//===-- IRMemoryMap.cpp -----------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Expression/IRMemoryMap.h" #include "lldb/Target/MemoryRegionInfo.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/DataExtractor.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/Scalar.h" #include "lldb/Utility/Status.h" using namespace lldb_private; IRMemoryMap::IRMemoryMap(lldb::TargetSP target_sp) : m_target_wp(target_sp) { if (target_sp) m_process_wp = target_sp->GetProcessSP(); } IRMemoryMap::~IRMemoryMap() { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { AllocationMap::iterator iter; Status err; while ((iter = m_allocations.begin()) != m_allocations.end()) { err.Clear(); if (iter->second.m_leak) m_allocations.erase(iter); else Free(iter->first, err); } } } lldb::addr_t IRMemoryMap::FindSpace(size_t size) { // The FindSpace algorithm's job is to find a region of memory that the // underlying process is unlikely to be using. // // The memory returned by this function will never be written to. The only // point is that it should not shadow process memory if possible, so that // expressions processing real values from the process do not use the wrong // data. // // If the process can in fact allocate memory (CanJIT() lets us know this) // then this can be accomplished just be allocating memory in the inferior. // Then no guessing is required. lldb::TargetSP target_sp = m_target_wp.lock(); lldb::ProcessSP process_sp = m_process_wp.lock(); const bool process_is_alive = process_sp && process_sp->IsAlive(); lldb::addr_t ret = LLDB_INVALID_ADDRESS; if (size == 0) return ret; if (process_is_alive && process_sp->CanJIT()) { Status alloc_error; ret = process_sp->AllocateMemory(size, lldb::ePermissionsReadable | lldb::ePermissionsWritable, alloc_error); if (!alloc_error.Success()) return LLDB_INVALID_ADDRESS; else return ret; } // At this point we know that we need to hunt. // // First, go to the end of the existing allocations we've made if there are // any allocations. Otherwise start at the beginning of memory. if (m_allocations.empty()) { ret = 0x0; } else { auto back = m_allocations.rbegin(); lldb::addr_t addr = back->first; size_t alloc_size = back->second.m_size; ret = llvm::alignTo(addr + alloc_size, 4096); } // Now, if it's possible to use the GetMemoryRegionInfo API to detect mapped // regions, walk forward through memory until a region is found that has // adequate space for our allocation. if (process_is_alive) { const uint64_t end_of_memory = process_sp->GetAddressByteSize() == 8 ? 0xffffffffffffffffull : 0xffffffffull; lldbassert(process_sp->GetAddressByteSize() == 4 || end_of_memory != 0xffffffffull); MemoryRegionInfo region_info; Status err = process_sp->GetMemoryRegionInfo(ret, region_info); if (err.Success()) { while (true) { if (region_info.GetReadable() != MemoryRegionInfo::OptionalBool::eNo || region_info.GetWritable() != MemoryRegionInfo::OptionalBool::eNo || region_info.GetExecutable() != MemoryRegionInfo::OptionalBool::eNo) { if (region_info.GetRange().GetRangeEnd() - 1 >= end_of_memory) { ret = LLDB_INVALID_ADDRESS; break; } else { ret = region_info.GetRange().GetRangeEnd(); } } else if (ret + size < region_info.GetRange().GetRangeEnd()) { return ret; } else { // ret stays the same. We just need to walk a bit further. } err = process_sp->GetMemoryRegionInfo( region_info.GetRange().GetRangeEnd(), region_info); if (err.Fail()) { lldbassert(0 && "GetMemoryRegionInfo() succeeded, then failed"); ret = LLDB_INVALID_ADDRESS; break; } } } } // We've tried our algorithm, and it didn't work. Now we have to reset back // to the end of the allocations we've already reported, or use a 'sensible' // default if this is our first allocation. if (m_allocations.empty()) { uint32_t address_byte_size = GetAddressByteSize(); if (address_byte_size != UINT32_MAX) { switch (address_byte_size) { case 8: ret = 0xffffffff00000000ull; break; case 4: ret = 0xee000000ull; break; default: break; } } } else { auto back = m_allocations.rbegin(); lldb::addr_t addr = back->first; size_t alloc_size = back->second.m_size; ret = llvm::alignTo(addr + alloc_size, 4096); } return ret; } IRMemoryMap::AllocationMap::iterator IRMemoryMap::FindAllocation(lldb::addr_t addr, size_t size) { if (addr == LLDB_INVALID_ADDRESS) return m_allocations.end(); AllocationMap::iterator iter = m_allocations.lower_bound(addr); if (iter == m_allocations.end() || iter->first > addr) { if (iter == m_allocations.begin()) return m_allocations.end(); iter--; } if (iter->first <= addr && iter->first + iter->second.m_size >= addr + size) return iter; return m_allocations.end(); } bool IRMemoryMap::IntersectsAllocation(lldb::addr_t addr, size_t size) const { if (addr == LLDB_INVALID_ADDRESS) return false; AllocationMap::const_iterator iter = m_allocations.lower_bound(addr); // Since we only know that the returned interval begins at a location greater // than or equal to where the given interval begins, it's possible that the // given interval intersects either the returned interval or the previous // interval. Thus, we need to check both. Note that we only need to check // these two intervals. Since all intervals are disjoint it is not possible // that an adjacent interval does not intersect, but a non-adjacent interval // does intersect. if (iter != m_allocations.end()) { if (AllocationsIntersect(addr, size, iter->second.m_process_start, iter->second.m_size)) return true; } if (iter != m_allocations.begin()) { --iter; if (AllocationsIntersect(addr, size, iter->second.m_process_start, iter->second.m_size)) return true; } return false; } bool IRMemoryMap::AllocationsIntersect(lldb::addr_t addr1, size_t size1, lldb::addr_t addr2, size_t size2) { // Given two half open intervals [A, B) and [X, Y), the only 6 permutations // that satisfy AGetByteOrder(); lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) return target_sp->GetArchitecture().GetByteOrder(); return lldb::eByteOrderInvalid; } uint32_t IRMemoryMap::GetAddressByteSize() { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) return process_sp->GetAddressByteSize(); lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) return target_sp->GetArchitecture().GetAddressByteSize(); return UINT32_MAX; } ExecutionContextScope *IRMemoryMap::GetBestExecutionContextScope() const { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) return process_sp.get(); lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) return target_sp.get(); return NULL; } IRMemoryMap::Allocation::Allocation(lldb::addr_t process_alloc, lldb::addr_t process_start, size_t size, uint32_t permissions, uint8_t alignment, AllocationPolicy policy) : m_process_alloc(process_alloc), m_process_start(process_start), m_size(size), m_policy(policy), m_leak(false), m_permissions(permissions), m_alignment(alignment) { switch (policy) { default: assert(0 && "We cannot reach this!"); case eAllocationPolicyHostOnly: case eAllocationPolicyMirror: m_data.SetByteSize(size); break; case eAllocationPolicyProcessOnly: break; } } lldb::addr_t IRMemoryMap::Malloc(size_t size, uint8_t alignment, uint32_t permissions, AllocationPolicy policy, bool zero_memory, Status &error) { lldb_private::Log *log( lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); error.Clear(); lldb::ProcessSP process_sp; lldb::addr_t allocation_address = LLDB_INVALID_ADDRESS; lldb::addr_t aligned_address = LLDB_INVALID_ADDRESS; size_t allocation_size; if (size == 0) { // FIXME: Malloc(0) should either return an invalid address or assert, in // order to cut down on unnecessary allocations. allocation_size = alignment; } else { // Round up the requested size to an aligned value. allocation_size = llvm::alignTo(size, alignment); // The process page cache does not see the requested alignment. We can't // assume its result will be any more than 1-byte aligned. To work around // this, request `alignment - 1` additional bytes. allocation_size += alignment - 1; } switch (policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: invalid allocation policy"); return LLDB_INVALID_ADDRESS; case eAllocationPolicyHostOnly: allocation_address = FindSpace(allocation_size); if (allocation_address == LLDB_INVALID_ADDRESS) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: address space is full"); return LLDB_INVALID_ADDRESS; } break; case eAllocationPolicyMirror: process_sp = m_process_wp.lock(); if (log) log->Printf("IRMemoryMap::%s process_sp=0x%" PRIx64 ", process_sp->CanJIT()=%s, process_sp->IsAlive()=%s", __FUNCTION__, (lldb::addr_t)process_sp.get(), process_sp && process_sp->CanJIT() ? "true" : "false", process_sp && process_sp->IsAlive() ? "true" : "false"); if (process_sp && process_sp->CanJIT() && process_sp->IsAlive()) { if (!zero_memory) allocation_address = process_sp->AllocateMemory(allocation_size, permissions, error); else allocation_address = process_sp->CallocateMemory(allocation_size, permissions, error); if (!error.Success()) return LLDB_INVALID_ADDRESS; } else { if (log) log->Printf("IRMemoryMap::%s switching to eAllocationPolicyHostOnly " "due to failed condition (see previous expr log message)", __FUNCTION__); policy = eAllocationPolicyHostOnly; allocation_address = FindSpace(allocation_size); if (allocation_address == LLDB_INVALID_ADDRESS) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: address space is full"); return LLDB_INVALID_ADDRESS; } } break; case eAllocationPolicyProcessOnly: process_sp = m_process_wp.lock(); if (process_sp) { if (process_sp->CanJIT() && process_sp->IsAlive()) { if (!zero_memory) allocation_address = process_sp->AllocateMemory(allocation_size, permissions, error); else allocation_address = process_sp->CallocateMemory(allocation_size, permissions, error); if (!error.Success()) return LLDB_INVALID_ADDRESS; } else { error.SetErrorToGenericError(); error.SetErrorString( "Couldn't malloc: process doesn't support allocating memory"); return LLDB_INVALID_ADDRESS; } } else { error.SetErrorToGenericError(); error.SetErrorString("Couldn't malloc: process doesn't exist, and this " "memory must be in the process"); return LLDB_INVALID_ADDRESS; } break; } lldb::addr_t mask = alignment - 1; aligned_address = (allocation_address + mask) & (~mask); m_allocations.emplace( std::piecewise_construct, std::forward_as_tuple(aligned_address), std::forward_as_tuple(allocation_address, aligned_address, allocation_size, permissions, alignment, policy)); if (zero_memory) { Status write_error; std::vector zero_buf(size, 0); WriteMemory(aligned_address, zero_buf.data(), size, write_error); } if (log) { const char *policy_string; switch (policy) { default: policy_string = ""; break; case eAllocationPolicyHostOnly: policy_string = "eAllocationPolicyHostOnly"; break; case eAllocationPolicyProcessOnly: policy_string = "eAllocationPolicyProcessOnly"; break; case eAllocationPolicyMirror: policy_string = "eAllocationPolicyMirror"; break; } log->Printf("IRMemoryMap::Malloc (%" PRIu64 ", 0x%" PRIx64 ", 0x%" PRIx64 ", %s) -> 0x%" PRIx64, (uint64_t)allocation_size, (uint64_t)alignment, (uint64_t)permissions, policy_string, aligned_address); } return aligned_address; } void IRMemoryMap::Leak(lldb::addr_t process_address, Status &error) { error.Clear(); AllocationMap::iterator iter = m_allocations.find(process_address); if (iter == m_allocations.end()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't leak: allocation doesn't exist"); return; } Allocation &allocation = iter->second; allocation.m_leak = true; } void IRMemoryMap::Free(lldb::addr_t process_address, Status &error) { error.Clear(); AllocationMap::iterator iter = m_allocations.find(process_address); if (iter == m_allocations.end()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't free: allocation doesn't exist"); return; } Allocation &allocation = iter->second; switch (allocation.m_policy) { default: case eAllocationPolicyHostOnly: { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { if (process_sp->CanJIT() && process_sp->IsAlive()) process_sp->DeallocateMemory( allocation.m_process_alloc); // FindSpace allocated this for real } break; } case eAllocationPolicyMirror: case eAllocationPolicyProcessOnly: { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) process_sp->DeallocateMemory(allocation.m_process_alloc); } } if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { log->Printf("IRMemoryMap::Free (0x%" PRIx64 ") freed [0x%" PRIx64 "..0x%" PRIx64 ")", (uint64_t)process_address, iter->second.m_process_start, iter->second.m_process_start + iter->second.m_size); } m_allocations.erase(iter); } bool IRMemoryMap::GetAllocSize(lldb::addr_t address, size_t &size) { AllocationMap::iterator iter = FindAllocation(address, size); if (iter == m_allocations.end()) return false; Allocation &al = iter->second; if (address > (al.m_process_start + al.m_size)) { size = 0; return false; } if (address > al.m_process_start) { int dif = address - al.m_process_start; size = al.m_size - dif; return true; } size = al.m_size; return true; } void IRMemoryMap::WriteMemory(lldb::addr_t process_address, const uint8_t *bytes, size_t size, Status &error) { error.Clear(); AllocationMap::iterator iter = FindAllocation(process_address, size); if (iter == m_allocations.end()) { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { process_sp->WriteMemory(process_address, bytes, size, error); return; } error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: no allocation contains the target " "range and the process doesn't exist"); return; } Allocation &allocation = iter->second; uint64_t offset = process_address - allocation.m_process_start; lldb::ProcessSP process_sp; switch (allocation.m_policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: invalid allocation policy"); return; case eAllocationPolicyHostOnly: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: data buffer is empty"); return; } ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); break; case eAllocationPolicyMirror: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't write: data buffer is empty"); return; } ::memcpy(allocation.m_data.GetBytes() + offset, bytes, size); process_sp = m_process_wp.lock(); if (process_sp) { process_sp->WriteMemory(process_address, bytes, size, error); if (!error.Success()) return; } break; case eAllocationPolicyProcessOnly: process_sp = m_process_wp.lock(); if (process_sp) { process_sp->WriteMemory(process_address, bytes, size, error); if (!error.Success()) return; } break; } if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { log->Printf("IRMemoryMap::WriteMemory (0x%" PRIx64 ", 0x%" PRIx64 ", 0x%" PRId64 ") went to [0x%" PRIx64 "..0x%" PRIx64 ")", (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, (uint64_t)allocation.m_process_start, (uint64_t)allocation.m_process_start + (uint64_t)allocation.m_size); } } void IRMemoryMap::WriteScalarToMemory(lldb::addr_t process_address, Scalar &scalar, size_t size, Status &error) { error.Clear(); if (size == UINT32_MAX) size = scalar.GetByteSize(); if (size > 0) { uint8_t buf[32]; const size_t mem_size = scalar.GetAsMemoryData(buf, size, GetByteOrder(), error); if (mem_size > 0) { return WriteMemory(process_address, buf, mem_size, error); } else { error.SetErrorToGenericError(); error.SetErrorString( "Couldn't write scalar: failed to get scalar as memory data"); } } else { error.SetErrorToGenericError(); error.SetErrorString("Couldn't write scalar: its size was zero"); } return; } void IRMemoryMap::WritePointerToMemory(lldb::addr_t process_address, lldb::addr_t address, Status &error) { error.Clear(); Scalar scalar(address); WriteScalarToMemory(process_address, scalar, GetAddressByteSize(), error); } void IRMemoryMap::ReadMemory(uint8_t *bytes, lldb::addr_t process_address, size_t size, Status &error) { error.Clear(); AllocationMap::iterator iter = FindAllocation(process_address, size); if (iter == m_allocations.end()) { lldb::ProcessSP process_sp = m_process_wp.lock(); if (process_sp) { process_sp->ReadMemory(process_address, bytes, size, error); return; } lldb::TargetSP target_sp = m_target_wp.lock(); if (target_sp) { Address absolute_address(process_address); target_sp->ReadMemory(absolute_address, false, bytes, size, error); return; } error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: no allocation contains the target " "range, and neither the process nor the target exist"); return; } Allocation &allocation = iter->second; uint64_t offset = process_address - allocation.m_process_start; if (offset > allocation.m_size) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: data is not in the allocation"); return; } lldb::ProcessSP process_sp; switch (allocation.m_policy) { default: error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: invalid allocation policy"); return; case eAllocationPolicyHostOnly: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: data buffer is empty"); return; } if (allocation.m_data.GetByteSize() < offset + size) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: not enough underlying data"); return; } ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); break; case eAllocationPolicyMirror: process_sp = m_process_wp.lock(); if (process_sp) { process_sp->ReadMemory(process_address, bytes, size, error); if (!error.Success()) return; } else { if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read: data buffer is empty"); return; } ::memcpy(bytes, allocation.m_data.GetBytes() + offset, size); } break; case eAllocationPolicyProcessOnly: process_sp = m_process_wp.lock(); if (process_sp) { process_sp->ReadMemory(process_address, bytes, size, error); if (!error.Success()) return; } break; } if (lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)) { log->Printf("IRMemoryMap::ReadMemory (0x%" PRIx64 ", 0x%" PRIx64 ", 0x%" PRId64 ") came from [0x%" PRIx64 "..0x%" PRIx64 ")", (uint64_t)process_address, (uint64_t)bytes, (uint64_t)size, (uint64_t)allocation.m_process_start, (uint64_t)allocation.m_process_start + (uint64_t)allocation.m_size); } } void IRMemoryMap::ReadScalarFromMemory(Scalar &scalar, lldb::addr_t process_address, size_t size, Status &error) { error.Clear(); if (size > 0) { DataBufferHeap buf(size, 0); ReadMemory(buf.GetBytes(), process_address, size, error); if (!error.Success()) return; DataExtractor extractor(buf.GetBytes(), buf.GetByteSize(), GetByteOrder(), GetAddressByteSize()); lldb::offset_t offset = 0; switch (size) { default: error.SetErrorToGenericError(); error.SetErrorStringWithFormat( "Couldn't read scalar: unsupported size %" PRIu64, (uint64_t)size); return; case 1: scalar = extractor.GetU8(&offset); break; case 2: scalar = extractor.GetU16(&offset); break; case 4: scalar = extractor.GetU32(&offset); break; case 8: scalar = extractor.GetU64(&offset); break; } } else { error.SetErrorToGenericError(); error.SetErrorString("Couldn't read scalar: its size was zero"); } return; } void IRMemoryMap::ReadPointerFromMemory(lldb::addr_t *address, lldb::addr_t process_address, Status &error) { error.Clear(); Scalar pointer_scalar; ReadScalarFromMemory(pointer_scalar, process_address, GetAddressByteSize(), error); if (!error.Success()) return; *address = pointer_scalar.ULongLong(); return; } void IRMemoryMap::GetMemoryData(DataExtractor &extractor, lldb::addr_t process_address, size_t size, Status &error) { error.Clear(); if (size > 0) { AllocationMap::iterator iter = FindAllocation(process_address, size); if (iter == m_allocations.end()) { error.SetErrorToGenericError(); error.SetErrorStringWithFormat( "Couldn't find an allocation containing [0x%" PRIx64 "..0x%" PRIx64 ")", process_address, process_address + size); return; } Allocation &allocation = iter->second; switch (allocation.m_policy) { default: error.SetErrorToGenericError(); error.SetErrorString( "Couldn't get memory data: invalid allocation policy"); return; case eAllocationPolicyProcessOnly: error.SetErrorToGenericError(); error.SetErrorString( "Couldn't get memory data: memory is only in the target"); return; case eAllocationPolicyMirror: { lldb::ProcessSP process_sp = m_process_wp.lock(); if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: data buffer is empty"); return; } if (process_sp) { process_sp->ReadMemory(allocation.m_process_start, allocation.m_data.GetBytes(), allocation.m_data.GetByteSize(), error); if (!error.Success()) return; uint64_t offset = process_address - allocation.m_process_start; extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, GetByteOrder(), GetAddressByteSize()); return; } } break; case eAllocationPolicyHostOnly: if (!allocation.m_data.GetByteSize()) { error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: data buffer is empty"); return; } uint64_t offset = process_address - allocation.m_process_start; extractor = DataExtractor(allocation.m_data.GetBytes() + offset, size, GetByteOrder(), GetAddressByteSize()); return; } } else { error.SetErrorToGenericError(); error.SetErrorString("Couldn't get memory data: its size was zero"); return; } }