//===-- Scalar.cpp ----------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Core/Scalar.h" // C Includes // C++ Includes #include #include #include // Other libraries and framework includes #include "llvm/ADT/SmallString.h" // Project includes #include "lldb/Core/DataExtractor.h" #include "lldb/Core/Error.h" #include "lldb/Core/Stream.h" #include "lldb/Host/Endian.h" #include "lldb/Host/StringConvert.h" #include "lldb/Interpreter/Args.h" #include "Plugins/Process/Utility/InstructionUtils.h" using namespace lldb; using namespace lldb_private; //---------------------------------------------------------------------- // Promote to max type currently follows the ANSI C rule for type // promotion in expressions. //---------------------------------------------------------------------- static Scalar::Type PromoteToMaxType( const Scalar &lhs, // The const left hand side object const Scalar &rhs, // The const right hand side object Scalar &temp_value, // A modifiable temp value than can be used to hold // either the promoted lhs or rhs object const Scalar *&promoted_lhs_ptr, // Pointer to the resulting possibly // promoted value of lhs (at most one of // lhs/rhs will get promoted) const Scalar *&promoted_rhs_ptr // Pointer to the resulting possibly // promoted value of rhs (at most one of // lhs/rhs will get promoted) ) { Scalar result; // Initialize the promoted values for both the right and left hand side values // to be the objects themselves. If no promotion is needed (both right and // left // have the same type), then the temp_value will not get used. promoted_lhs_ptr = &lhs; promoted_rhs_ptr = &rhs; // Extract the types of both the right and left hand side values Scalar::Type lhs_type = lhs.GetType(); Scalar::Type rhs_type = rhs.GetType(); if (lhs_type > rhs_type) { // Right hand side need to be promoted temp_value = rhs; // Copy right hand side into the temp value if (temp_value.Promote(lhs_type)) // Promote it promoted_rhs_ptr = &temp_value; // Update the pointer for the promoted right hand side } else if (lhs_type < rhs_type) { // Left hand side need to be promoted temp_value = lhs; // Copy left hand side value into the temp value if (temp_value.Promote(rhs_type)) // Promote it promoted_lhs_ptr = &temp_value; // Update the pointer for the promoted left hand side } // Make sure our type promotion worked as expected if (promoted_lhs_ptr->GetType() == promoted_rhs_ptr->GetType()) return promoted_lhs_ptr->GetType(); // Return the resulting max type // Return the void type (zero) if we fail to promote either of the values. return Scalar::e_void; } Scalar::Scalar() : m_type(e_void), m_float((float)0) {} Scalar::Scalar(const Scalar &rhs) : m_type(rhs.m_type), m_integer(rhs.m_integer), m_float(rhs.m_float) {} // Scalar::Scalar(const RegisterValue& reg) : // m_type(e_void), // m_data() //{ // switch (reg.info.encoding) // { // case eEncodingUint: // unsigned integer // switch (reg.info.byte_size) // { // case 1: m_type = e_uint; m_data.uint = reg.value.uint8; break; // case 2: m_type = e_uint; m_data.uint = reg.value.uint16; break; // case 4: m_type = e_uint; m_data.uint = reg.value.uint32; break; // case 8: m_type = e_ulonglong; m_data.ulonglong = reg.value.uint64; // break; // break; // } // break; // // case eEncodingSint: // signed integer // switch (reg.info.byte_size) // { // case 1: m_type = e_sint; m_data.sint = reg.value.sint8; break; // case 2: m_type = e_sint; m_data.sint = reg.value.sint16; break; // case 4: m_type = e_sint; m_data.sint = reg.value.sint32; break; // case 8: m_type = e_slonglong; m_data.slonglong = reg.value.sint64; // break; // break; // } // break; // // case eEncodingIEEE754: // float // switch (reg.info.byte_size) // { // case 4: m_type = e_float; m_data.flt = reg.value.float32; break; // case 8: m_type = e_double; m_data.dbl = reg.value.float64; break; // break; // } // break; // case eEncodingVector: // vector registers // break; // } //} bool Scalar::GetData(DataExtractor &data, size_t limit_byte_size) const { size_t byte_size = GetByteSize(); if (byte_size > 0) { const uint8_t *bytes = reinterpret_cast(GetBytes()); if (limit_byte_size < byte_size) { if (endian::InlHostByteOrder() == eByteOrderLittle) { // On little endian systems if we want fewer bytes from the // current type we just specify fewer bytes since the LSByte // is first... byte_size = limit_byte_size; } else if (endian::InlHostByteOrder() == eByteOrderBig) { // On big endian systems if we want fewer bytes from the // current type have to advance our initial byte pointer and // trim down the number of bytes since the MSByte is first bytes += byte_size - limit_byte_size; byte_size = limit_byte_size; } } data.SetData(bytes, byte_size, endian::InlHostByteOrder()); return true; } data.Clear(); return false; } const void *Scalar::GetBytes() const { const uint64_t *apint_words; const uint8_t *bytes; static float_t flt_val; static double_t dbl_val; static uint64_t swapped_words[4]; switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: bytes = reinterpret_cast(m_integer.getRawData()); // getRawData always returns a pointer to an uint64_t. If we have a smaller // type, // we need to update the pointer on big-endian systems. if (endian::InlHostByteOrder() == eByteOrderBig) { size_t byte_size = m_integer.getBitWidth() / 8; if (byte_size < 8) bytes += 8 - byte_size; } return bytes; case e_sint128: case e_uint128: apint_words = m_integer.getRawData(); // getRawData always returns a pointer to an array of two uint64_t values, // where the least-significant word always comes first. On big-endian // systems we need to swap the two words. if (endian::InlHostByteOrder() == eByteOrderBig) { swapped_words[0] = apint_words[1]; swapped_words[1] = apint_words[0]; apint_words = swapped_words; } return reinterpret_cast(apint_words); case e_sint256: case e_uint256: apint_words = m_integer.getRawData(); // getRawData always returns a pointer to an array of four uint64_t values, // where the least-significant word always comes first. On big-endian // systems we need to swap the four words. if (endian::InlHostByteOrder() == eByteOrderBig) { swapped_words[0] = apint_words[3]; swapped_words[1] = apint_words[2]; swapped_words[2] = apint_words[1]; swapped_words[3] = apint_words[0]; apint_words = swapped_words; } return reinterpret_cast(apint_words); case e_float: flt_val = m_float.convertToFloat(); return reinterpret_cast(&flt_val); case e_double: dbl_val = m_float.convertToDouble(); return reinterpret_cast(&dbl_val); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); apint_words = ldbl_val.getRawData(); // getRawData always returns a pointer to an array of two uint64_t values, // where the least-significant word always comes first. On big-endian // systems we need to swap the two words. if (endian::InlHostByteOrder() == eByteOrderBig) { swapped_words[0] = apint_words[1]; swapped_words[1] = apint_words[0]; apint_words = swapped_words; } return reinterpret_cast(apint_words); } return nullptr; } size_t Scalar::GetByteSize() const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (m_integer.getBitWidth() / 8); case e_float: return sizeof(float_t); case e_double: return sizeof(double_t); case e_long_double: return sizeof(long_double_t); } return 0; } bool Scalar::IsZero() const { llvm::APInt zero_int = llvm::APInt::getNullValue(m_integer.getBitWidth() / 8); switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return llvm::APInt::isSameValue(zero_int, m_integer); case e_float: case e_double: case e_long_double: return m_float.isZero(); } return false; } void Scalar::GetValue(Stream *s, bool show_type) const { if (show_type) s->Printf("(%s) ", GetTypeAsCString()); switch (m_type) { case e_void: break; case e_sint: case e_slong: case e_slonglong: case e_sint128: case e_sint256: s->PutCString(m_integer.toString(10, true)); break; case e_uint: case e_ulong: case e_ulonglong: case e_uint128: case e_uint256: s->PutCString(m_integer.toString(10, false)); break; case e_float: case e_double: case e_long_double: llvm::SmallString<24> string; m_float.toString(string); s->Printf("%s", string.c_str()); break; } } const char *Scalar::GetTypeAsCString() const { switch (m_type) { case e_void: return "void"; case e_sint: return "int"; case e_uint: return "unsigned int"; case e_slong: return "long"; case e_ulong: return "unsigned long"; case e_slonglong: return "long long"; case e_ulonglong: return "unsigned long long"; case e_sint128: return "int128_t"; case e_uint128: return "unsigned int128_t"; case e_sint256: return "int256_t"; case e_uint256: return "unsigned int256_t"; case e_float: return "float"; case e_double: return "double"; case e_long_double: return "long double"; } return ""; } Scalar &Scalar::operator=(const Scalar &rhs) { if (this != &rhs) { m_type = rhs.m_type; m_integer = llvm::APInt(rhs.m_integer); m_float = rhs.m_float; } return *this; } Scalar &Scalar::operator=(const int v) { m_type = e_sint; m_integer = llvm::APInt(sizeof(int) * 8, v, true); return *this; } Scalar &Scalar::operator=(unsigned int v) { m_type = e_uint; m_integer = llvm::APInt(sizeof(int) * 8, v); return *this; } Scalar &Scalar::operator=(long v) { m_type = e_slong; m_integer = llvm::APInt(sizeof(long) * 8, v, true); return *this; } Scalar &Scalar::operator=(unsigned long v) { m_type = e_ulong; m_integer = llvm::APInt(sizeof(long) * 8, v); return *this; } Scalar &Scalar::operator=(long long v) { m_type = e_slonglong; m_integer = llvm::APInt(sizeof(long) * 8, v, true); return *this; } Scalar &Scalar::operator=(unsigned long long v) { m_type = e_ulonglong; m_integer = llvm::APInt(sizeof(long long) * 8, v); return *this; } Scalar &Scalar::operator=(float v) { m_type = e_float; m_float = llvm::APFloat(v); return *this; } Scalar &Scalar::operator=(double v) { m_type = e_double; m_float = llvm::APFloat(v); return *this; } Scalar &Scalar::operator=(long double v) { m_type = e_long_double; if (m_ieee_quad) m_float = llvm::APFloat( llvm::APFloat::IEEEquad(), llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x)); else m_float = llvm::APFloat( llvm::APFloat::x87DoubleExtended(), llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&v)->x)); return *this; } Scalar &Scalar::operator=(llvm::APInt rhs) { m_integer = llvm::APInt(rhs); switch (m_integer.getBitWidth()) { case 8: case 16: case 32: if (m_integer.isSignedIntN(sizeof(sint_t) * 8)) m_type = e_sint; else m_type = e_uint; break; case 64: if (m_integer.isSignedIntN(sizeof(slonglong_t) * 8)) m_type = e_slonglong; else m_type = e_ulonglong; break; case 128: if (m_integer.isSignedIntN(BITWIDTH_INT128)) m_type = e_sint128; else m_type = e_uint128; break; case 256: if (m_integer.isSignedIntN(BITWIDTH_INT256)) m_type = e_sint256; else m_type = e_uint256; break; } return *this; } Scalar::~Scalar() = default; bool Scalar::Promote(Scalar::Type type) { bool success = false; switch (m_type) { case e_void: break; case e_sint: switch (type) { case e_void: break; case e_sint: success = true; break; case e_uint: m_integer = m_integer.sextOrTrunc(sizeof(uint_t) * 8); success = true; break; case e_slong: m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8); success = true; break; case e_ulong: m_integer = m_integer.sextOrTrunc(sizeof(ulong_t) * 8); success = true; break; case e_slonglong: m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_ulonglong: m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8); success = true; break; case e_sint128: case e_uint128: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_uint: switch (type) { case e_void: case e_sint: break; case e_uint: success = true; break; case e_slong: m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8); success = true; break; case e_ulong: m_integer = m_integer.zextOrTrunc(sizeof(ulong_t) * 8); success = true; break; case e_slonglong: m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_ulonglong: m_integer = m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8); success = true; break; case e_sint128: case e_uint128: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_slong: switch (type) { case e_void: case e_sint: case e_uint: break; case e_slong: success = true; break; case e_ulong: m_integer = m_integer.sextOrTrunc(sizeof(ulong_t) * 8); success = true; break; case e_slonglong: m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_ulonglong: m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8); success = true; break; case e_sint128: case e_uint128: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_ulong: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: break; case e_ulong: success = true; break; case e_slonglong: m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_ulonglong: m_integer = m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8); success = true; break; case e_sint128: case e_uint128: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_slonglong: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: break; case e_slonglong: success = true; break; case e_ulonglong: m_integer = m_integer.sextOrTrunc(sizeof(ulonglong_t) * 8); success = true; break; case e_sint128: case e_uint128: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_ulonglong: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: break; case e_ulonglong: success = true; break; case e_sint128: case e_uint128: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_sint128: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: break; case e_sint128: success = true; break; case e_uint128: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_uint128: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: break; case e_uint128: success = true; break; case e_sint256: case e_uint256: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_sint256: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: break; case e_sint256: success = true; break; case e_uint256: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_uint256: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: break; case e_uint256: success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_float: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: break; case e_float: success = true; break; case e_double: m_float = llvm::APFloat((float_t)m_float.convertToFloat()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_float.bitcastToAPInt()); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_float.bitcastToAPInt()); success = true; break; } break; case e_double: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: case e_float: break; case e_double: success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_float.bitcastToAPInt()); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_float.bitcastToAPInt()); success = true; break; } break; case e_long_double: switch (type) { case e_void: case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: case e_float: case e_double: break; case e_long_double: success = true; break; } break; } if (success) m_type = type; return success; } const char *Scalar::GetValueTypeAsCString(Scalar::Type type) { switch (type) { case e_void: return "void"; case e_sint: return "int"; case e_uint: return "unsigned int"; case e_slong: return "long"; case e_ulong: return "unsigned long"; case e_slonglong: return "long long"; case e_ulonglong: return "unsigned long long"; case e_float: return "float"; case e_double: return "double"; case e_long_double: return "long double"; case e_sint128: return "int128_t"; case e_uint128: return "uint128_t"; case e_sint256: return "int256_t"; case e_uint256: return "uint256_t"; } return "???"; } Scalar::Type Scalar::GetValueTypeForSignedIntegerWithByteSize(size_t byte_size) { if (byte_size <= sizeof(sint_t)) return e_sint; if (byte_size <= sizeof(slong_t)) return e_slong; if (byte_size <= sizeof(slonglong_t)) return e_slonglong; return e_void; } Scalar::Type Scalar::GetValueTypeForUnsignedIntegerWithByteSize(size_t byte_size) { if (byte_size <= sizeof(uint_t)) return e_uint; if (byte_size <= sizeof(ulong_t)) return e_ulong; if (byte_size <= sizeof(ulonglong_t)) return e_ulonglong; return e_void; } Scalar::Type Scalar::GetValueTypeForFloatWithByteSize(size_t byte_size) { if (byte_size == sizeof(float_t)) return e_float; if (byte_size == sizeof(double_t)) return e_double; if (byte_size == sizeof(long_double_t)) return e_long_double; return e_void; } bool Scalar::Cast(Scalar::Type type) { bool success = false; switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: switch (type) { case e_void: break; case e_sint: m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8); success = true; break; case e_uint: m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8); success = true; break; case e_slong: m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8); success = true; break; case e_ulong: m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8); success = true; break; case e_slonglong: m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_ulonglong: m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_sint128: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128); success = true; break; case e_uint128: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_uint256: m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_integer.bitsToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_integer.bitsToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_integer); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_integer); success = true; break; } break; case e_float: switch (type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = m_float.bitcastToAPInt(); success = true; break; case e_float: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_float.bitcastToAPInt()); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_float.bitcastToAPInt()); success = true; break; } break; case e_double: switch (type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = m_float.bitcastToAPInt(); success = true; break; case e_float: m_float = llvm::APFloat(m_float.convertToDouble()); success = true; break; case e_double: m_float = llvm::APFloat(m_float.convertToDouble()); success = true; break; case e_long_double: if (m_ieee_quad) m_float = llvm::APFloat(llvm::APFloat::IEEEquad(), m_float.bitcastToAPInt()); else m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), m_float.bitcastToAPInt()); success = true; break; } break; case e_long_double: switch (type) { case e_void: break; case e_sint: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.sextOrTrunc(sizeof(sint_t) * 8); success = true; break; case e_uint: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.zextOrTrunc(sizeof(sint_t) * 8); success = true; break; case e_slong: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.sextOrTrunc(sizeof(slong_t) * 8); success = true; break; case e_ulong: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.zextOrTrunc(sizeof(slong_t) * 8); success = true; break; case e_slonglong: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.sextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_ulonglong: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.zextOrTrunc(sizeof(slonglong_t) * 8); success = true; break; case e_sint128: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.sextOrTrunc(BITWIDTH_INT128); success = true; break; case e_uint128: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.zextOrTrunc(BITWIDTH_INT128); success = true; break; case e_sint256: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.sextOrTrunc(BITWIDTH_INT256); success = true; break; case e_uint256: m_integer = m_float.bitcastToAPInt(); m_integer = m_integer.zextOrTrunc(BITWIDTH_INT256); success = true; break; case e_float: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break; case e_double: m_float = llvm::APFloat(m_float.convertToFloat()); success = true; break; case e_long_double: success = true; break; } break; } if (success) m_type = type; return success; } bool Scalar::MakeSigned() { bool success = false; switch (m_type) { case e_void: break; case e_sint: success = true; break; case e_uint: m_type = e_sint; success = true; break; case e_slong: success = true; break; case e_ulong: m_type = e_slong; success = true; break; case e_slonglong: success = true; break; case e_ulonglong: m_type = e_slonglong; success = true; break; case e_sint128: success = true; break; case e_uint128: m_type = e_sint128; success = true; break; case e_sint256: success = true; break; case e_uint256: m_type = e_sint256; success = true; break; case e_float: success = true; break; case e_double: success = true; break; case e_long_double: success = true; break; } return success; } bool Scalar::MakeUnsigned() { bool success = false; switch (m_type) { case e_void: break; case e_sint: success = true; break; case e_uint: m_type = e_uint; success = true; break; case e_slong: success = true; break; case e_ulong: m_type = e_ulong; success = true; break; case e_slonglong: success = true; break; case e_ulonglong: m_type = e_ulonglong; success = true; break; case e_sint128: success = true; break; case e_uint128: m_type = e_uint128; success = true; break; case e_sint256: success = true; break; case e_uint256: m_type = e_uint256; success = true; break; case e_float: success = true; break; case e_double: success = true; break; case e_long_double: success = true; break; } return success; } signed char Scalar::SChar(char fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (schar_t)(m_integer.sextOrTrunc(sizeof(schar_t) * 8)).getSExtValue(); case e_float: return (schar_t)m_float.convertToFloat(); case e_double: return (schar_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (schar_t)(ldbl_val.sextOrTrunc(sizeof(schar_t) * 8)).getSExtValue(); } return fail_value; } unsigned char Scalar::UChar(unsigned char fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (uchar_t)(m_integer.zextOrTrunc(sizeof(uchar_t) * 8)).getZExtValue(); case e_float: return (uchar_t)m_float.convertToFloat(); case e_double: return (uchar_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (uchar_t)(ldbl_val.zextOrTrunc(sizeof(uchar_t) * 8)).getZExtValue(); } return fail_value; } short Scalar::SShort(short fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (sshort_t)(m_integer.sextOrTrunc(sizeof(sshort_t) * 8)) .getSExtValue(); case e_float: return (sshort_t)m_float.convertToFloat(); case e_double: return (sshort_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (sshort_t)(ldbl_val.sextOrTrunc(sizeof(sshort_t) * 8)) .getSExtValue(); } return fail_value; } unsigned short Scalar::UShort(unsigned short fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (ushort_t)(m_integer.zextOrTrunc(sizeof(ushort_t) * 8)) .getZExtValue(); case e_float: return (ushort_t)m_float.convertToFloat(); case e_double: return (ushort_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (ushort_t)(ldbl_val.zextOrTrunc(sizeof(ushort_t) * 8)) .getZExtValue(); } return fail_value; } int Scalar::SInt(int fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (sint_t)(m_integer.sextOrTrunc(sizeof(sint_t) * 8)).getSExtValue(); case e_float: return (sint_t)m_float.convertToFloat(); case e_double: return (sint_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (sint_t)(ldbl_val.sextOrTrunc(sizeof(sint_t) * 8)).getSExtValue(); } return fail_value; } unsigned int Scalar::UInt(unsigned int fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (uint_t)(m_integer.zextOrTrunc(sizeof(uint_t) * 8)).getZExtValue(); case e_float: return (uint_t)m_float.convertToFloat(); case e_double: return (uint_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (uint_t)(ldbl_val.zextOrTrunc(sizeof(uint_t) * 8)).getZExtValue(); } return fail_value; } long Scalar::SLong(long fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (slong_t)(m_integer.sextOrTrunc(sizeof(slong_t) * 8)).getSExtValue(); case e_float: return (slong_t)m_float.convertToFloat(); case e_double: return (slong_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (slong_t)(ldbl_val.sextOrTrunc(sizeof(slong_t) * 8)).getSExtValue(); } return fail_value; } unsigned long Scalar::ULong(unsigned long fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (ulong_t)(m_integer.zextOrTrunc(sizeof(ulong_t) * 8)).getZExtValue(); case e_float: return (ulong_t)m_float.convertToFloat(); case e_double: return (ulong_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (ulong_t)(ldbl_val.zextOrTrunc(sizeof(ulong_t) * 8)).getZExtValue(); } return fail_value; } long long Scalar::SLongLong(long long fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (slonglong_t)(m_integer.sextOrTrunc(sizeof(slonglong_t) * 8)) .getSExtValue(); case e_float: return (slonglong_t)m_float.convertToFloat(); case e_double: return (slonglong_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (slonglong_t)(ldbl_val.sextOrTrunc(sizeof(slonglong_t) * 8)) .getSExtValue(); } return fail_value; } unsigned long long Scalar::ULongLong(unsigned long long fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (ulonglong_t)(m_integer.zextOrTrunc(sizeof(ulonglong_t) * 8)) .getZExtValue(); case e_float: return (ulonglong_t)m_float.convertToFloat(); case e_double: return (ulonglong_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (ulonglong_t)(ldbl_val.zextOrTrunc(sizeof(ulonglong_t) * 8)) .getZExtValue(); } return fail_value; } llvm::APInt Scalar::SInt128(llvm::APInt &fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return m_integer; case e_float: case e_double: case e_long_double: return m_float.bitcastToAPInt(); } return fail_value; } llvm::APInt Scalar::UInt128(const llvm::APInt &fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return m_integer; case e_float: case e_double: case e_long_double: return m_float.bitcastToAPInt(); } return fail_value; } llvm::APInt Scalar::SInt256(llvm::APInt &fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return m_integer; case e_float: case e_double: case e_long_double: return m_float.bitcastToAPInt(); } return fail_value; } llvm::APInt Scalar::UInt256(const llvm::APInt &fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return m_integer; case e_float: case e_double: case e_long_double: return m_float.bitcastToAPInt(); } return fail_value; } float Scalar::Float(float fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return m_integer.bitsToFloat(); case e_float: return m_float.convertToFloat(); case e_double: return (float_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return ldbl_val.bitsToFloat(); } return fail_value; } double Scalar::Double(double fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return m_integer.bitsToDouble(); case e_float: return (double_t)m_float.convertToFloat(); case e_double: return m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return ldbl_val.bitsToFloat(); } return fail_value; } long double Scalar::LongDouble(long double fail_value) const { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: return (long_double_t)m_integer.bitsToDouble(); case e_float: return (long_double_t)m_float.convertToFloat(); case e_double: return (long_double_t)m_float.convertToDouble(); case e_long_double: llvm::APInt ldbl_val = m_float.bitcastToAPInt(); return (long_double_t)ldbl_val.bitsToDouble(); } return fail_value; } Scalar &Scalar::operator+=(const Scalar &rhs) { Scalar temp_value; const Scalar *a; const Scalar *b; if ((m_type = PromoteToMaxType(*this, rhs, temp_value, a, b)) != Scalar::e_void) { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = a->m_integer + b->m_integer; break; case e_float: case e_double: case e_long_double: m_float = a->m_float + b->m_float; break; } } return *this; } Scalar &Scalar::operator<<=(const Scalar &rhs) { switch (m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: switch (rhs.m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = m_integer << rhs.m_integer; break; } break; } return *this; } bool Scalar::ShiftRightLogical(const Scalar &rhs) { switch (m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: switch (rhs.m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = m_integer.lshr(rhs.m_integer); break; } break; } return m_type != e_void; } Scalar &Scalar::operator>>=(const Scalar &rhs) { switch (m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: switch (rhs.m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = m_integer.ashr(rhs.m_integer); break; } break; } return *this; } Scalar &Scalar::operator&=(const Scalar &rhs) { switch (m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: switch (rhs.m_type) { case e_void: case e_float: case e_double: case e_long_double: m_type = e_void; break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer &= rhs.m_integer; break; } break; } return *this; } bool Scalar::AbsoluteValue() { switch (m_type) { case e_void: break; case e_sint: case e_slong: case e_slonglong: case e_sint128: case e_sint256: if (m_integer.isNegative()) m_integer = -m_integer; return true; case e_uint: case e_ulong: case e_ulonglong: return true; case e_uint128: case e_uint256: case e_float: case e_double: case e_long_double: m_float.clearSign(); return true; } return false; } bool Scalar::UnaryNegate() { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = -m_integer; return true; case e_float: case e_double: case e_long_double: m_float.changeSign(); return true; } return false; } bool Scalar::OnesComplement() { switch (m_type) { case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer = ~m_integer; return true; case e_void: case e_float: case e_double: case e_long_double: break; } return false; } const Scalar lldb_private::operator+(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: result.m_integer = a->m_integer + b->m_integer; break; case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result.m_float = a->m_float + b->m_float; break; } } return result; } const Scalar lldb_private::operator-(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: result.m_integer = a->m_integer - b->m_integer; break; case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result.m_float = a->m_float - b->m_float; break; } } return result; } const Scalar lldb_private::operator/(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: if (b->m_integer != 0) { result.m_integer = a->m_integer.sdiv(b->m_integer); return result; } break; case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: if (b->m_integer != 0) { result.m_integer = a->m_integer.udiv(b->m_integer); return result; } break; case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: if (b->m_float.isZero()) { result.m_float = a->m_float / b->m_float; return result; } break; } } // For division only, the only way it should make it here is if a promotion // failed, // or if we are trying to do a divide by zero. result.m_type = Scalar::e_void; return result; } const Scalar lldb_private::operator*(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: result.m_integer = a->m_integer * b->m_integer; break; case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result.m_float = a->m_float * b->m_float; break; } } return result; } const Scalar lldb_private::operator&(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: result.m_integer = a->m_integer & b->m_integer; break; case Scalar::e_void: case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: // No bitwise AND on floats, doubles of long doubles result.m_type = Scalar::e_void; break; } } return result; } const Scalar lldb_private::operator|(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: result.m_integer = a->m_integer | b->m_integer; break; case Scalar::e_void: case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: // No bitwise AND on floats, doubles of long doubles result.m_type = Scalar::e_void; break; } } return result; } const Scalar lldb_private::operator%(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { default: break; case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: if (b->m_integer != 0) { result.m_integer = a->m_integer.srem(b->m_integer); return result; } break; case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: if (b->m_integer != 0) { result.m_integer = a->m_integer.urem(b->m_integer); return result; } break; } } result.m_type = Scalar::e_void; return result; } const Scalar lldb_private::operator^(const Scalar &lhs, const Scalar &rhs) { Scalar result; Scalar temp_value; const Scalar *a; const Scalar *b; if ((result.m_type = PromoteToMaxType(lhs, rhs, temp_value, a, b)) != Scalar::e_void) { switch (result.m_type) { case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: result.m_integer = a->m_integer ^ b->m_integer; break; case Scalar::e_void: case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: // No bitwise AND on floats, doubles of long doubles result.m_type = Scalar::e_void; break; } } return result; } const Scalar lldb_private::operator<<(const Scalar &lhs, const Scalar &rhs) { Scalar result = lhs; result <<= rhs; return result; } const Scalar lldb_private::operator>>(const Scalar &lhs, const Scalar &rhs) { Scalar result = lhs; result >>= rhs; return result; } Error Scalar::SetValueFromCString(const char *value_str, Encoding encoding, size_t byte_size) { Error error; if (value_str == nullptr || value_str[0] == '\0') { error.SetErrorString("Invalid c-string value string."); return error; } bool success = false; switch (encoding) { case eEncodingInvalid: error.SetErrorString("Invalid encoding."); break; case eEncodingUint: if (byte_size <= sizeof(unsigned long long)) { uint64_t uval64 = StringConvert::ToUInt64(value_str, UINT64_MAX, 0, &success); if (!success) error.SetErrorStringWithFormat( "'%s' is not a valid unsigned integer string value", value_str); else if (!UIntValueIsValidForSize(uval64, byte_size)) error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte unsigned integer value", uval64, (uint64_t)byte_size); else { m_type = Scalar::GetValueTypeForUnsignedIntegerWithByteSize(byte_size); switch (m_type) { case e_uint: m_integer = llvm::APInt(sizeof(uint_t) * 8, uval64, false); break; case e_ulong: m_integer = llvm::APInt(sizeof(ulong_t) * 8, uval64, false); break; case e_ulonglong: m_integer = llvm::APInt(sizeof(ulonglong_t) * 8, uval64, false); break; default: error.SetErrorStringWithFormat( "unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size); break; } } } else { error.SetErrorStringWithFormat( "unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size); return error; } break; case eEncodingSint: if (byte_size <= sizeof(long long)) { uint64_t sval64 = StringConvert::ToSInt64(value_str, INT64_MAX, 0, &success); if (!success) error.SetErrorStringWithFormat( "'%s' is not a valid signed integer string value", value_str); else if (!SIntValueIsValidForSize(sval64, byte_size)) error.SetErrorStringWithFormat("value 0x%" PRIx64 " is too large to fit in a %" PRIu64 " byte signed integer value", sval64, (uint64_t)byte_size); else { m_type = Scalar::GetValueTypeForSignedIntegerWithByteSize(byte_size); switch (m_type) { case e_sint: m_integer = llvm::APInt(sizeof(sint_t) * 8, sval64, true); break; case e_slong: m_integer = llvm::APInt(sizeof(slong_t) * 8, sval64, true); break; case e_slonglong: m_integer = llvm::APInt(sizeof(slonglong_t) * 8, sval64, true); break; default: error.SetErrorStringWithFormat( "unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size); break; } } } else { error.SetErrorStringWithFormat( "unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size); return error; } break; case eEncodingIEEE754: static float f_val; static double d_val; static long double l_val; if (byte_size == sizeof(float)) { if (::sscanf(value_str, "%f", &f_val) == 1) { m_float = llvm::APFloat(f_val); m_type = e_float; } else error.SetErrorStringWithFormat("'%s' is not a valid float string value", value_str); } else if (byte_size == sizeof(double)) { if (::sscanf(value_str, "%lf", &d_val) == 1) { m_float = llvm::APFloat(d_val); m_type = e_double; } else error.SetErrorStringWithFormat("'%s' is not a valid float string value", value_str); } else if (byte_size == sizeof(long double)) { if (::sscanf(value_str, "%Lf", &l_val) == 1) { m_float = llvm::APFloat(llvm::APFloat::x87DoubleExtended(), llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, ((type128 *)&l_val)->x)); m_type = e_long_double; } else error.SetErrorStringWithFormat("'%s' is not a valid float string value", value_str); } else { error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size); return error; } break; case eEncodingVector: error.SetErrorString("vector encoding unsupported."); break; } if (error.Fail()) m_type = e_void; return error; } Error Scalar::SetValueFromData(DataExtractor &data, lldb::Encoding encoding, size_t byte_size) { Error error; type128 int128; type256 int256; switch (encoding) { case lldb::eEncodingInvalid: error.SetErrorString("invalid encoding"); break; case lldb::eEncodingVector: error.SetErrorString("vector encoding unsupported"); break; case lldb::eEncodingUint: { lldb::offset_t offset = 0; switch (byte_size) { case 1: operator=((uint8_t)data.GetU8(&offset)); break; case 2: operator=((uint16_t)data.GetU16(&offset)); break; case 4: operator=((uint32_t)data.GetU32(&offset)); break; case 8: operator=((uint64_t)data.GetU64(&offset)); break; case 16: if (data.GetByteOrder() == eByteOrderBig) { int128.x[1] = (uint64_t)data.GetU64(&offset); int128.x[0] = (uint64_t)data.GetU64(&offset); } else { int128.x[0] = (uint64_t)data.GetU64(&offset); int128.x[1] = (uint64_t)data.GetU64(&offset); } operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x)); break; case 32: if (data.GetByteOrder() == eByteOrderBig) { int256.x[3] = (uint64_t)data.GetU64(&offset); int256.x[2] = (uint64_t)data.GetU64(&offset); int256.x[1] = (uint64_t)data.GetU64(&offset); int256.x[0] = (uint64_t)data.GetU64(&offset); } else { int256.x[0] = (uint64_t)data.GetU64(&offset); int256.x[1] = (uint64_t)data.GetU64(&offset); int256.x[2] = (uint64_t)data.GetU64(&offset); int256.x[3] = (uint64_t)data.GetU64(&offset); } operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x)); break; default: error.SetErrorStringWithFormat( "unsupported unsigned integer byte size: %" PRIu64 "", (uint64_t)byte_size); break; } } break; case lldb::eEncodingSint: { lldb::offset_t offset = 0; switch (byte_size) { case 1: operator=((int8_t)data.GetU8(&offset)); break; case 2: operator=((int16_t)data.GetU16(&offset)); break; case 4: operator=((int32_t)data.GetU32(&offset)); break; case 8: operator=((int64_t)data.GetU64(&offset)); break; case 16: if (data.GetByteOrder() == eByteOrderBig) { int128.x[1] = (uint64_t)data.GetU64(&offset); int128.x[0] = (uint64_t)data.GetU64(&offset); } else { int128.x[0] = (uint64_t)data.GetU64(&offset); int128.x[1] = (uint64_t)data.GetU64(&offset); } operator=(llvm::APInt(BITWIDTH_INT128, NUM_OF_WORDS_INT128, int128.x)); break; case 32: if (data.GetByteOrder() == eByteOrderBig) { int256.x[3] = (uint64_t)data.GetU64(&offset); int256.x[2] = (uint64_t)data.GetU64(&offset); int256.x[1] = (uint64_t)data.GetU64(&offset); int256.x[0] = (uint64_t)data.GetU64(&offset); } else { int256.x[0] = (uint64_t)data.GetU64(&offset); int256.x[1] = (uint64_t)data.GetU64(&offset); int256.x[2] = (uint64_t)data.GetU64(&offset); int256.x[3] = (uint64_t)data.GetU64(&offset); } operator=(llvm::APInt(BITWIDTH_INT256, NUM_OF_WORDS_INT256, int256.x)); break; default: error.SetErrorStringWithFormat( "unsupported signed integer byte size: %" PRIu64 "", (uint64_t)byte_size); break; } } break; case lldb::eEncodingIEEE754: { lldb::offset_t offset = 0; if (byte_size == sizeof(float)) operator=((float)data.GetFloat(&offset)); else if (byte_size == sizeof(double)) operator=((double)data.GetDouble(&offset)); else if (byte_size == sizeof(long double)) operator=((long double)data.GetLongDouble(&offset)); else error.SetErrorStringWithFormat("unsupported float byte size: %" PRIu64 "", (uint64_t)byte_size); } break; } return error; } bool Scalar::SignExtend(uint32_t sign_bit_pos) { const uint32_t max_bit_pos = GetByteSize() * 8; if (sign_bit_pos < max_bit_pos) { switch (m_type) { case Scalar::e_void: case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: return false; case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: if (max_bit_pos == sign_bit_pos) return true; else if (sign_bit_pos < (max_bit_pos - 1)) { llvm::APInt sign_bit = llvm::APInt::getSignBit(sign_bit_pos + 1); llvm::APInt bitwize_and = m_integer & sign_bit; if (bitwize_and.getBoolValue()) { const llvm::APInt mask = ~(sign_bit) + llvm::APInt(m_integer.getBitWidth(), 1); m_integer |= mask; } return true; } break; } } return false; } size_t Scalar::GetAsMemoryData(void *dst, size_t dst_len, lldb::ByteOrder dst_byte_order, Error &error) const { // Get a data extractor that points to the native scalar data DataExtractor data; if (!GetData(data)) { error.SetErrorString("invalid scalar value"); return 0; } const size_t src_len = data.GetByteSize(); // Prepare a memory buffer that contains some or all of the register value const size_t bytes_copied = data.CopyByteOrderedData(0, // src offset src_len, // src length dst, // dst buffer dst_len, // dst length dst_byte_order); // dst byte order if (bytes_copied == 0) error.SetErrorString("failed to copy data"); return bytes_copied; } bool Scalar::ExtractBitfield(uint32_t bit_size, uint32_t bit_offset) { if (bit_size == 0) return true; switch (m_type) { case Scalar::e_void: case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: m_integer = m_integer.ashr(bit_offset) .sextOrTrunc(bit_size) .sextOrSelf(8 * GetByteSize()); return true; case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: m_integer = m_integer.lshr(bit_offset) .zextOrTrunc(bit_size) .zextOrSelf(8 * GetByteSize()); return true; } return false; } bool lldb_private::operator==(const Scalar &lhs, const Scalar &rhs) { // If either entry is void then we can just compare the types if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) return lhs.m_type == rhs.m_type; Scalar temp_value; const Scalar *a; const Scalar *b; llvm::APFloat::cmpResult result; switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: return a->m_integer == b->m_integer; case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result = a->m_float.compare(b->m_float); if (result == llvm::APFloat::cmpEqual) return true; } return false; } bool lldb_private::operator!=(const Scalar &lhs, const Scalar &rhs) { // If either entry is void then we can just compare the types if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) return lhs.m_type != rhs.m_type; Scalar temp_value; // A temp value that might get a copy of either promoted value const Scalar *a; const Scalar *b; llvm::APFloat::cmpResult result; switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_uint: case Scalar::e_slong: case Scalar::e_ulong: case Scalar::e_slonglong: case Scalar::e_ulonglong: case Scalar::e_sint128: case Scalar::e_uint128: case Scalar::e_sint256: case Scalar::e_uint256: return a->m_integer != b->m_integer; case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result = a->m_float.compare(b->m_float); if (result != llvm::APFloat::cmpEqual) return true; } return true; } bool lldb_private::operator<(const Scalar &lhs, const Scalar &rhs) { if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) return false; Scalar temp_value; const Scalar *a; const Scalar *b; llvm::APFloat::cmpResult result; switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: return a->m_integer.slt(b->m_integer); case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: return a->m_integer.ult(b->m_integer); case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result = a->m_float.compare(b->m_float); if (result == llvm::APFloat::cmpLessThan) return true; } return false; } bool lldb_private::operator<=(const Scalar &lhs, const Scalar &rhs) { if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) return false; Scalar temp_value; const Scalar *a; const Scalar *b; llvm::APFloat::cmpResult result; switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: return a->m_integer.sle(b->m_integer); case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: return a->m_integer.ule(b->m_integer); case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result = a->m_float.compare(b->m_float); if (result == llvm::APFloat::cmpLessThan || result == llvm::APFloat::cmpEqual) return true; } return false; } bool lldb_private::operator>(const Scalar &lhs, const Scalar &rhs) { if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) return false; Scalar temp_value; const Scalar *a; const Scalar *b; llvm::APFloat::cmpResult result; switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: return a->m_integer.sgt(b->m_integer); case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: return a->m_integer.ugt(b->m_integer); case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result = a->m_float.compare(b->m_float); if (result == llvm::APFloat::cmpGreaterThan) return true; } return false; } bool lldb_private::operator>=(const Scalar &lhs, const Scalar &rhs) { if (lhs.m_type == Scalar::e_void || rhs.m_type == Scalar::e_void) return false; Scalar temp_value; const Scalar *a; const Scalar *b; llvm::APFloat::cmpResult result; switch (PromoteToMaxType(lhs, rhs, temp_value, a, b)) { case Scalar::e_void: break; case Scalar::e_sint: case Scalar::e_slong: case Scalar::e_slonglong: case Scalar::e_sint128: case Scalar::e_sint256: return a->m_integer.sge(b->m_integer); case Scalar::e_uint: case Scalar::e_ulong: case Scalar::e_ulonglong: case Scalar::e_uint128: case Scalar::e_uint256: return a->m_integer.uge(b->m_integer); case Scalar::e_float: case Scalar::e_double: case Scalar::e_long_double: result = a->m_float.compare(b->m_float); if (result == llvm::APFloat::cmpGreaterThan || result == llvm::APFloat::cmpEqual) return true; } return false; } bool Scalar::ClearBit(uint32_t bit) { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer.clearBit(bit); return true; case e_float: case e_double: case e_long_double: break; } return false; } bool Scalar::SetBit(uint32_t bit) { switch (m_type) { case e_void: break; case e_sint: case e_uint: case e_slong: case e_ulong: case e_slonglong: case e_ulonglong: case e_sint128: case e_uint128: case e_sint256: case e_uint256: m_integer.setBit(bit); return true; case e_float: case e_double: case e_long_double: break; } return false; }