//===-- DWARFExpression.cpp -------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Expression/DWARFExpression.h" // C Includes #include // C++ Includes #include #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Scalar.h" #include "lldb/Core/Value.h" #include "lldb/Core/dwarf.h" #include "lldb/Utility/DataEncoder.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/VMRange.h" #include "lldb/Host/Host.h" #include "lldb/Utility/Endian.h" #include "lldb/Symbol/Function.h" #include "lldb/Target/ABI.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/StackID.h" #include "lldb/Target/Thread.h" #include "Plugins/SymbolFile/DWARF/DWARFCompileUnit.h" using namespace lldb; using namespace lldb_private; static lldb::addr_t ReadAddressFromDebugAddrSection(const DWARFCompileUnit *dwarf_cu, uint32_t index) { uint32_t index_size = dwarf_cu->GetAddressByteSize(); dw_offset_t addr_base = dwarf_cu->GetAddrBase(); lldb::offset_t offset = addr_base + index * index_size; return dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data().GetMaxU64( &offset, index_size); } //---------------------------------------------------------------------- // DWARFExpression constructor //---------------------------------------------------------------------- DWARFExpression::DWARFExpression(DWARFCompileUnit *dwarf_cu) : m_module_wp(), m_data(), m_dwarf_cu(dwarf_cu), m_reg_kind(eRegisterKindDWARF), m_loclist_slide(LLDB_INVALID_ADDRESS) {} DWARFExpression::DWARFExpression(const DWARFExpression &rhs) : m_module_wp(rhs.m_module_wp), m_data(rhs.m_data), m_dwarf_cu(rhs.m_dwarf_cu), m_reg_kind(rhs.m_reg_kind), m_loclist_slide(rhs.m_loclist_slide) {} DWARFExpression::DWARFExpression(lldb::ModuleSP module_sp, const DataExtractor &data, DWARFCompileUnit *dwarf_cu, lldb::offset_t data_offset, lldb::offset_t data_length) : m_module_wp(), m_data(data, data_offset, data_length), m_dwarf_cu(dwarf_cu), m_reg_kind(eRegisterKindDWARF), m_loclist_slide(LLDB_INVALID_ADDRESS) { if (module_sp) m_module_wp = module_sp; } //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- DWARFExpression::~DWARFExpression() {} bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; } void DWARFExpression::SetOpcodeData(const DataExtractor &data) { m_data = data; } void DWARFExpression::CopyOpcodeData(lldb::ModuleSP module_sp, const DataExtractor &data, lldb::offset_t data_offset, lldb::offset_t data_length) { const uint8_t *bytes = data.PeekData(data_offset, data_length); if (bytes) { m_module_wp = module_sp; m_data.SetData(DataBufferSP(new DataBufferHeap(bytes, data_length))); m_data.SetByteOrder(data.GetByteOrder()); m_data.SetAddressByteSize(data.GetAddressByteSize()); } } void DWARFExpression::CopyOpcodeData(const void *data, lldb::offset_t data_length, ByteOrder byte_order, uint8_t addr_byte_size) { if (data && data_length) { m_data.SetData(DataBufferSP(new DataBufferHeap(data, data_length))); m_data.SetByteOrder(byte_order); m_data.SetAddressByteSize(addr_byte_size); } } void DWARFExpression::CopyOpcodeData(uint64_t const_value, lldb::offset_t const_value_byte_size, uint8_t addr_byte_size) { if (const_value_byte_size) { m_data.SetData( DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size))); m_data.SetByteOrder(endian::InlHostByteOrder()); m_data.SetAddressByteSize(addr_byte_size); } } void DWARFExpression::SetOpcodeData(lldb::ModuleSP module_sp, const DataExtractor &data, lldb::offset_t data_offset, lldb::offset_t data_length) { m_module_wp = module_sp; m_data.SetData(data, data_offset, data_length); } void DWARFExpression::DumpLocation(Stream *s, lldb::offset_t offset, lldb::offset_t length, lldb::DescriptionLevel level, ABI *abi) const { if (!m_data.ValidOffsetForDataOfSize(offset, length)) return; const lldb::offset_t start_offset = offset; const lldb::offset_t end_offset = offset + length; while (m_data.ValidOffset(offset) && offset < end_offset) { const lldb::offset_t op_offset = offset; const uint8_t op = m_data.GetU8(&offset); switch (level) { default: break; case lldb::eDescriptionLevelBrief: if (offset > start_offset) s->PutChar(' '); break; case lldb::eDescriptionLevelFull: case lldb::eDescriptionLevelVerbose: if (offset > start_offset) s->EOL(); s->Indent(); if (level == lldb::eDescriptionLevelFull) break; // Fall through for verbose and print offset and DW_OP prefix.. s->Printf("0x%8.8" PRIx64 ": %s", op_offset, op >= DW_OP_APPLE_uninit ? "DW_OP_APPLE_" : "DW_OP_"); break; } switch (op) { case DW_OP_addr: *s << "DW_OP_addr(" << m_data.GetAddress(&offset) << ") "; break; // 0x03 1 address case DW_OP_deref: *s << "DW_OP_deref"; break; // 0x06 case DW_OP_const1u: s->Printf("DW_OP_const1u(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x08 1 1-byte constant case DW_OP_const1s: s->Printf("DW_OP_const1s(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x09 1 1-byte constant case DW_OP_const2u: s->Printf("DW_OP_const2u(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0a 1 2-byte constant case DW_OP_const2s: s->Printf("DW_OP_const2s(0x%4.4x) ", m_data.GetU16(&offset)); break; // 0x0b 1 2-byte constant case DW_OP_const4u: s->Printf("DW_OP_const4u(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0c 1 4-byte constant case DW_OP_const4s: s->Printf("DW_OP_const4s(0x%8.8x) ", m_data.GetU32(&offset)); break; // 0x0d 1 4-byte constant case DW_OP_const8u: s->Printf("DW_OP_const8u(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0e 1 8-byte constant case DW_OP_const8s: s->Printf("DW_OP_const8s(0x%16.16" PRIx64 ") ", m_data.GetU64(&offset)); break; // 0x0f 1 8-byte constant case DW_OP_constu: s->Printf("DW_OP_constu(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; // 0x10 1 ULEB128 constant case DW_OP_consts: s->Printf("DW_OP_consts(0x%" PRId64 ") ", m_data.GetSLEB128(&offset)); break; // 0x11 1 SLEB128 constant case DW_OP_dup: s->PutCString("DW_OP_dup"); break; // 0x12 case DW_OP_drop: s->PutCString("DW_OP_drop"); break; // 0x13 case DW_OP_over: s->PutCString("DW_OP_over"); break; // 0x14 case DW_OP_pick: s->Printf("DW_OP_pick(0x%2.2x) ", m_data.GetU8(&offset)); break; // 0x15 1 1-byte stack index case DW_OP_swap: s->PutCString("DW_OP_swap"); break; // 0x16 case DW_OP_rot: s->PutCString("DW_OP_rot"); break; // 0x17 case DW_OP_xderef: s->PutCString("DW_OP_xderef"); break; // 0x18 case DW_OP_abs: s->PutCString("DW_OP_abs"); break; // 0x19 case DW_OP_and: s->PutCString("DW_OP_and"); break; // 0x1a case DW_OP_div: s->PutCString("DW_OP_div"); break; // 0x1b case DW_OP_minus: s->PutCString("DW_OP_minus"); break; // 0x1c case DW_OP_mod: s->PutCString("DW_OP_mod"); break; // 0x1d case DW_OP_mul: s->PutCString("DW_OP_mul"); break; // 0x1e case DW_OP_neg: s->PutCString("DW_OP_neg"); break; // 0x1f case DW_OP_not: s->PutCString("DW_OP_not"); break; // 0x20 case DW_OP_or: s->PutCString("DW_OP_or"); break; // 0x21 case DW_OP_plus: s->PutCString("DW_OP_plus"); break; // 0x22 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend s->Printf("DW_OP_plus_uconst(0x%" PRIx64 ") ", m_data.GetULEB128(&offset)); break; case DW_OP_shl: s->PutCString("DW_OP_shl"); break; // 0x24 case DW_OP_shr: s->PutCString("DW_OP_shr"); break; // 0x25 case DW_OP_shra: s->PutCString("DW_OP_shra"); break; // 0x26 case DW_OP_xor: s->PutCString("DW_OP_xor"); break; // 0x27 case DW_OP_skip: s->Printf("DW_OP_skip(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x2f 1 signed 2-byte constant case DW_OP_bra: s->Printf("DW_OP_bra(0x%4.4x)", m_data.GetU16(&offset)); break; // 0x28 1 signed 2-byte constant case DW_OP_eq: s->PutCString("DW_OP_eq"); break; // 0x29 case DW_OP_ge: s->PutCString("DW_OP_ge"); break; // 0x2a case DW_OP_gt: s->PutCString("DW_OP_gt"); break; // 0x2b case DW_OP_le: s->PutCString("DW_OP_le"); break; // 0x2c case DW_OP_lt: s->PutCString("DW_OP_lt"); break; // 0x2d case DW_OP_ne: s->PutCString("DW_OP_ne"); break; // 0x2e case DW_OP_lit0: // 0x30 case DW_OP_lit1: // 0x31 case DW_OP_lit2: // 0x32 case DW_OP_lit3: // 0x33 case DW_OP_lit4: // 0x34 case DW_OP_lit5: // 0x35 case DW_OP_lit6: // 0x36 case DW_OP_lit7: // 0x37 case DW_OP_lit8: // 0x38 case DW_OP_lit9: // 0x39 case DW_OP_lit10: // 0x3A case DW_OP_lit11: // 0x3B case DW_OP_lit12: // 0x3C case DW_OP_lit13: // 0x3D case DW_OP_lit14: // 0x3E case DW_OP_lit15: // 0x3F case DW_OP_lit16: // 0x40 case DW_OP_lit17: // 0x41 case DW_OP_lit18: // 0x42 case DW_OP_lit19: // 0x43 case DW_OP_lit20: // 0x44 case DW_OP_lit21: // 0x45 case DW_OP_lit22: // 0x46 case DW_OP_lit23: // 0x47 case DW_OP_lit24: // 0x48 case DW_OP_lit25: // 0x49 case DW_OP_lit26: // 0x4A case DW_OP_lit27: // 0x4B case DW_OP_lit28: // 0x4C case DW_OP_lit29: // 0x4D case DW_OP_lit30: // 0x4E case DW_OP_lit31: s->Printf("DW_OP_lit%i", op - DW_OP_lit0); break; // 0x4f case DW_OP_reg0: // 0x50 case DW_OP_reg1: // 0x51 case DW_OP_reg2: // 0x52 case DW_OP_reg3: // 0x53 case DW_OP_reg4: // 0x54 case DW_OP_reg5: // 0x55 case DW_OP_reg6: // 0x56 case DW_OP_reg7: // 0x57 case DW_OP_reg8: // 0x58 case DW_OP_reg9: // 0x59 case DW_OP_reg10: // 0x5A case DW_OP_reg11: // 0x5B case DW_OP_reg12: // 0x5C case DW_OP_reg13: // 0x5D case DW_OP_reg14: // 0x5E case DW_OP_reg15: // 0x5F case DW_OP_reg16: // 0x60 case DW_OP_reg17: // 0x61 case DW_OP_reg18: // 0x62 case DW_OP_reg19: // 0x63 case DW_OP_reg20: // 0x64 case DW_OP_reg21: // 0x65 case DW_OP_reg22: // 0x66 case DW_OP_reg23: // 0x67 case DW_OP_reg24: // 0x68 case DW_OP_reg25: // 0x69 case DW_OP_reg26: // 0x6A case DW_OP_reg27: // 0x6B case DW_OP_reg28: // 0x6C case DW_OP_reg29: // 0x6D case DW_OP_reg30: // 0x6E case DW_OP_reg31: // 0x6F { uint32_t reg_num = op - DW_OP_reg0; if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->PutCString(reg_info.name); break; } else if (reg_info.alt_name) { s->PutCString(reg_info.alt_name); break; } } } s->Printf("DW_OP_reg%u", reg_num); break; } break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: { uint32_t reg_num = op - DW_OP_breg0; int64_t reg_offset = m_data.GetSLEB128(&offset); if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); break; } else if (reg_info.alt_name) { s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); break; } } } s->Printf("DW_OP_breg%i(0x%" PRIx64 ")", reg_num, reg_offset); } break; case DW_OP_regx: // 0x90 1 ULEB128 register { uint32_t reg_num = m_data.GetULEB128(&offset); if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->PutCString(reg_info.name); break; } else if (reg_info.alt_name) { s->PutCString(reg_info.alt_name); break; } } } s->Printf("DW_OP_regx(%" PRIu32 ")", reg_num); break; } break; case DW_OP_fbreg: // 0x91 1 SLEB128 offset s->Printf("DW_OP_fbreg(%" PRIi64 ")", m_data.GetSLEB128(&offset)); break; case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset { uint32_t reg_num = m_data.GetULEB128(&offset); int64_t reg_offset = m_data.GetSLEB128(&offset); if (abi) { RegisterInfo reg_info; if (abi->GetRegisterInfoByKind(m_reg_kind, reg_num, reg_info)) { if (reg_info.name) { s->Printf("[%s%+" PRIi64 "]", reg_info.name, reg_offset); break; } else if (reg_info.alt_name) { s->Printf("[%s%+" PRIi64 "]", reg_info.alt_name, reg_offset); break; } } } s->Printf("DW_OP_bregx(reg=%" PRIu32 ",offset=%" PRIi64 ")", reg_num, reg_offset); } break; case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed s->Printf("DW_OP_piece(0x%" PRIx64 ")", m_data.GetULEB128(&offset)); break; case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved s->Printf("DW_OP_deref_size(0x%2.2x)", m_data.GetU8(&offset)); break; case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved s->Printf("DW_OP_xderef_size(0x%2.2x)", m_data.GetU8(&offset)); break; case DW_OP_nop: s->PutCString("DW_OP_nop"); break; // 0x96 case DW_OP_push_object_address: s->PutCString("DW_OP_push_object_address"); break; // 0x97 DWARF3 case DW_OP_call2: // 0x98 DWARF3 1 2-byte offset of DIE s->Printf("DW_OP_call2(0x%4.4x)", m_data.GetU16(&offset)); break; case DW_OP_call4: // 0x99 DWARF3 1 4-byte offset of DIE s->Printf("DW_OP_call4(0x%8.8x)", m_data.GetU32(&offset)); break; case DW_OP_call_ref: // 0x9a DWARF3 1 4- or 8-byte offset of DIE s->Printf("DW_OP_call_ref(0x%8.8" PRIx64 ")", m_data.GetAddress(&offset)); break; // case DW_OP_call_frame_cfa: s << "call_frame_cfa"; break; // // 0x9c DWARF3 // case DW_OP_bit_piece: // 0x9d DWARF3 2 // s->Printf("DW_OP_bit_piece(0x%x, 0x%x)", // m_data.GetULEB128(&offset), m_data.GetULEB128(&offset)); // break; // case DW_OP_lo_user: s->PutCString("DW_OP_lo_user"); break; // // 0xe0 // case DW_OP_hi_user: s->PutCString("DW_OP_hi_user"); break; // // 0xff // case DW_OP_APPLE_extern: // s->Printf("DW_OP_APPLE_extern(%" PRIu64 ")", // m_data.GetULEB128(&offset)); // break; // case DW_OP_APPLE_array_ref: // s->PutCString("DW_OP_APPLE_array_ref"); // break; case DW_OP_form_tls_address: s->PutCString("DW_OP_form_tls_address"); // 0x9b break; case DW_OP_GNU_addr_index: // 0xfb s->Printf("DW_OP_GNU_addr_index(0x%" PRIx64 ")", m_data.GetULEB128(&offset)); break; case DW_OP_GNU_const_index: // 0xfc s->Printf("DW_OP_GNU_const_index(0x%" PRIx64 ")", m_data.GetULEB128(&offset)); break; case DW_OP_GNU_push_tls_address: s->PutCString("DW_OP_GNU_push_tls_address"); // 0xe0 break; case DW_OP_APPLE_uninit: s->PutCString("DW_OP_APPLE_uninit"); // 0xF0 break; // case DW_OP_APPLE_assign: // 0xF1 - pops value off and // assigns it to second item on stack (2nd item must have // assignable context) // s->PutCString("DW_OP_APPLE_assign"); // break; // case DW_OP_APPLE_address_of: // 0xF2 - gets the address of // the top stack item (top item must be a variable, or have // value_type that is an address already) // s->PutCString("DW_OP_APPLE_address_of"); // break; // case DW_OP_APPLE_value_of: // 0xF3 - pops the value off the // stack and pushes the value of that object (top item must be a // variable, or expression local) // s->PutCString("DW_OP_APPLE_value_of"); // break; // case DW_OP_APPLE_deref_type: // 0xF4 - gets the address of // the top stack item (top item must be a variable, or a clang // type) // s->PutCString("DW_OP_APPLE_deref_type"); // break; // case DW_OP_APPLE_expr_local: // 0xF5 - ULEB128 expression // local index // s->Printf("DW_OP_APPLE_expr_local(%" PRIu64 ")", // m_data.GetULEB128(&offset)); // break; // case DW_OP_APPLE_constf: // 0xF6 - 1 byte float size, // followed by constant float data // { // uint8_t float_length = m_data.GetU8(&offset); // s->Printf("DW_OP_APPLE_constf(<%u> ", float_length); // m_data.Dump(s, offset, eFormatHex, float_length, 1, // UINT32_MAX, DW_INVALID_ADDRESS, 0, 0); // s->PutChar(')'); // // Consume the float data // m_data.GetData(&offset, float_length); // } // break; // case DW_OP_APPLE_scalar_cast: // s->Printf("DW_OP_APPLE_scalar_cast(%s)", // Scalar::GetValueTypeAsCString // ((Scalar::Type)m_data.GetU8(&offset))); // break; // case DW_OP_APPLE_clang_cast: // { // clang::Type *clang_type = (clang::Type // *)m_data.GetMaxU64(&offset, sizeof(void*)); // s->Printf("DW_OP_APPLE_clang_cast(%p)", clang_type); // } // break; // case DW_OP_APPLE_clear: // s->PutCString("DW_OP_APPLE_clear"); // break; // case DW_OP_APPLE_error: // 0xFF - Stops expression // evaluation and returns an error (no args) // s->PutCString("DW_OP_APPLE_error"); // break; } } } void DWARFExpression::SetLocationListSlide(addr_t slide) { m_loclist_slide = slide; } int DWARFExpression::GetRegisterKind() { return m_reg_kind; } void DWARFExpression::SetRegisterKind(RegisterKind reg_kind) { m_reg_kind = reg_kind; } bool DWARFExpression::IsLocationList() const { return m_loclist_slide != LLDB_INVALID_ADDRESS; } void DWARFExpression::GetDescription(Stream *s, lldb::DescriptionLevel level, addr_t location_list_base_addr, ABI *abi) const { if (IsLocationList()) { // We have a location list lldb::offset_t offset = 0; uint32_t count = 0; addr_t curr_base_addr = location_list_base_addr; while (m_data.ValidOffset(offset)) { addr_t begin_addr_offset = LLDB_INVALID_ADDRESS; addr_t end_addr_offset = LLDB_INVALID_ADDRESS; if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, begin_addr_offset, end_addr_offset)) break; if (begin_addr_offset == 0 && end_addr_offset == 0) break; if (begin_addr_offset < end_addr_offset) { if (count > 0) s->PutCString(", "); VMRange addr_range(curr_base_addr + begin_addr_offset, curr_base_addr + end_addr_offset); addr_range.Dump(s, 0, 8); s->PutChar('{'); lldb::offset_t location_length = m_data.GetU16(&offset); DumpLocation(s, offset, location_length, level, abi); s->PutChar('}'); offset += location_length; } else { if ((m_data.GetAddressByteSize() == 4 && (begin_addr_offset == UINT32_MAX)) || (m_data.GetAddressByteSize() == 8 && (begin_addr_offset == UINT64_MAX))) { curr_base_addr = end_addr_offset + location_list_base_addr; // We have a new base address if (count > 0) s->PutCString(", "); *s << "base_addr = " << end_addr_offset; } } count++; } } else { // We have a normal location that contains DW_OP location opcodes DumpLocation(s, 0, m_data.GetByteSize(), level, abi); } } static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx, lldb::RegisterKind reg_kind, uint32_t reg_num, Status *error_ptr, Value &value) { if (reg_ctx == NULL) { if (error_ptr) error_ptr->SetErrorStringWithFormat("No register context in frame.\n"); } else { uint32_t native_reg = reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num); if (native_reg == LLDB_INVALID_REGNUM) { if (error_ptr) error_ptr->SetErrorStringWithFormat("Unable to convert register " "kind=%u reg_num=%u to a native " "register number.\n", reg_kind, reg_num); } else { const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoAtIndex(native_reg); RegisterValue reg_value; if (reg_ctx->ReadRegister(reg_info, reg_value)) { if (reg_value.GetScalarValue(value.GetScalar())) { value.SetValueType(Value::eValueTypeScalar); value.SetContext(Value::eContextTypeRegisterInfo, const_cast(reg_info)); if (error_ptr) error_ptr->Clear(); return true; } else { // If we get this error, then we need to implement a value // buffer in the dwarf expression evaluation function... if (error_ptr) error_ptr->SetErrorStringWithFormat( "register %s can't be converted to a scalar value", reg_info->name); } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat("register %s is not available", reg_info->name); } } } return false; } // bool // DWARFExpression::LocationListContainsLoadAddress (Process* process, const // Address &addr) const //{ // return LocationListContainsLoadAddress(process, // addr.GetLoadAddress(process)); //} // // bool // DWARFExpression::LocationListContainsLoadAddress (Process* process, addr_t // load_addr) const //{ // if (load_addr == LLDB_INVALID_ADDRESS) // return false; // // if (IsLocationList()) // { // lldb::offset_t offset = 0; // // addr_t loc_list_base_addr = m_loclist_slide.GetLoadAddress(process); // // if (loc_list_base_addr == LLDB_INVALID_ADDRESS) // return false; // // while (m_data.ValidOffset(offset)) // { // // We need to figure out what the value is for the location. // addr_t lo_pc = m_data.GetAddress(&offset); // addr_t hi_pc = m_data.GetAddress(&offset); // if (lo_pc == 0 && hi_pc == 0) // break; // else // { // lo_pc += loc_list_base_addr; // hi_pc += loc_list_base_addr; // // if (lo_pc <= load_addr && load_addr < hi_pc) // return true; // // offset += m_data.GetU16(&offset); // } // } // } // return false; //} static offset_t GetOpcodeDataSize(const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op) { lldb::offset_t offset = data_offset; switch (op) { case DW_OP_addr: case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3) return data.GetAddressByteSize(); // Opcodes with no arguments case DW_OP_deref: // 0x06 case DW_OP_dup: // 0x12 case DW_OP_drop: // 0x13 case DW_OP_over: // 0x14 case DW_OP_swap: // 0x16 case DW_OP_rot: // 0x17 case DW_OP_xderef: // 0x18 case DW_OP_abs: // 0x19 case DW_OP_and: // 0x1a case DW_OP_div: // 0x1b case DW_OP_minus: // 0x1c case DW_OP_mod: // 0x1d case DW_OP_mul: // 0x1e case DW_OP_neg: // 0x1f case DW_OP_not: // 0x20 case DW_OP_or: // 0x21 case DW_OP_plus: // 0x22 case DW_OP_shl: // 0x24 case DW_OP_shr: // 0x25 case DW_OP_shra: // 0x26 case DW_OP_xor: // 0x27 case DW_OP_eq: // 0x29 case DW_OP_ge: // 0x2a case DW_OP_gt: // 0x2b case DW_OP_le: // 0x2c case DW_OP_lt: // 0x2d case DW_OP_ne: // 0x2e case DW_OP_lit0: // 0x30 case DW_OP_lit1: // 0x31 case DW_OP_lit2: // 0x32 case DW_OP_lit3: // 0x33 case DW_OP_lit4: // 0x34 case DW_OP_lit5: // 0x35 case DW_OP_lit6: // 0x36 case DW_OP_lit7: // 0x37 case DW_OP_lit8: // 0x38 case DW_OP_lit9: // 0x39 case DW_OP_lit10: // 0x3A case DW_OP_lit11: // 0x3B case DW_OP_lit12: // 0x3C case DW_OP_lit13: // 0x3D case DW_OP_lit14: // 0x3E case DW_OP_lit15: // 0x3F case DW_OP_lit16: // 0x40 case DW_OP_lit17: // 0x41 case DW_OP_lit18: // 0x42 case DW_OP_lit19: // 0x43 case DW_OP_lit20: // 0x44 case DW_OP_lit21: // 0x45 case DW_OP_lit22: // 0x46 case DW_OP_lit23: // 0x47 case DW_OP_lit24: // 0x48 case DW_OP_lit25: // 0x49 case DW_OP_lit26: // 0x4A case DW_OP_lit27: // 0x4B case DW_OP_lit28: // 0x4C case DW_OP_lit29: // 0x4D case DW_OP_lit30: // 0x4E case DW_OP_lit31: // 0x4f case DW_OP_reg0: // 0x50 case DW_OP_reg1: // 0x51 case DW_OP_reg2: // 0x52 case DW_OP_reg3: // 0x53 case DW_OP_reg4: // 0x54 case DW_OP_reg5: // 0x55 case DW_OP_reg6: // 0x56 case DW_OP_reg7: // 0x57 case DW_OP_reg8: // 0x58 case DW_OP_reg9: // 0x59 case DW_OP_reg10: // 0x5A case DW_OP_reg11: // 0x5B case DW_OP_reg12: // 0x5C case DW_OP_reg13: // 0x5D case DW_OP_reg14: // 0x5E case DW_OP_reg15: // 0x5F case DW_OP_reg16: // 0x60 case DW_OP_reg17: // 0x61 case DW_OP_reg18: // 0x62 case DW_OP_reg19: // 0x63 case DW_OP_reg20: // 0x64 case DW_OP_reg21: // 0x65 case DW_OP_reg22: // 0x66 case DW_OP_reg23: // 0x67 case DW_OP_reg24: // 0x68 case DW_OP_reg25: // 0x69 case DW_OP_reg26: // 0x6A case DW_OP_reg27: // 0x6B case DW_OP_reg28: // 0x6C case DW_OP_reg29: // 0x6D case DW_OP_reg30: // 0x6E case DW_OP_reg31: // 0x6F case DW_OP_nop: // 0x96 case DW_OP_push_object_address: // 0x97 DWARF3 case DW_OP_form_tls_address: // 0x9b DWARF3 case DW_OP_call_frame_cfa: // 0x9c DWARF3 case DW_OP_stack_value: // 0x9f DWARF4 case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension return 0; // Opcodes with a single 1 byte arguments case DW_OP_const1u: // 0x08 1 1-byte constant case DW_OP_const1s: // 0x09 1 1-byte constant case DW_OP_pick: // 0x15 1 1-byte stack index case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved return 1; // Opcodes with a single 2 byte arguments case DW_OP_const2u: // 0x0a 1 2-byte constant case DW_OP_const2s: // 0x0b 1 2-byte constant case DW_OP_skip: // 0x2f 1 signed 2-byte constant case DW_OP_bra: // 0x28 1 signed 2-byte constant case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3) return 2; // Opcodes with a single 4 byte arguments case DW_OP_const4u: // 0x0c 1 4-byte constant case DW_OP_const4s: // 0x0d 1 4-byte constant case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3) return 4; // Opcodes with a single 8 byte arguments case DW_OP_const8u: // 0x0e 1 8-byte constant case DW_OP_const8s: // 0x0f 1 8-byte constant return 8; // All opcodes that have a single ULEB (signed or unsigned) argument case DW_OP_constu: // 0x10 1 ULEB128 constant case DW_OP_consts: // 0x11 1 SLEB128 constant case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend case DW_OP_breg0: // 0x70 1 ULEB128 register case DW_OP_breg1: // 0x71 1 ULEB128 register case DW_OP_breg2: // 0x72 1 ULEB128 register case DW_OP_breg3: // 0x73 1 ULEB128 register case DW_OP_breg4: // 0x74 1 ULEB128 register case DW_OP_breg5: // 0x75 1 ULEB128 register case DW_OP_breg6: // 0x76 1 ULEB128 register case DW_OP_breg7: // 0x77 1 ULEB128 register case DW_OP_breg8: // 0x78 1 ULEB128 register case DW_OP_breg9: // 0x79 1 ULEB128 register case DW_OP_breg10: // 0x7a 1 ULEB128 register case DW_OP_breg11: // 0x7b 1 ULEB128 register case DW_OP_breg12: // 0x7c 1 ULEB128 register case DW_OP_breg13: // 0x7d 1 ULEB128 register case DW_OP_breg14: // 0x7e 1 ULEB128 register case DW_OP_breg15: // 0x7f 1 ULEB128 register case DW_OP_breg16: // 0x80 1 ULEB128 register case DW_OP_breg17: // 0x81 1 ULEB128 register case DW_OP_breg18: // 0x82 1 ULEB128 register case DW_OP_breg19: // 0x83 1 ULEB128 register case DW_OP_breg20: // 0x84 1 ULEB128 register case DW_OP_breg21: // 0x85 1 ULEB128 register case DW_OP_breg22: // 0x86 1 ULEB128 register case DW_OP_breg23: // 0x87 1 ULEB128 register case DW_OP_breg24: // 0x88 1 ULEB128 register case DW_OP_breg25: // 0x89 1 ULEB128 register case DW_OP_breg26: // 0x8a 1 ULEB128 register case DW_OP_breg27: // 0x8b 1 ULEB128 register case DW_OP_breg28: // 0x8c 1 ULEB128 register case DW_OP_breg29: // 0x8d 1 ULEB128 register case DW_OP_breg30: // 0x8e 1 ULEB128 register case DW_OP_breg31: // 0x8f 1 ULEB128 register case DW_OP_regx: // 0x90 1 ULEB128 register case DW_OP_fbreg: // 0x91 1 SLEB128 offset case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index data.Skip_LEB128(&offset); return offset - data_offset; // All opcodes that have a 2 ULEB (signed or unsigned) arguments case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); data.Skip_LEB128(&offset); data.Skip_LEB128(&offset); return offset - data_offset; case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size // (DWARF4) { uint64_t block_len = data.Skip_LEB128(&offset); offset += block_len; return offset - data_offset; } default: break; } return LLDB_INVALID_OFFSET; } lldb::addr_t DWARFExpression::GetLocation_DW_OP_addr(uint32_t op_addr_idx, bool &error) const { error = false; if (IsLocationList()) return LLDB_INVALID_ADDRESS; lldb::offset_t offset = 0; uint32_t curr_op_addr_idx = 0; while (m_data.ValidOffset(offset)) { const uint8_t op = m_data.GetU8(&offset); if (op == DW_OP_addr) { const lldb::addr_t op_file_addr = m_data.GetAddress(&offset); if (curr_op_addr_idx == op_addr_idx) return op_file_addr; else ++curr_op_addr_idx; } else if (op == DW_OP_GNU_addr_index) { uint64_t index = m_data.GetULEB128(&offset); if (curr_op_addr_idx == op_addr_idx) { if (!m_dwarf_cu) { error = true; break; } return ReadAddressFromDebugAddrSection(m_dwarf_cu, index); } else ++curr_op_addr_idx; } else { const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); if (op_arg_size == LLDB_INVALID_OFFSET) { error = true; break; } offset += op_arg_size; } } return LLDB_INVALID_ADDRESS; } bool DWARFExpression::Update_DW_OP_addr(lldb::addr_t file_addr) { if (IsLocationList()) return false; lldb::offset_t offset = 0; while (m_data.ValidOffset(offset)) { const uint8_t op = m_data.GetU8(&offset); if (op == DW_OP_addr) { const uint32_t addr_byte_size = m_data.GetAddressByteSize(); // We have to make a copy of the data as we don't know if this // data is from a read only memory mapped buffer, so we duplicate // all of the data first, then modify it, and if all goes well, // we then replace the data for this expression // So first we copy the data into a heap buffer std::unique_ptr head_data_ap( new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize())); // Make en encoder so we can write the address into the buffer using // the correct byte order (endianness) DataEncoder encoder(head_data_ap->GetBytes(), head_data_ap->GetByteSize(), m_data.GetByteOrder(), addr_byte_size); // Replace the address in the new buffer if (encoder.PutMaxU64(offset, addr_byte_size, file_addr) == UINT32_MAX) return false; // All went well, so now we can reset the data using a shared // pointer to the heap data so "m_data" will now correctly // manage the heap data. m_data.SetData(DataBufferSP(head_data_ap.release())); return true; } else { const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); if (op_arg_size == LLDB_INVALID_OFFSET) break; offset += op_arg_size; } } return false; } bool DWARFExpression::ContainsThreadLocalStorage() const { // We are assuming for now that any thread local variable will not // have a location list. This has been true for all thread local // variables we have seen so far produced by any compiler. if (IsLocationList()) return false; lldb::offset_t offset = 0; while (m_data.ValidOffset(offset)) { const uint8_t op = m_data.GetU8(&offset); if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address) return true; const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); if (op_arg_size == LLDB_INVALID_OFFSET) return false; else offset += op_arg_size; } return false; } bool DWARFExpression::LinkThreadLocalStorage( lldb::ModuleSP new_module_sp, std::function const &link_address_callback) { // We are assuming for now that any thread local variable will not // have a location list. This has been true for all thread local // variables we have seen so far produced by any compiler. if (IsLocationList()) return false; const uint32_t addr_byte_size = m_data.GetAddressByteSize(); // We have to make a copy of the data as we don't know if this // data is from a read only memory mapped buffer, so we duplicate // all of the data first, then modify it, and if all goes well, // we then replace the data for this expression // So first we copy the data into a heap buffer std::shared_ptr heap_data_sp( new DataBufferHeap(m_data.GetDataStart(), m_data.GetByteSize())); // Make en encoder so we can write the address into the buffer using // the correct byte order (endianness) DataEncoder encoder(heap_data_sp->GetBytes(), heap_data_sp->GetByteSize(), m_data.GetByteOrder(), addr_byte_size); lldb::offset_t offset = 0; lldb::offset_t const_offset = 0; lldb::addr_t const_value = 0; size_t const_byte_size = 0; while (m_data.ValidOffset(offset)) { const uint8_t op = m_data.GetU8(&offset); bool decoded_data = false; switch (op) { case DW_OP_const4u: // Remember the const offset in case we later have a // DW_OP_form_tls_address // or DW_OP_GNU_push_tls_address const_offset = offset; const_value = m_data.GetU32(&offset); decoded_data = true; const_byte_size = 4; break; case DW_OP_const8u: // Remember the const offset in case we later have a // DW_OP_form_tls_address // or DW_OP_GNU_push_tls_address const_offset = offset; const_value = m_data.GetU64(&offset); decoded_data = true; const_byte_size = 8; break; case DW_OP_form_tls_address: case DW_OP_GNU_push_tls_address: // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded // by // a file address on the stack. We assume that DW_OP_const4u or // DW_OP_const8u // is used for these values, and we check that the last opcode we got // before // either of these was DW_OP_const4u or DW_OP_const8u. If so, then we can // link // the value accodingly. For Darwin, the value in the DW_OP_const4u or // DW_OP_const8u is the file address of a structure that contains a // function // pointer, the pthread key and the offset into the data pointed to by the // pthread key. So we must link this address and also set the module of // this // expression to the new_module_sp so we can resolve the file address // correctly if (const_byte_size > 0) { lldb::addr_t linked_file_addr = link_address_callback(const_value); if (linked_file_addr == LLDB_INVALID_ADDRESS) return false; // Replace the address in the new buffer if (encoder.PutMaxU64(const_offset, const_byte_size, linked_file_addr) == UINT32_MAX) return false; } break; default: const_offset = 0; const_value = 0; const_byte_size = 0; break; } if (!decoded_data) { const offset_t op_arg_size = GetOpcodeDataSize(m_data, offset, op); if (op_arg_size == LLDB_INVALID_OFFSET) return false; else offset += op_arg_size; } } // If we linked the TLS address correctly, update the module so that when the // expression // is evaluated it can resolve the file address to a load address and read the // TLS data m_module_wp = new_module_sp; m_data.SetData(heap_data_sp); return true; } bool DWARFExpression::LocationListContainsAddress( lldb::addr_t loclist_base_addr, lldb::addr_t addr) const { if (addr == LLDB_INVALID_ADDRESS) return false; if (IsLocationList()) { lldb::offset_t offset = 0; if (loclist_base_addr == LLDB_INVALID_ADDRESS) return false; while (m_data.ValidOffset(offset)) { // We need to figure out what the value is for the location. addr_t lo_pc = LLDB_INVALID_ADDRESS; addr_t hi_pc = LLDB_INVALID_ADDRESS; if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc, hi_pc)) break; if (lo_pc == 0 && hi_pc == 0) break; lo_pc += loclist_base_addr - m_loclist_slide; hi_pc += loclist_base_addr - m_loclist_slide; if (lo_pc <= addr && addr < hi_pc) return true; offset += m_data.GetU16(&offset); } } return false; } bool DWARFExpression::GetLocation(addr_t base_addr, addr_t pc, lldb::offset_t &offset, lldb::offset_t &length) { offset = 0; if (!IsLocationList()) { length = m_data.GetByteSize(); return true; } if (base_addr != LLDB_INVALID_ADDRESS && pc != LLDB_INVALID_ADDRESS) { addr_t curr_base_addr = base_addr; while (m_data.ValidOffset(offset)) { // We need to figure out what the value is for the location. addr_t lo_pc = LLDB_INVALID_ADDRESS; addr_t hi_pc = LLDB_INVALID_ADDRESS; if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc, hi_pc)) break; if (lo_pc == 0 && hi_pc == 0) break; lo_pc += curr_base_addr - m_loclist_slide; hi_pc += curr_base_addr - m_loclist_slide; length = m_data.GetU16(&offset); if (length > 0 && lo_pc <= pc && pc < hi_pc) return true; offset += length; } } offset = LLDB_INVALID_OFFSET; length = 0; return false; } bool DWARFExpression::DumpLocationForAddress(Stream *s, lldb::DescriptionLevel level, addr_t base_addr, addr_t address, ABI *abi) { lldb::offset_t offset = 0; lldb::offset_t length = 0; if (GetLocation(base_addr, address, offset, length)) { if (length > 0) { DumpLocation(s, offset, length, level, abi); return true; } } return false; } bool DWARFExpression::Evaluate(ExecutionContextScope *exe_scope, lldb::addr_t loclist_base_load_addr, const Value *initial_value_ptr, const Value *object_address_ptr, Value &result, Status *error_ptr) const { ExecutionContext exe_ctx(exe_scope); return Evaluate(&exe_ctx, nullptr, loclist_base_load_addr, initial_value_ptr, object_address_ptr, result, error_ptr); } bool DWARFExpression::Evaluate(ExecutionContext *exe_ctx, RegisterContext *reg_ctx, lldb::addr_t loclist_base_load_addr, const Value *initial_value_ptr, const Value *object_address_ptr, Value &result, Status *error_ptr) const { ModuleSP module_sp = m_module_wp.lock(); if (IsLocationList()) { lldb::offset_t offset = 0; addr_t pc; StackFrame *frame = NULL; if (reg_ctx) pc = reg_ctx->GetPC(); else { frame = exe_ctx->GetFramePtr(); if (!frame) return false; RegisterContextSP reg_ctx_sp = frame->GetRegisterContext(); if (!reg_ctx_sp) return false; pc = reg_ctx_sp->GetPC(); } if (loclist_base_load_addr != LLDB_INVALID_ADDRESS) { if (pc == LLDB_INVALID_ADDRESS) { if (error_ptr) error_ptr->SetErrorString("Invalid PC in frame."); return false; } addr_t curr_loclist_base_load_addr = loclist_base_load_addr; while (m_data.ValidOffset(offset)) { // We need to figure out what the value is for the location. addr_t lo_pc = LLDB_INVALID_ADDRESS; addr_t hi_pc = LLDB_INVALID_ADDRESS; if (!AddressRangeForLocationListEntry(m_dwarf_cu, m_data, &offset, lo_pc, hi_pc)) break; if (lo_pc == 0 && hi_pc == 0) break; lo_pc += curr_loclist_base_load_addr - m_loclist_slide; hi_pc += curr_loclist_base_load_addr - m_loclist_slide; uint16_t length = m_data.GetU16(&offset); if (length > 0 && lo_pc <= pc && pc < hi_pc) { return DWARFExpression::Evaluate( exe_ctx, reg_ctx, module_sp, m_data, m_dwarf_cu, offset, length, m_reg_kind, initial_value_ptr, object_address_ptr, result, error_ptr); } offset += length; } } if (error_ptr) error_ptr->SetErrorString("variable not available"); return false; } // Not a location list, just a single expression. return DWARFExpression::Evaluate( exe_ctx, reg_ctx, module_sp, m_data, m_dwarf_cu, 0, m_data.GetByteSize(), m_reg_kind, initial_value_ptr, object_address_ptr, result, error_ptr); } bool DWARFExpression::Evaluate( ExecutionContext *exe_ctx, RegisterContext *reg_ctx, lldb::ModuleSP module_sp, const DataExtractor &opcodes, DWARFCompileUnit *dwarf_cu, const lldb::offset_t opcodes_offset, const lldb::offset_t opcodes_length, const lldb::RegisterKind reg_kind, const Value *initial_value_ptr, const Value *object_address_ptr, Value &result, Status *error_ptr) { if (opcodes_length == 0) { if (error_ptr) error_ptr->SetErrorString( "no location, value may have been optimized out"); return false; } std::vector stack; Process *process = NULL; StackFrame *frame = NULL; if (exe_ctx) { process = exe_ctx->GetProcessPtr(); frame = exe_ctx->GetFramePtr(); } if (reg_ctx == NULL && frame) reg_ctx = frame->GetRegisterContext().get(); if (initial_value_ptr) stack.push_back(*initial_value_ptr); lldb::offset_t offset = opcodes_offset; const lldb::offset_t end_offset = opcodes_offset + opcodes_length; Value tmp; uint32_t reg_num; /// Insertion point for evaluating multi-piece expression. uint64_t op_piece_offset = 0; Value pieces; // Used for DW_OP_piece // Make sure all of the data is available in opcodes. if (!opcodes.ValidOffsetForDataOfSize(opcodes_offset, opcodes_length)) { if (error_ptr) error_ptr->SetErrorString( "invalid offset and/or length for opcodes buffer."); return false; } Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); while (opcodes.ValidOffset(offset) && offset < end_offset) { const lldb::offset_t op_offset = offset; const uint8_t op = opcodes.GetU8(&offset); if (log && log->GetVerbose()) { size_t count = stack.size(); log->Printf("Stack before operation has %" PRIu64 " values:", (uint64_t)count); for (size_t i = 0; i < count; ++i) { StreamString new_value; new_value.Printf("[%" PRIu64 "]", (uint64_t)i); stack[i].Dump(&new_value); log->Printf(" %s", new_value.GetData()); } log->Printf("0x%8.8" PRIx64 ": %s", op_offset, DW_OP_value_to_name(op)); } switch (op) { //---------------------------------------------------------------------- // The DW_OP_addr operation has a single operand that encodes a machine // address and whose size is the size of an address on the target machine. //---------------------------------------------------------------------- case DW_OP_addr: stack.push_back(Scalar(opcodes.GetAddress(&offset))); stack.back().SetValueType(Value::eValueTypeFileAddress); break; //---------------------------------------------------------------------- // The DW_OP_addr_sect_offset4 is used for any location expressions in // shared libraries that have a location like: // DW_OP_addr(0x1000) // If this address resides in a shared library, then this virtual // address won't make sense when it is evaluated in the context of a // running process where shared libraries have been slid. To account for // this, this new address type where we can store the section pointer // and a 4 byte offset. //---------------------------------------------------------------------- // case DW_OP_addr_sect_offset4: // { // result_type = eResultTypeFileAddress; // lldb::Section *sect = (lldb::Section // *)opcodes.GetMaxU64(&offset, sizeof(void *)); // lldb::addr_t sect_offset = opcodes.GetU32(&offset); // // Address so_addr (sect, sect_offset); // lldb::addr_t load_addr = so_addr.GetLoadAddress(); // if (load_addr != LLDB_INVALID_ADDRESS) // { // // We successfully resolve a file address to a load // // address. // stack.push_back(load_addr); // break; // } // else // { // // We were able // if (error_ptr) // error_ptr->SetErrorStringWithFormat ("Section %s in // %s is not currently loaded.\n", // sect->GetName().AsCString(), // sect->GetModule()->GetFileSpec().GetFilename().AsCString()); // return false; // } // } // break; //---------------------------------------------------------------------- // OPCODE: DW_OP_deref // OPERANDS: none // DESCRIPTION: Pops the top stack entry and treats it as an address. // The value retrieved from that address is pushed. The size of the // data retrieved from the dereferenced address is the size of an // address on the target machine. //---------------------------------------------------------------------- case DW_OP_deref: { if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack empty for DW_OP_deref."); return false; } Value::ValueType value_type = stack.back().GetValueType(); switch (value_type) { case Value::eValueTypeHostAddress: { void *src = (void *)stack.back().GetScalar().ULongLong(); intptr_t ptr; ::memcpy(&ptr, src, sizeof(void *)); stack.back().GetScalar() = ptr; stack.back().ClearContext(); } break; case Value::eValueTypeLoadAddress: if (exe_ctx) { if (process) { lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); Status error; lldb::addr_t pointer_value = process->ReadPointerFromMemory(pointer_addr, error); if (pointer_value != LLDB_INVALID_ADDRESS) { stack.back().GetScalar() = pointer_value; stack.back().ClearContext(); } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", pointer_addr, error.AsCString()); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "NULL process for DW_OP_deref.\n"); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "NULL execution context for DW_OP_deref.\n"); return false; } break; default: break; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_deref_size // OPERANDS: 1 // 1 - uint8_t that specifies the size of the data to dereference. // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top // stack entry and treats it as an address. The value retrieved from that // address is pushed. In the DW_OP_deref_size operation, however, the // size in bytes of the data retrieved from the dereferenced address is // specified by the single operand. This operand is a 1-byte unsigned // integral constant whose value may not be larger than the size of an // address on the target machine. The data retrieved is zero extended // to the size of an address on the target machine before being pushed // on the expression stack. //---------------------------------------------------------------------- case DW_OP_deref_size: { if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString( "Expression stack empty for DW_OP_deref_size."); return false; } uint8_t size = opcodes.GetU8(&offset); Value::ValueType value_type = stack.back().GetValueType(); switch (value_type) { case Value::eValueTypeHostAddress: { void *src = (void *)stack.back().GetScalar().ULongLong(); intptr_t ptr; ::memcpy(&ptr, src, sizeof(void *)); // I can't decide whether the size operand should apply to the bytes in // their // lldb-host endianness or the target endianness.. I doubt this'll ever // come up // but I'll opt for assuming big endian regardless. switch (size) { case 1: ptr = ptr & 0xff; break; case 2: ptr = ptr & 0xffff; break; case 3: ptr = ptr & 0xffffff; break; case 4: ptr = ptr & 0xffffffff; break; // the casts are added to work around the case where intptr_t is a 32 // bit quantity; // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this // program. case 5: ptr = (intptr_t)ptr & 0xffffffffffULL; break; case 6: ptr = (intptr_t)ptr & 0xffffffffffffULL; break; case 7: ptr = (intptr_t)ptr & 0xffffffffffffffULL; break; default: break; } stack.back().GetScalar() = ptr; stack.back().ClearContext(); } break; case Value::eValueTypeLoadAddress: if (exe_ctx) { if (process) { lldb::addr_t pointer_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); uint8_t addr_bytes[sizeof(lldb::addr_t)]; Status error; if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) == size) { DataExtractor addr_data(addr_bytes, sizeof(addr_bytes), process->GetByteOrder(), size); lldb::offset_t addr_data_offset = 0; switch (size) { case 1: stack.back().GetScalar() = addr_data.GetU8(&addr_data_offset); break; case 2: stack.back().GetScalar() = addr_data.GetU16(&addr_data_offset); break; case 4: stack.back().GetScalar() = addr_data.GetU32(&addr_data_offset); break; case 8: stack.back().GetScalar() = addr_data.GetU64(&addr_data_offset); break; default: stack.back().GetScalar() = addr_data.GetPointer(&addr_data_offset); } stack.back().ClearContext(); } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "Failed to dereference pointer from 0x%" PRIx64 " for DW_OP_deref: %s\n", pointer_addr, error.AsCString()); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "NULL process for DW_OP_deref.\n"); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "NULL execution context for DW_OP_deref.\n"); return false; } break; default: break; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_xderef_size // OPERANDS: 1 // 1 - uint8_t that specifies the size of the data to dereference. // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at // the top of the stack is treated as an address. The second stack // entry is treated as an "address space identifier" for those // architectures that support multiple address spaces. The top two // stack elements are popped, a data item is retrieved through an // implementation-defined address calculation and pushed as the new // stack top. In the DW_OP_xderef_size operation, however, the size in // bytes of the data retrieved from the dereferenced address is // specified by the single operand. This operand is a 1-byte unsigned // integral constant whose value may not be larger than the size of an // address on the target machine. The data retrieved is zero extended // to the size of an address on the target machine before being pushed // on the expression stack. //---------------------------------------------------------------------- case DW_OP_xderef_size: if (error_ptr) error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_xderef // OPERANDS: none // DESCRIPTION: Provides an extended dereference mechanism. The entry at // the top of the stack is treated as an address. The second stack entry // is treated as an "address space identifier" for those architectures // that support multiple address spaces. The top two stack elements are // popped, a data item is retrieved through an implementation-defined // address calculation and pushed as the new stack top. The size of the // data retrieved from the dereferenced address is the size of an address // on the target machine. //---------------------------------------------------------------------- case DW_OP_xderef: if (error_ptr) error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef."); return false; //---------------------------------------------------------------------- // All DW_OP_constXXX opcodes have a single operand as noted below: // // Opcode Operand 1 // --------------- ---------------------------------------------------- // DW_OP_const1u 1-byte unsigned integer constant // DW_OP_const1s 1-byte signed integer constant // DW_OP_const2u 2-byte unsigned integer constant // DW_OP_const2s 2-byte signed integer constant // DW_OP_const4u 4-byte unsigned integer constant // DW_OP_const4s 4-byte signed integer constant // DW_OP_const8u 8-byte unsigned integer constant // DW_OP_const8s 8-byte signed integer constant // DW_OP_constu unsigned LEB128 integer constant // DW_OP_consts signed LEB128 integer constant //---------------------------------------------------------------------- case DW_OP_const1u: stack.push_back(Scalar((uint8_t)opcodes.GetU8(&offset))); break; case DW_OP_const1s: stack.push_back(Scalar((int8_t)opcodes.GetU8(&offset))); break; case DW_OP_const2u: stack.push_back(Scalar((uint16_t)opcodes.GetU16(&offset))); break; case DW_OP_const2s: stack.push_back(Scalar((int16_t)opcodes.GetU16(&offset))); break; case DW_OP_const4u: stack.push_back(Scalar((uint32_t)opcodes.GetU32(&offset))); break; case DW_OP_const4s: stack.push_back(Scalar((int32_t)opcodes.GetU32(&offset))); break; case DW_OP_const8u: stack.push_back(Scalar((uint64_t)opcodes.GetU64(&offset))); break; case DW_OP_const8s: stack.push_back(Scalar((int64_t)opcodes.GetU64(&offset))); break; case DW_OP_constu: stack.push_back(Scalar(opcodes.GetULEB128(&offset))); break; case DW_OP_consts: stack.push_back(Scalar(opcodes.GetSLEB128(&offset))); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_dup // OPERANDS: none // DESCRIPTION: duplicates the value at the top of the stack //---------------------------------------------------------------------- case DW_OP_dup: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack empty for DW_OP_dup."); return false; } else stack.push_back(stack.back()); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_drop // OPERANDS: none // DESCRIPTION: pops the value at the top of the stack //---------------------------------------------------------------------- case DW_OP_drop: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString("Expression stack empty for DW_OP_drop."); return false; } else stack.pop_back(); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_over // OPERANDS: none // DESCRIPTION: Duplicates the entry currently second in the stack at // the top of the stack. //---------------------------------------------------------------------- case DW_OP_over: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_over."); return false; } else stack.push_back(stack[stack.size() - 2]); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_pick // OPERANDS: uint8_t index into the current stack // DESCRIPTION: The stack entry with the specified index (0 through 255, // inclusive) is pushed on the stack //---------------------------------------------------------------------- case DW_OP_pick: { uint8_t pick_idx = opcodes.GetU8(&offset); if (pick_idx < stack.size()) stack.push_back(stack[pick_idx]); else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "Index %u out of range for DW_OP_pick.\n", pick_idx); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_swap // OPERANDS: none // DESCRIPTION: swaps the top two stack entries. The entry at the top // of the stack becomes the second stack entry, and the second entry // becomes the top of the stack //---------------------------------------------------------------------- case DW_OP_swap: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_swap."); return false; } else { tmp = stack.back(); stack.back() = stack[stack.size() - 2]; stack[stack.size() - 2] = tmp; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_rot // OPERANDS: none // DESCRIPTION: Rotates the first three stack entries. The entry at // the top of the stack becomes the third stack entry, the second // entry becomes the top of the stack, and the third entry becomes // the second entry. //---------------------------------------------------------------------- case DW_OP_rot: if (stack.size() < 3) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 3 items for DW_OP_rot."); return false; } else { size_t last_idx = stack.size() - 1; Value old_top = stack[last_idx]; stack[last_idx] = stack[last_idx - 1]; stack[last_idx - 1] = stack[last_idx - 2]; stack[last_idx - 2] = old_top; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_abs // OPERANDS: none // DESCRIPTION: pops the top stack entry, interprets it as a signed // value and pushes its absolute value. If the absolute value can not be // represented, the result is undefined. //---------------------------------------------------------------------- case DW_OP_abs: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 1 item for DW_OP_abs."); return false; } else if (stack.back().ResolveValue(exe_ctx).AbsoluteValue() == false) { if (error_ptr) error_ptr->SetErrorString( "Failed to take the absolute value of the first stack item."); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_and // OPERANDS: none // DESCRIPTION: pops the top two stack values, performs a bitwise and // operation on the two, and pushes the result. //---------------------------------------------------------------------- case DW_OP_and: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_and."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_div // OPERANDS: none // DESCRIPTION: pops the top two stack values, divides the former second // entry by the former top of the stack using signed division, and // pushes the result. //---------------------------------------------------------------------- case DW_OP_div: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_div."); return false; } else { tmp = stack.back(); if (tmp.ResolveValue(exe_ctx).IsZero()) { if (error_ptr) error_ptr->SetErrorString("Divide by zero."); return false; } else { stack.pop_back(); stack.back() = stack.back().ResolveValue(exe_ctx) / tmp.ResolveValue(exe_ctx); if (!stack.back().ResolveValue(exe_ctx).IsValid()) { if (error_ptr) error_ptr->SetErrorString("Divide failed."); return false; } } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_minus // OPERANDS: none // DESCRIPTION: pops the top two stack values, subtracts the former top // of the stack from the former second entry, and pushes the result. //---------------------------------------------------------------------- case DW_OP_minus: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_minus."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_mod // OPERANDS: none // DESCRIPTION: pops the top two stack values and pushes the result of // the calculation: former second stack entry modulo the former top of // the stack. //---------------------------------------------------------------------- case DW_OP_mod: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_mod."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_mul // OPERANDS: none // DESCRIPTION: pops the top two stack entries, multiplies them // together, and pushes the result. //---------------------------------------------------------------------- case DW_OP_mul: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_mul."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_neg // OPERANDS: none // DESCRIPTION: pops the top stack entry, and pushes its negation. //---------------------------------------------------------------------- case DW_OP_neg: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 1 item for DW_OP_neg."); return false; } else { if (stack.back().ResolveValue(exe_ctx).UnaryNegate() == false) { if (error_ptr) error_ptr->SetErrorString("Unary negate failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_not // OPERANDS: none // DESCRIPTION: pops the top stack entry, and pushes its bitwise // complement //---------------------------------------------------------------------- case DW_OP_not: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 1 item for DW_OP_not."); return false; } else { if (stack.back().ResolveValue(exe_ctx).OnesComplement() == false) { if (error_ptr) error_ptr->SetErrorString("Logical NOT failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_or // OPERANDS: none // DESCRIPTION: pops the top two stack entries, performs a bitwise or // operation on the two, and pushes the result. //---------------------------------------------------------------------- case DW_OP_or: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_or."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_plus // OPERANDS: none // DESCRIPTION: pops the top two stack entries, adds them together, and // pushes the result. //---------------------------------------------------------------------- case DW_OP_plus: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_plus."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().GetScalar() += tmp.GetScalar(); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_plus_uconst // OPERANDS: none // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128 // constant operand and pushes the result. //---------------------------------------------------------------------- case DW_OP_plus_uconst: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 1 item for DW_OP_plus_uconst."); return false; } else { const uint64_t uconst_value = opcodes.GetULEB128(&offset); // Implicit conversion from a UINT to a Scalar... stack.back().GetScalar() += uconst_value; if (!stack.back().GetScalar().IsValid()) { if (error_ptr) error_ptr->SetErrorString("DW_OP_plus_uconst failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_shl // OPERANDS: none // DESCRIPTION: pops the top two stack entries, shifts the former // second entry left by the number of bits specified by the former top // of the stack, and pushes the result. //---------------------------------------------------------------------- case DW_OP_shl: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_shl."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_shr // OPERANDS: none // DESCRIPTION: pops the top two stack entries, shifts the former second // entry right logically (filling with zero bits) by the number of bits // specified by the former top of the stack, and pushes the result. //---------------------------------------------------------------------- case DW_OP_shr: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_shr."); return false; } else { tmp = stack.back(); stack.pop_back(); if (stack.back().ResolveValue(exe_ctx).ShiftRightLogical( tmp.ResolveValue(exe_ctx)) == false) { if (error_ptr) error_ptr->SetErrorString("DW_OP_shr failed."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_shra // OPERANDS: none // DESCRIPTION: pops the top two stack entries, shifts the former second // entry right arithmetically (divide the magnitude by 2, keep the same // sign for the result) by the number of bits specified by the former // top of the stack, and pushes the result. //---------------------------------------------------------------------- case DW_OP_shra: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_shra."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_xor // OPERANDS: none // DESCRIPTION: pops the top two stack entries, performs the bitwise // exclusive-or operation on the two, and pushes the result. //---------------------------------------------------------------------- case DW_OP_xor: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_xor."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_skip // OPERANDS: int16_t // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte // signed integer constant. The 2-byte constant is the number of bytes // of the DWARF expression to skip forward or backward from the current // operation, beginning after the 2-byte constant. //---------------------------------------------------------------------- case DW_OP_skip: { int16_t skip_offset = (int16_t)opcodes.GetU16(&offset); lldb::offset_t new_offset = offset + skip_offset; if (new_offset >= opcodes_offset && new_offset < end_offset) offset = new_offset; else { if (error_ptr) error_ptr->SetErrorString("Invalid opcode offset in DW_OP_skip."); return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_bra // OPERANDS: int16_t // DESCRIPTION: A conditional branch. Its single operand is a 2-byte // signed integer constant. This operation pops the top of stack. If // the value popped is not the constant 0, the 2-byte constant operand // is the number of bytes of the DWARF expression to skip forward or // backward from the current operation, beginning after the 2-byte // constant. //---------------------------------------------------------------------- case DW_OP_bra: if (stack.empty()) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 1 item for DW_OP_bra."); return false; } else { tmp = stack.back(); stack.pop_back(); int16_t bra_offset = (int16_t)opcodes.GetU16(&offset); Scalar zero(0); if (tmp.ResolveValue(exe_ctx) != zero) { lldb::offset_t new_offset = offset + bra_offset; if (new_offset >= opcodes_offset && new_offset < end_offset) offset = new_offset; else { if (error_ptr) error_ptr->SetErrorString("Invalid opcode offset in DW_OP_bra."); return false; } } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_eq // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // equals (==) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_eq: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_eq."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_ge // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // greater than or equal to (>=) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_ge: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_ge."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_gt // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // greater than (>) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_gt: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_gt."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_le // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // less than or equal to (<=) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_le: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_le."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_lt // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // less than (<) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_lt: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_lt."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_ne // OPERANDS: none // DESCRIPTION: pops the top two stack values, compares using the // not equal (!=) operator. // STACK RESULT: push the constant value 1 onto the stack if the result // of the operation is true or the constant value 0 if the result of the // operation is false. //---------------------------------------------------------------------- case DW_OP_ne: if (stack.size() < 2) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 2 items for DW_OP_ne."); return false; } else { tmp = stack.back(); stack.pop_back(); stack.back().ResolveValue(exe_ctx) = stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_litn // OPERANDS: none // DESCRIPTION: encode the unsigned literal values from 0 through 31. // STACK RESULT: push the unsigned literal constant value onto the top // of the stack. //---------------------------------------------------------------------- case DW_OP_lit0: case DW_OP_lit1: case DW_OP_lit2: case DW_OP_lit3: case DW_OP_lit4: case DW_OP_lit5: case DW_OP_lit6: case DW_OP_lit7: case DW_OP_lit8: case DW_OP_lit9: case DW_OP_lit10: case DW_OP_lit11: case DW_OP_lit12: case DW_OP_lit13: case DW_OP_lit14: case DW_OP_lit15: case DW_OP_lit16: case DW_OP_lit17: case DW_OP_lit18: case DW_OP_lit19: case DW_OP_lit20: case DW_OP_lit21: case DW_OP_lit22: case DW_OP_lit23: case DW_OP_lit24: case DW_OP_lit25: case DW_OP_lit26: case DW_OP_lit27: case DW_OP_lit28: case DW_OP_lit29: case DW_OP_lit30: case DW_OP_lit31: stack.push_back(Scalar(op - DW_OP_lit0)); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_regN // OPERANDS: none // DESCRIPTION: Push the value in register n on the top of the stack. //---------------------------------------------------------------------- case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: { reg_num = op - DW_OP_reg0; if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) stack.push_back(tmp); else return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_regx // OPERANDS: // ULEB128 literal operand that encodes the register. // DESCRIPTION: Push the value in register on the top of the stack. //---------------------------------------------------------------------- case DW_OP_regx: { reg_num = opcodes.GetULEB128(&offset); if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) stack.push_back(tmp); else return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_bregN // OPERANDS: // SLEB128 offset from register N // DESCRIPTION: Value is in memory at the address specified by register // N plus an offset. //---------------------------------------------------------------------- case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: { reg_num = op - DW_OP_breg0; if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) { int64_t breg_offset = opcodes.GetSLEB128(&offset); tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; tmp.ClearContext(); stack.push_back(tmp); stack.back().SetValueType(Value::eValueTypeLoadAddress); } else return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_bregx // OPERANDS: 2 // ULEB128 literal operand that encodes the register. // SLEB128 offset from register N // DESCRIPTION: Value is in memory at the address specified by register // N plus an offset. //---------------------------------------------------------------------- case DW_OP_bregx: { reg_num = opcodes.GetULEB128(&offset); if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp)) { int64_t breg_offset = opcodes.GetSLEB128(&offset); tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset; tmp.ClearContext(); stack.push_back(tmp); stack.back().SetValueType(Value::eValueTypeLoadAddress); } else return false; } break; case DW_OP_fbreg: if (exe_ctx) { if (frame) { Scalar value; if (frame->GetFrameBaseValue(value, error_ptr)) { int64_t fbreg_offset = opcodes.GetSLEB128(&offset); value += fbreg_offset; stack.push_back(value); stack.back().SetValueType(Value::eValueTypeLoadAddress); } else return false; } else { if (error_ptr) error_ptr->SetErrorString( "Invalid stack frame in context for DW_OP_fbreg opcode."); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "NULL execution context for DW_OP_fbreg.\n"); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_nop // OPERANDS: none // DESCRIPTION: A place holder. It has no effect on the location stack // or any of its values. //---------------------------------------------------------------------- case DW_OP_nop: break; //---------------------------------------------------------------------- // OPCODE: DW_OP_piece // OPERANDS: 1 // ULEB128: byte size of the piece // DESCRIPTION: The operand describes the size in bytes of the piece of // the object referenced by the DWARF expression whose result is at the // top of the stack. If the piece is located in a register, but does not // occupy the entire register, the placement of the piece within that // register is defined by the ABI. // // Many compilers store a single variable in sets of registers, or store // a variable partially in memory and partially in registers. // DW_OP_piece provides a way of describing how large a part of a // variable a particular DWARF expression refers to. //---------------------------------------------------------------------- case DW_OP_piece: { const uint64_t piece_byte_size = opcodes.GetULEB128(&offset); if (piece_byte_size > 0) { Value curr_piece; if (stack.empty()) { // In a multi-piece expression, this means that the current piece is // not available. // Fill with zeros for now by resizing the data and appending it curr_piece.ResizeData(piece_byte_size); ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size); pieces.AppendDataToHostBuffer(curr_piece); } else { Status error; // Extract the current piece into "curr_piece" Value curr_piece_source_value(stack.back()); stack.pop_back(); const Value::ValueType curr_piece_source_value_type = curr_piece_source_value.GetValueType(); switch (curr_piece_source_value_type) { case Value::eValueTypeLoadAddress: if (process) { if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) { lldb::addr_t load_addr = curr_piece_source_value.GetScalar().ULongLong( LLDB_INVALID_ADDRESS); if (process->ReadMemory( load_addr, curr_piece.GetBuffer().GetBytes(), piece_byte_size, error) != piece_byte_size) { if (error_ptr) error_ptr->SetErrorStringWithFormat( "failed to read memory DW_OP_piece(%" PRIu64 ") from 0x%" PRIx64, piece_byte_size, load_addr); return false; } } else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "failed to resize the piece memory buffer for " "DW_OP_piece(%" PRIu64 ")", piece_byte_size); return false; } } break; case Value::eValueTypeFileAddress: case Value::eValueTypeHostAddress: if (error_ptr) { lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong( LLDB_INVALID_ADDRESS); error_ptr->SetErrorStringWithFormat( "failed to read memory DW_OP_piece(%" PRIu64 ") from %s address 0x%" PRIx64, piece_byte_size, curr_piece_source_value.GetValueType() == Value::eValueTypeFileAddress ? "file" : "host", addr); } return false; case Value::eValueTypeScalar: { uint32_t bit_size = piece_byte_size * 8; uint32_t bit_offset = 0; if (!curr_piece_source_value.GetScalar().ExtractBitfield( bit_size, bit_offset)) { if (error_ptr) error_ptr->SetErrorStringWithFormat( "unable to extract %" PRIu64 " bytes from a %" PRIu64 " byte scalar value.", piece_byte_size, (uint64_t)curr_piece_source_value.GetScalar() .GetByteSize()); return false; } curr_piece = curr_piece_source_value; } break; case Value::eValueTypeVector: { if (curr_piece_source_value.GetVector().length >= piece_byte_size) curr_piece_source_value.GetVector().length = piece_byte_size; else { if (error_ptr) error_ptr->SetErrorStringWithFormat( "unable to extract %" PRIu64 " bytes from a %" PRIu64 " byte vector value.", piece_byte_size, (uint64_t)curr_piece_source_value.GetVector().length); return false; } } break; } // Check if this is the first piece? if (op_piece_offset == 0) { // This is the first piece, we should push it back onto the stack so // subsequent // pieces will be able to access this piece and add to it if (pieces.AppendDataToHostBuffer(curr_piece) == 0) { if (error_ptr) error_ptr->SetErrorString("failed to append piece data"); return false; } } else { // If this is the second or later piece there should be a value on // the stack if (pieces.GetBuffer().GetByteSize() != op_piece_offset) { if (error_ptr) error_ptr->SetErrorStringWithFormat( "DW_OP_piece for offset %" PRIu64 " but top of stack is of size %" PRIu64, op_piece_offset, pieces.GetBuffer().GetByteSize()); return false; } if (pieces.AppendDataToHostBuffer(curr_piece) == 0) { if (error_ptr) error_ptr->SetErrorString("failed to append piece data"); return false; } } op_piece_offset += piece_byte_size; } } } break; case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3); if (stack.size() < 1) { if (error_ptr) error_ptr->SetErrorString( "Expression stack needs at least 1 item for DW_OP_bit_piece."); return false; } else { const uint64_t piece_bit_size = opcodes.GetULEB128(&offset); const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset); switch (stack.back().GetValueType()) { case Value::eValueTypeScalar: { if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size, piece_bit_offset)) { if (error_ptr) error_ptr->SetErrorStringWithFormat( "unable to extract %" PRIu64 " bit value with %" PRIu64 " bit offset from a %" PRIu64 " bit scalar value.", piece_bit_size, piece_bit_offset, (uint64_t)(stack.back().GetScalar().GetByteSize() * 8)); return false; } } break; case Value::eValueTypeFileAddress: case Value::eValueTypeLoadAddress: case Value::eValueTypeHostAddress: if (error_ptr) { error_ptr->SetErrorStringWithFormat( "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 ", bit_offset = %" PRIu64 ") from an addresss value.", piece_bit_size, piece_bit_offset); } return false; case Value::eValueTypeVector: if (error_ptr) { error_ptr->SetErrorStringWithFormat( "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64 ", bit_offset = %" PRIu64 ") from a vector value.", piece_bit_size, piece_bit_offset); } return false; } } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_push_object_address // OPERANDS: none // DESCRIPTION: Pushes the address of the object currently being // evaluated as part of evaluation of a user presented expression. // This object may correspond to an independent variable described by // its own DIE or it may be a component of an array, structure, or class // whose address has been dynamically determined by an earlier step // during user expression evaluation. //---------------------------------------------------------------------- case DW_OP_push_object_address: if (object_address_ptr) stack.push_back(*object_address_ptr); else { if (error_ptr) error_ptr->SetErrorString("DW_OP_push_object_address used without " "specifying an object address"); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_call2 // OPERANDS: // uint16_t compile unit relative offset of a DIE // DESCRIPTION: Performs subroutine calls during evaluation // of a DWARF expression. The operand is the 2-byte unsigned offset // of a debugging information entry in the current compilation unit. // // Operand interpretation is exactly like that for DW_FORM_ref2. // // This operation transfers control of DWARF expression evaluation // to the DW_AT_location attribute of the referenced DIE. If there is // no such attribute, then there is no effect. Execution of the DWARF // expression of a DW_AT_location attribute may add to and/or remove from // values on the stack. Execution returns to the point following the call // when the end of the attribute is reached. Values on the stack at the // time of the call may be used as parameters by the called expression // and values left on the stack by the called expression may be used as // return values by prior agreement between the calling and called // expressions. //---------------------------------------------------------------------- case DW_OP_call2: if (error_ptr) error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_call4 // OPERANDS: 1 // uint32_t compile unit relative offset of a DIE // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset // of a debugging information entry in the current compilation unit. // // Operand interpretation DW_OP_call4 is exactly like that for // DW_FORM_ref4. // // This operation transfers control of DWARF expression evaluation // to the DW_AT_location attribute of the referenced DIE. If there is // no such attribute, then there is no effect. Execution of the DWARF // expression of a DW_AT_location attribute may add to and/or remove from // values on the stack. Execution returns to the point following the call // when the end of the attribute is reached. Values on the stack at the // time of the call may be used as parameters by the called expression // and values left on the stack by the called expression may be used as // return values by prior agreement between the calling and called // expressions. //---------------------------------------------------------------------- case DW_OP_call4: if (error_ptr) error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4."); return false; //---------------------------------------------------------------------- // OPCODE: DW_OP_stack_value // OPERANDS: None // DESCRIPTION: Specifies that the object does not exist in memory but // rather is a constant value. The value from the top of the stack is // the value to be used. This is the actual object value and not the // location. //---------------------------------------------------------------------- case DW_OP_stack_value: stack.back().SetValueType(Value::eValueTypeScalar); break; //---------------------------------------------------------------------- // OPCODE: DW_OP_call_frame_cfa // OPERANDS: None // DESCRIPTION: Specifies a DWARF expression that pushes the value of // the canonical frame address consistent with the call frame information // located in .debug_frame (or in the FDEs of the eh_frame section). //---------------------------------------------------------------------- case DW_OP_call_frame_cfa: if (frame) { // Note that we don't have to parse FDEs because this DWARF expression // is commonly evaluated with a valid stack frame. StackID id = frame->GetStackID(); addr_t cfa = id.GetCallFrameAddress(); if (cfa != LLDB_INVALID_ADDRESS) { stack.push_back(Scalar(cfa)); stack.back().SetValueType(Value::eValueTypeLoadAddress); } else if (error_ptr) error_ptr->SetErrorString("Stack frame does not include a canonical " "frame address for DW_OP_call_frame_cfa " "opcode."); } else { if (error_ptr) error_ptr->SetErrorString("Invalid stack frame in context for " "DW_OP_call_frame_cfa opcode."); return false; } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension // opcode, DW_OP_GNU_push_tls_address) // OPERANDS: none // DESCRIPTION: Pops a TLS offset from the stack, converts it to // an address in the current thread's thread-local storage block, // and pushes it on the stack. //---------------------------------------------------------------------- case DW_OP_form_tls_address: case DW_OP_GNU_push_tls_address: { if (stack.size() < 1) { if (error_ptr) { if (op == DW_OP_form_tls_address) error_ptr->SetErrorString( "DW_OP_form_tls_address needs an argument."); else error_ptr->SetErrorString( "DW_OP_GNU_push_tls_address needs an argument."); } return false; } if (!exe_ctx || !module_sp) { if (error_ptr) error_ptr->SetErrorString("No context to evaluate TLS within."); return false; } Thread *thread = exe_ctx->GetThreadPtr(); if (!thread) { if (error_ptr) error_ptr->SetErrorString("No thread to evaluate TLS within."); return false; } // Lookup the TLS block address for this thread and module. const addr_t tls_file_addr = stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS); const addr_t tls_load_addr = thread->GetThreadLocalData(module_sp, tls_file_addr); if (tls_load_addr == LLDB_INVALID_ADDRESS) { if (error_ptr) error_ptr->SetErrorString( "No TLS data currently exists for this thread."); return false; } stack.back().GetScalar() = tls_load_addr; stack.back().SetValueType(Value::eValueTypeLoadAddress); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_GNU_addr_index // OPERANDS: 1 // ULEB128: index to the .debug_addr section // DESCRIPTION: Pushes an address to the stack from the .debug_addr // section with the base address specified by the DW_AT_addr_base // attribute and the 0 based index is the ULEB128 encoded index. //---------------------------------------------------------------------- case DW_OP_GNU_addr_index: { if (!dwarf_cu) { if (error_ptr) error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a " "compile unit being specified"); return false; } uint64_t index = opcodes.GetULEB128(&offset); uint32_t index_size = dwarf_cu->GetAddressByteSize(); dw_offset_t addr_base = dwarf_cu->GetAddrBase(); lldb::offset_t offset = addr_base + index * index_size; uint64_t value = dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data().GetMaxU64( &offset, index_size); stack.push_back(Scalar(value)); stack.back().SetValueType(Value::eValueTypeFileAddress); } break; //---------------------------------------------------------------------- // OPCODE: DW_OP_GNU_const_index // OPERANDS: 1 // ULEB128: index to the .debug_addr section // DESCRIPTION: Pushes an constant with the size of a machine address to // the stack from the .debug_addr section with the base address specified // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128 // encoded index. //---------------------------------------------------------------------- case DW_OP_GNU_const_index: { if (!dwarf_cu) { if (error_ptr) error_ptr->SetErrorString("DW_OP_GNU_const_index found without a " "compile unit being specified"); return false; } uint64_t index = opcodes.GetULEB128(&offset); uint32_t index_size = dwarf_cu->GetAddressByteSize(); dw_offset_t addr_base = dwarf_cu->GetAddrBase(); lldb::offset_t offset = addr_base + index * index_size; const DWARFDataExtractor &debug_addr = dwarf_cu->GetSymbolFileDWARF()->get_debug_addr_data(); switch (index_size) { case 4: stack.push_back(Scalar(debug_addr.GetU32(&offset))); break; case 8: stack.push_back(Scalar(debug_addr.GetU64(&offset))); break; default: assert(false && "Unhandled index size"); return false; } } break; default: if (log) log->Printf("Unhandled opcode %s in DWARFExpression.", DW_OP_value_to_name(op)); break; } } if (stack.empty()) { // Nothing on the stack, check if we created a piece value from DW_OP_piece // or DW_OP_bit_piece opcodes if (pieces.GetBuffer().GetByteSize()) { result = pieces; } else { if (error_ptr) error_ptr->SetErrorString("Stack empty after evaluation."); return false; } } else { if (log && log->GetVerbose()) { size_t count = stack.size(); log->Printf("Stack after operation has %" PRIu64 " values:", (uint64_t)count); for (size_t i = 0; i < count; ++i) { StreamString new_value; new_value.Printf("[%" PRIu64 "]", (uint64_t)i); stack[i].Dump(&new_value); log->Printf(" %s", new_value.GetData()); } } result = stack.back(); } return true; // Return true on success } size_t DWARFExpression::LocationListSize(const DWARFCompileUnit *dwarf_cu, const DataExtractor &debug_loc_data, lldb::offset_t offset) { const lldb::offset_t debug_loc_offset = offset; while (debug_loc_data.ValidOffset(offset)) { lldb::addr_t start_addr = LLDB_INVALID_ADDRESS; lldb::addr_t end_addr = LLDB_INVALID_ADDRESS; if (!AddressRangeForLocationListEntry(dwarf_cu, debug_loc_data, &offset, start_addr, end_addr)) break; if (start_addr == 0 && end_addr == 0) break; uint16_t loc_length = debug_loc_data.GetU16(&offset); offset += loc_length; } if (offset > debug_loc_offset) return offset - debug_loc_offset; return 0; } bool DWARFExpression::AddressRangeForLocationListEntry( const DWARFCompileUnit *dwarf_cu, const DataExtractor &debug_loc_data, lldb::offset_t *offset_ptr, lldb::addr_t &low_pc, lldb::addr_t &high_pc) { if (!debug_loc_data.ValidOffset(*offset_ptr)) return false; switch (dwarf_cu->GetSymbolFileDWARF()->GetLocationListFormat()) { case NonLocationList: return false; case RegularLocationList: low_pc = debug_loc_data.GetAddress(offset_ptr); high_pc = debug_loc_data.GetAddress(offset_ptr); return true; case SplitDwarfLocationList: switch (debug_loc_data.GetU8(offset_ptr)) { case DW_LLE_end_of_list: return false; case DW_LLE_startx_endx: { uint64_t index = debug_loc_data.GetULEB128(offset_ptr); low_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index); index = debug_loc_data.GetULEB128(offset_ptr); high_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index); return true; } case DW_LLE_startx_length: { uint64_t index = debug_loc_data.GetULEB128(offset_ptr); low_pc = ReadAddressFromDebugAddrSection(dwarf_cu, index); uint32_t length = debug_loc_data.GetU32(offset_ptr); high_pc = low_pc + length; return true; } default: // Not supported entry type return false; } } assert(false && "Not supported location list type"); return false; } static bool print_dwarf_exp_op(Stream &s, const DataExtractor &data, lldb::offset_t *offset_ptr, int address_size, int dwarf_ref_size) { uint8_t opcode = data.GetU8(offset_ptr); DRC_class opcode_class; uint64_t uint; int64_t sint; int size; opcode_class = DW_OP_value_to_class(opcode) & (~DRC_DWARFv3); s.Printf("%s ", DW_OP_value_to_name(opcode)); /* Does this take zero parameters? If so we can shortcut this function. */ if (opcode_class == DRC_ZEROOPERANDS) return true; if (opcode_class == DRC_TWOOPERANDS && opcode == DW_OP_bregx) { uint = data.GetULEB128(offset_ptr); sint = data.GetSLEB128(offset_ptr); s.Printf("%" PRIu64 " %" PRIi64, uint, sint); return true; } if (opcode_class != DRC_ONEOPERAND) { s.Printf("UNKNOWN OP %u", opcode); return false; } switch (opcode) { case DW_OP_addr: size = address_size; break; case DW_OP_const1u: size = 1; break; case DW_OP_const1s: size = -1; break; case DW_OP_const2u: size = 2; break; case DW_OP_const2s: size = -2; break; case DW_OP_const4u: size = 4; break; case DW_OP_const4s: size = -4; break; case DW_OP_const8u: size = 8; break; case DW_OP_const8s: size = -8; break; case DW_OP_constu: size = 128; break; case DW_OP_consts: size = -128; break; case DW_OP_fbreg: size = -128; break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: size = -128; break; case DW_OP_pick: case DW_OP_deref_size: case DW_OP_xderef_size: size = 1; break; case DW_OP_skip: case DW_OP_bra: size = -2; break; case DW_OP_call2: size = 2; break; case DW_OP_call4: size = 4; break; case DW_OP_call_ref: size = dwarf_ref_size; break; case DW_OP_piece: case DW_OP_plus_uconst: case DW_OP_regx: case DW_OP_GNU_addr_index: case DW_OP_GNU_const_index: size = 128; break; default: s.Printf("UNKNOWN ONE-OPERAND OPCODE, #%u", opcode); return true; } switch (size) { case -1: sint = (int8_t)data.GetU8(offset_ptr); s.Printf("%+" PRIi64, sint); break; case -2: sint = (int16_t)data.GetU16(offset_ptr); s.Printf("%+" PRIi64, sint); break; case -4: sint = (int32_t)data.GetU32(offset_ptr); s.Printf("%+" PRIi64, sint); break; case -8: sint = (int64_t)data.GetU64(offset_ptr); s.Printf("%+" PRIi64, sint); break; case -128: sint = data.GetSLEB128(offset_ptr); s.Printf("%+" PRIi64, sint); break; case 1: uint = data.GetU8(offset_ptr); s.Printf("0x%2.2" PRIx64, uint); break; case 2: uint = data.GetU16(offset_ptr); s.Printf("0x%4.4" PRIx64, uint); break; case 4: uint = data.GetU32(offset_ptr); s.Printf("0x%8.8" PRIx64, uint); break; case 8: uint = data.GetU64(offset_ptr); s.Printf("0x%16.16" PRIx64, uint); break; case 128: uint = data.GetULEB128(offset_ptr); s.Printf("0x%" PRIx64, uint); break; } return false; } bool DWARFExpression::PrintDWARFExpression(Stream &s, const DataExtractor &data, int address_size, int dwarf_ref_size, bool location_expression) { int op_count = 0; lldb::offset_t offset = 0; while (data.ValidOffset(offset)) { if (location_expression && op_count > 0) return false; if (op_count > 0) s.PutCString(", "); if (!print_dwarf_exp_op(s, data, &offset, address_size, dwarf_ref_size)) return false; op_count++; } return true; } void DWARFExpression::PrintDWARFLocationList( Stream &s, const DWARFCompileUnit *cu, const DataExtractor &debug_loc_data, lldb::offset_t offset) { uint64_t start_addr, end_addr; uint32_t addr_size = DWARFCompileUnit::GetAddressByteSize(cu); s.SetAddressByteSize(DWARFCompileUnit::GetAddressByteSize(cu)); dw_addr_t base_addr = cu ? cu->GetBaseAddress() : 0; while (debug_loc_data.ValidOffset(offset)) { start_addr = debug_loc_data.GetMaxU64(&offset, addr_size); end_addr = debug_loc_data.GetMaxU64(&offset, addr_size); if (start_addr == 0 && end_addr == 0) break; s.PutCString("\n "); s.Indent(); if (cu) s.AddressRange(start_addr + base_addr, end_addr + base_addr, cu->GetAddressByteSize(), NULL, ": "); uint32_t loc_length = debug_loc_data.GetU16(&offset); DataExtractor locationData(debug_loc_data, offset, loc_length); PrintDWARFExpression(s, locationData, addr_size, 4, false); offset += loc_length; } } bool DWARFExpression::GetOpAndEndOffsets(StackFrame &frame, lldb::offset_t &op_offset, lldb::offset_t &end_offset) { SymbolContext sc = frame.GetSymbolContext(eSymbolContextFunction); if (!sc.function) { return false; } addr_t loclist_base_file_addr = sc.function->GetAddressRange().GetBaseAddress().GetFileAddress(); if (loclist_base_file_addr == LLDB_INVALID_ADDRESS) { return false; } addr_t pc_file_addr = frame.GetFrameCodeAddress().GetFileAddress(); lldb::offset_t opcodes_offset, opcodes_length; if (!GetLocation(loclist_base_file_addr, pc_file_addr, opcodes_offset, opcodes_length)) { return false; } if (opcodes_length == 0) { return false; } op_offset = opcodes_offset; end_offset = opcodes_offset + opcodes_length; return true; } bool DWARFExpression::MatchesOperand(StackFrame &frame, const Instruction::Operand &operand) { using namespace OperandMatchers; lldb::offset_t op_offset; lldb::offset_t end_offset; if (!GetOpAndEndOffsets(frame, op_offset, end_offset)) { return false; } if (!m_data.ValidOffset(op_offset) || op_offset >= end_offset) { return false; } RegisterContextSP reg_ctx_sp = frame.GetRegisterContext(); if (!reg_ctx_sp) { return false; } DataExtractor opcodes = m_data; uint8_t opcode = opcodes.GetU8(&op_offset); if (opcode == DW_OP_fbreg) { int64_t offset = opcodes.GetSLEB128(&op_offset); DWARFExpression *fb_expr = frame.GetFrameBaseExpression(nullptr); if (!fb_expr) { return false; } auto recurse = [&frame, fb_expr](const Instruction::Operand &child) { return fb_expr->MatchesOperand(frame, child); }; if (!offset && MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference), recurse)(operand)) { return true; } return MatchUnaryOp( MatchOpType(Instruction::Operand::Type::Dereference), MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum), MatchImmOp(offset), recurse))(operand); } bool dereference = false; const RegisterInfo *reg = nullptr; int64_t offset = 0; if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) { reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0); } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) { offset = opcodes.GetSLEB128(&op_offset); reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0); } else if (opcode == DW_OP_regx) { uint32_t reg_num = static_cast(opcodes.GetULEB128(&op_offset)); reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num); } else if (opcode == DW_OP_bregx) { uint32_t reg_num = static_cast(opcodes.GetULEB128(&op_offset)); offset = opcodes.GetSLEB128(&op_offset); reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num); } else { return false; } if (!reg) { return false; } if (dereference) { if (!offset && MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference), MatchRegOp(*reg))(operand)) { return true; } return MatchUnaryOp( MatchOpType(Instruction::Operand::Type::Dereference), MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum), MatchRegOp(*reg), MatchImmOp(offset)))(operand); } else { return MatchRegOp(*reg)(operand); } }