specified && host_triple.getEnvironmentName().size()) normalized_triple.setEnvironment(host_triple.getEnvironment()); } } SetTriple (normalized_triple); } } else Clear(); return IsValid(); } bool ArchSpec::SetArchitecture (ArchitectureType arch_type, uint32_t cpu, uint32_t sub) { m_core = kCore_invalid; bool update_triple = true; const ArchDefinition *arch_def = FindArchDefinition(arch_type); if (arch_def) { const ArchDefinitionEntry *arch_def_entry = FindArchDefinitionEntry (arch_def, cpu, sub); if (arch_def_entry) { const CoreDefinition *core_def = FindCoreDefinition (arch_def_entry->core); if (core_def) { m_core = core_def->core; update_triple = false; // Always use the architecture name because it might be more descriptive // than the architecture enum ("armv7" -> llvm::Triple::arm). m_triple.setArchName(llvm::StringRef(core_def->name)); if (arch_type == eArchTypeMachO) { m_triple.setVendor (llvm::Triple::Apple); switch (core_def->machine) { case llvm::Triple::aarch64: case llvm::Triple::arm: case llvm::Triple::thumb: m_triple.setOS (llvm::Triple::IOS); break; case llvm::Triple::x86: case llvm::Triple::x86_64: // Don't set the OS for x86_64 or for x86 as we want to leave it as an "unspecified unknown" // which means if we ask for the OS from the llvm::Triple we get back llvm::Triple::UnknownOS, but // if we ask for the string value for the OS it will come back empty (unspecified). // We do this because we now have iOS and MacOSX as the OS values for x86 and x86_64 for // normal desktop and simulator binaries. And if we compare a "x86_64-apple-ios" to a "x86_64-apple-" // triple, it will say it is compatible (because the OS is unspecified in the second one and will match // anything in the first break; default: m_triple.setOS (llvm::Triple::MacOSX); break; } } else { m_triple.setVendor (llvm::Triple::UnknownVendor); m_triple.setOS (llvm::Triple::UnknownOS); } // Fall back onto setting the machine type if the arch by name failed... if (m_triple.getArch () == llvm::Triple::UnknownArch) m_triple.setArch (core_def->machine); } } } CoreUpdated(update_triple); return IsValid(); } uint32_t ArchSpec::GetMinimumOpcodeByteSize() const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) return core_def->min_opcode_byte_size; return 0; } uint32_t ArchSpec::GetMaximumOpcodeByteSize() const { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) return core_def->max_opcode_byte_size; return 0; } bool ArchSpec::IsExactMatch (const ArchSpec& rhs) const { return IsEqualTo (rhs, true); } bool ArchSpec::IsCompatibleMatch (const ArchSpec& rhs) const { return IsEqualTo (rhs, false); } bool ArchSpec::IsEqualTo (const ArchSpec& rhs, bool exact_match) const { // explicitly ignoring m_distribution_id in this method. if (GetByteOrder() != rhs.GetByteOrder()) return false; const ArchSpec::Core lhs_core = GetCore (); const ArchSpec::Core rhs_core = rhs.GetCore (); const bool core_match = cores_match (lhs_core, rhs_core, true, exact_match); if (core_match) { const llvm::Triple &lhs_triple = GetTriple(); const llvm::Triple &rhs_triple = rhs.GetTriple(); const llvm::Triple::VendorType lhs_triple_vendor = lhs_triple.getVendor(); const llvm::Triple::VendorType rhs_triple_vendor = rhs_triple.getVendor(); if (lhs_triple_vendor != rhs_triple_vendor) { if (exact_match) { const bool rhs_vendor_specified = rhs.TripleVendorWasSpecified(); const bool lhs_vendor_specified = TripleVendorWasSpecified(); // Both architectures had the vendor specified, so if they aren't // equal then we return false if (rhs_vendor_specified && lhs_vendor_specified) return false; } // Only fail if both vendor types are not unknown if (lhs_triple_vendor != llvm::Triple::UnknownVendor && rhs_triple_vendor != llvm::Triple::UnknownVendor) return false; } const llvm::Triple::OSType lhs_triple_os = lhs_triple.getOS(); const llvm::Triple::OSType rhs_triple_os = rhs_triple.getOS(); if (lhs_triple_os != rhs_triple_os) { if (exact_match) { const bool rhs_os_specified = rhs.TripleOSWasSpecified(); const bool lhs_os_specified = TripleOSWasSpecified(); // Both architectures had the OS specified, so if they aren't // equal then we return false if (rhs_os_specified && lhs_os_specified) return false; } // Only fail if both os types are not unknown if (lhs_triple_os != llvm::Triple::UnknownOS && rhs_triple_os != llvm::Triple::UnknownOS) return false; } const llvm::Triple::EnvironmentType lhs_triple_env = lhs_triple.getEnvironment(); const llvm::Triple::EnvironmentType rhs_triple_env = rhs_triple.getEnvironment(); if (lhs_triple_env != rhs_triple_env) { // Only fail if both environment types are not unknown if (lhs_triple_env != llvm::Triple::UnknownEnvironment && rhs_triple_env != llvm::Triple::UnknownEnvironment) return false; } return true; } return false; } //===----------------------------------------------------------------------===// // Helper methods. void ArchSpec::CoreUpdated (bool update_triple) { const CoreDefinition *core_def = FindCoreDefinition (m_core); if (core_def) { if (update_triple) m_triple = llvm::Triple(core_def->name, "unknown", "unknown"); m_byte_order = core_def->default_byte_order; } else { if (update_triple) m_triple = llvm::Triple(); m_byte_order = eByteOrderInvalid; } } //===----------------------------------------------------------------------===// // Operators. static bool cores_match (const ArchSpec::Core core1, const ArchSpec::Core core2, bool try_inverse, bool enforce_exact_match) { if (core1 == core2) return true; switch (core1) { case ArchSpec::kCore_any: return true; case ArchSpec::eCore_arm_generic: if (enforce_exact_match) break; // Fall through to case below case ArchSpec::kCore_arm_any: if (core2 >= ArchSpec::kCore_arm_first && core2 <= ArchSpec::kCore_arm_last) return true; if (core2 >= ArchSpec::kCore_thumb_first && core2 <= ArchSpec::kCore_thumb_last) return true; if (core2 == ArchSpec::kCore_arm_any) return true; break; case ArchSpec::kCore_x86_32_any: if ((core2 >= ArchSpec::kCore_x86_32_first && core2 <= ArchSpec::kCore_x86_32_last) || (core2 == ArchSpec::kCore_x86_32_any)) return true; break; case ArchSpec::kCore_x86_64_any: if ((core2 >= ArchSpec::kCore_x86_64_first && core2 <= ArchSpec::kCore_x86_64_last) || (core2 == ArchSpec::kCore_x86_64_any)) return true; break; case ArchSpec::kCore_ppc_any: if ((core2 >= ArchSpec::kCore_ppc_first && core2 <= ArchSpec::kCore_ppc_last) || (core2 == ArchSpec::kCore_ppc_any)) return true; break; case ArchSpec::kCore_ppc64_any: if ((core2 >= ArchSpec::kCore_ppc64_first && core2 <= ArchSpec::kCore_ppc64_last) || (core2 == ArchSpec::kCore_ppc64_any)) return true; break; case ArchSpec::eCore_arm_armv6m: if (!enforce_exact_match) { if (core2 == ArchSpec::eCore_arm_generic) return true; try_inverse = false; if (core2 == ArchSpec::eCore_arm_armv7) return true; } break; case ArchSpec::kCore_hexagon_any: if ((core2 >= ArchSpec::kCore_hexagon_first && core2 <= ArchSpec::kCore_hexagon_last) || (core2 == ArchSpec::kCore_hexagon_any)) return true; break; case ArchSpec::eCore_arm_armv7m: case ArchSpec::eCore_arm_armv7em: case ArchSpec::eCore_arm_armv7f: case ArchSpec::eCore_arm_armv7k: case ArchSpec::eCore_arm_armv7s: if (!enforce_exact_match) { if (core2 == ArchSpec::eCore_arm_generic) return true; if (core2 == ArchSpec::eCore_arm_armv7) return true; try_inverse = false; } break; case ArchSpec::eCore_x86_64_x86_64h: if (!enforce_exact_match) { try_inverse = false; if (core2 == ArchSpec::eCore_x86_64_x86_64) return true; } break; case ArchSpec::eCore_arm_armv8: if (!enforce_exact_match) { if (core2 == ArchSpec::eCore_arm_arm64) return true; if (core2 == ArchSpec::eCore_arm_aarch64) return true; try_inverse = false; } break; case ArchSpec::eCore_arm_aarch64: if (!enforce_exact_match) { if (core2 == ArchSpec::eCore_arm_arm64) return true; if (core2 == ArchSpec::eCore_arm_armv8) return true; try_inverse = false; } break; case ArchSpec::eCore_arm_arm64: if (!enforce_exact_match) { if (core2 == ArchSpec::eCore_arm_aarch64) return true; if (core2 == ArchSpec::eCore_arm_armv8) return true; try_inverse = false; } break; default: break; } if (try_inverse) return cores_match (core2, core1, false, enforce_exact_match); return false; } bool lldb_private::operator<(const ArchSpec& lhs, const ArchSpec& rhs) { const ArchSpec::Core lhs_core = lhs.GetCore (); const ArchSpec::Core rhs_core = rhs.GetCore (); return lhs_core < rhs_core; } static void StopInfoOverrideCallbackTypeARM(lldb_private::Thread &thread) { // We need to check if we are stopped in Thumb mode in a IT instruction // and detect if the condition doesn't pass. If this is the case it means // we won't actually execute this instruction. If this happens we need to // clear the stop reason to no thread plans think we are stopped for a // reason and the plans should keep going. // // We do this because when single stepping many ARM processes, debuggers // often use the BVR/BCR registers that says "stop when the PC is not // equal to its current value". This method of stepping means we can end // up stopping on instructions inside an if/then block that wouldn't get // executed. By fixing this we can stop the debugger from seeming like // you stepped through both the "if" _and_ the "else" clause when source // level stepping because the debugger stops regardless due to the BVR/BCR // triggering a stop. // // It also means we can set breakpoints on instructions inside an an // if/then block and correctly skip them if we use the BKPT instruction. // The ARM and Thumb BKPT instructions are unconditional even when executed // in a Thumb IT block. // // If your debugger inserts software traps in ARM/Thumb code, it will // need to use 16 and 32 bit instruction for 16 and 32 bit thumb // instructions respectively. If your debugger inserts a 16 bit thumb // trap on top of a 32 bit thumb instruction for an opcode that is inside // an if/then, it will change the it/then to conditionally execute your // 16 bit trap and then cause your program to crash if it executes the // trailing 16 bits (the second half of the 32 bit thumb instruction you // partially overwrote). RegisterContextSP reg_ctx_sp (thread.GetRegisterContext()); if (reg_ctx_sp) { const uint32_t cpsr = reg_ctx_sp->GetFlags(0); if (cpsr != 0) { // Read the J and T bits to get the ISETSTATE const uint32_t J = Bit32(cpsr, 24); const uint32_t T = Bit32(cpsr, 5); const uint32_t ISETSTATE = J << 1 | T; if (ISETSTATE == 0) { // NOTE: I am pretty sure we want to enable the code below // that detects when we stop on an instruction in ARM mode // that is conditional and the condition doesn't pass. This // can happen if you set a breakpoint on an instruction that // is conditional. We currently will _always_ stop on the // instruction which is bad. You can also run into this while // single stepping and you could appear to run code in the "if" // and in the "else" clause because it would stop at all of the // conditional instructions in both. // In such cases, we really don't want to stop at this location. // I will check with the lldb-dev list first before I enable this. #if 0 // ARM mode: check for condition on intsruction const addr_t pc = reg_ctx_sp->GetPC(); Error error; // If we fail to read the opcode we will get UINT64_MAX as the // result in "opcode" which we can use to detect if we read a // valid opcode. const uint64_t opcode = thread.GetProcess()->ReadUnsignedIntegerFromMemory(pc, 4, UINT64_MAX, error); if (opcode <= UINT32_MAX) { const uint32_t condition = Bits32((uint32_t)opcode, 31, 28); if (ARMConditionPassed(condition, cpsr) == false) { // We ARE stopped on an ARM instruction whose condition doesn't // pass so this instruction won't get executed. // Regardless of why it stopped, we need to clear the stop info thread.SetStopInfo (StopInfoSP()); } } #endif } else if (ISETSTATE == 1) { // Thumb mode const uint32_t ITSTATE = Bits32 (cpsr, 15, 10) << 2 | Bits32 (cpsr, 26, 25); if (ITSTATE != 0) { const uint32_t condition = Bits32(ITSTATE, 7, 4); if (ARMConditionPassed(condition, cpsr) == false) { // We ARE stopped in a Thumb IT instruction on an instruction whose // condition doesn't pass so this instruction won't get executed. // Regardless of why it stopped, we need to clear the stop info thread.SetStopInfo (StopInfoSP()); } } } } } } ArchSpec::StopInfoOverrideCallbackType ArchSpec::GetStopInfoOverrideCallback () const { const llvm::Triple::ArchType machine = GetMachine(); if (machine == llvm::Triple::arm) return StopInfoOverrideCallbackTypeARM; return NULL; }