//===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes // Other libraries and framework includes #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/ExternalASTSource.h" #include "clang/Basic/DiagnosticIDs.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/CodeGen/CodeGenAction.h" #include "clang/CodeGen/ModuleBuilder.h" #include "clang/Edit/Commit.h" #include "clang/Edit/EditedSource.h" #include "clang/Edit/EditsReceiver.h" #include "clang/Frontend/CompilerInstance.h" #include "clang/Frontend/CompilerInvocation.h" #include "clang/Frontend/FrontendActions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendPluginRegistry.h" #include "clang/Frontend/TextDiagnosticBuffer.h" #include "clang/Frontend/TextDiagnosticPrinter.h" #include "clang/Lex/Preprocessor.h" #include "clang/Parse/ParseAST.h" #include "clang/Rewrite/Core/Rewriter.h" #include "clang/Rewrite/Frontend/FrontendActions.h" #include "clang/Sema/SemaConsumer.h" #include "llvm/ADT/StringRef.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/TargetSelect.h" #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wglobal-constructors" #include "llvm/ExecutionEngine/MCJIT.h" #pragma clang diagnostic pop #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Support/DynamicLibrary.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Host.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Signals.h" // Project includes #include "ClangDiagnostic.h" #include "ClangExpressionParser.h" #include "ClangASTSource.h" #include "ClangExpressionDeclMap.h" #include "ClangExpressionHelper.h" #include "ClangModulesDeclVendor.h" #include "ClangPersistentVariables.h" #include "IRForTarget.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Disassembler.h" #include "lldb/Core/Module.h" #include "lldb/Core/StreamFile.h" #include "lldb/Expression/IRDynamicChecks.h" #include "lldb/Expression/IRExecutionUnit.h" #include "lldb/Expression/IRInterpreter.h" #include "lldb/Host/File.h" #include "lldb/Host/HostInfo.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/SymbolVendor.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Language.h" #include "lldb/Target/ObjCLanguageRuntime.h" #include "lldb/Target/Process.h" #include "lldb/Target/Target.h" #include "lldb/Target/ThreadPlanCallFunction.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/StringList.h" using namespace clang; using namespace llvm; using namespace lldb_private; //===----------------------------------------------------------------------===// // Utility Methods for Clang //===----------------------------------------------------------------------===// class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks { ClangModulesDeclVendor &m_decl_vendor; ClangPersistentVariables &m_persistent_vars; StreamString m_error_stream; bool m_has_errors = false; public: LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor, ClangPersistentVariables &persistent_vars) : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {} void moduleImport(SourceLocation import_location, clang::ModuleIdPath path, const clang::Module * /*null*/) override { std::vector string_path; for (const std::pair &component : path) { string_path.push_back(ConstString(component.first->getName())); } StreamString error_stream; ClangModulesDeclVendor::ModuleVector exported_modules; if (!m_decl_vendor.AddModule(string_path, &exported_modules, m_error_stream)) { m_has_errors = true; } for (ClangModulesDeclVendor::ModuleID module : exported_modules) { m_persistent_vars.AddHandLoadedClangModule(module); } } bool hasErrors() { return m_has_errors; } llvm::StringRef getErrorString() { return m_error_stream.GetString(); } }; class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer { public: ClangDiagnosticManagerAdapter() : m_passthrough(new clang::TextDiagnosticBuffer) {} ClangDiagnosticManagerAdapter( const std::shared_ptr &passthrough) : m_passthrough(passthrough) {} void ResetManager(DiagnosticManager *manager = nullptr) { m_manager = manager; } void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel, const clang::Diagnostic &Info) { if (m_manager) { llvm::SmallVector diag_str; Info.FormatDiagnostic(diag_str); diag_str.push_back('\0'); const char *data = diag_str.data(); lldb_private::DiagnosticSeverity severity; bool make_new_diagnostic = true; switch (DiagLevel) { case DiagnosticsEngine::Level::Fatal: case DiagnosticsEngine::Level::Error: severity = eDiagnosticSeverityError; break; case DiagnosticsEngine::Level::Warning: severity = eDiagnosticSeverityWarning; break; case DiagnosticsEngine::Level::Remark: case DiagnosticsEngine::Level::Ignored: severity = eDiagnosticSeverityRemark; break; case DiagnosticsEngine::Level::Note: m_manager->AppendMessageToDiagnostic(data); make_new_diagnostic = false; } if (make_new_diagnostic) { ClangDiagnostic *new_diagnostic = new ClangDiagnostic(data, severity, Info.getID()); m_manager->AddDiagnostic(new_diagnostic); // Don't store away warning fixits, since the compiler doesn't have // enough // context in an expression for the warning to be useful. // FIXME: Should we try to filter out FixIts that apply to our generated // code, and not the user's expression? if (severity == eDiagnosticSeverityError) { size_t num_fixit_hints = Info.getNumFixItHints(); for (size_t i = 0; i < num_fixit_hints; i++) { const clang::FixItHint &fixit = Info.getFixItHint(i); if (!fixit.isNull()) new_diagnostic->AddFixitHint(fixit); } } } } m_passthrough->HandleDiagnostic(DiagLevel, Info); } void FlushDiagnostics(DiagnosticsEngine &Diags) { m_passthrough->FlushDiagnostics(Diags); } DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const { return new ClangDiagnosticManagerAdapter(m_passthrough); } clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); } private: DiagnosticManager *m_manager = nullptr; std::shared_ptr m_passthrough; }; //===----------------------------------------------------------------------===// // Implementation of ClangExpressionParser //===----------------------------------------------------------------------===// ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope, Expression &expr, bool generate_debug_info) : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(), m_code_generator(), m_pp_callbacks(nullptr) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); // We can't compile expressions without a target. So if the exe_scope is null // or doesn't have a target, // then we just need to get out of here. I'll lldb_assert and not make any of // the compiler objects since // I can't return errors directly from the constructor. Further calls will // check if the compiler was made and // bag out if it wasn't. if (!exe_scope) { lldb_assert(exe_scope, "Can't make an expression parser with a null scope.", __FUNCTION__, __FILE__, __LINE__); return; } lldb::TargetSP target_sp; target_sp = exe_scope->CalculateTarget(); if (!target_sp) { lldb_assert(target_sp.get(), "Can't make an expression parser with a null target.", __FUNCTION__, __FILE__, __LINE__); return; } // 1. Create a new compiler instance. m_compiler.reset(new CompilerInstance()); lldb::LanguageType frame_lang = expr.Language(); // defaults to lldb::eLanguageTypeUnknown bool overridden_target_opts = false; lldb_private::LanguageRuntime *lang_rt = nullptr; std::string abi; ArchSpec target_arch; target_arch = target_sp->GetArchitecture(); const auto target_machine = target_arch.GetMachine(); // If the expression is being evaluated in the context of an existing // stack frame, we introspect to see if the language runtime is available. lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame(); lldb::ProcessSP process_sp = exe_scope->CalculateProcess(); // Make sure the user hasn't provided a preferred execution language // with `expression --language X -- ...` if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown) frame_lang = frame_sp->GetLanguage(); if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) { lang_rt = process_sp->GetLanguageRuntime(frame_lang); if (log) log->Printf("Frame has language of type %s", Language::GetNameForLanguageType(frame_lang)); } // 2. Configure the compiler with a set of default options that are // appropriate // for most situations. if (target_arch.IsValid()) { std::string triple = target_arch.GetTriple().str(); m_compiler->getTargetOpts().Triple = triple; if (log) log->Printf("Using %s as the target triple", m_compiler->getTargetOpts().Triple.c_str()); } else { // If we get here we don't have a valid target and just have to guess. // Sometimes this will be ok to just use the host target triple (when we // evaluate say "2+3", but other // expressions like breakpoint conditions and other things that _are_ target // specific really shouldn't just be // using the host triple. In such a case the language runtime should expose // an overridden options set (3), // below. m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple(); if (log) log->Printf("Using default target triple of %s", m_compiler->getTargetOpts().Triple.c_str()); } // Now add some special fixes for known architectures: // Any arm32 iOS environment, but not on arm64 if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos && m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos && m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) { m_compiler->getTargetOpts().ABI = "apcs-gnu"; } // Supported subsets of x86 if (target_machine == llvm::Triple::x86 || target_machine == llvm::Triple::x86_64) { m_compiler->getTargetOpts().Features.push_back("+sse"); m_compiler->getTargetOpts().Features.push_back("+sse2"); } // Set the target CPU to generate code for. // This will be empty for any CPU that doesn't really need to make a special // CPU string. m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU(); // Set the target ABI abi = GetClangTargetABI(target_arch); if (!abi.empty()) m_compiler->getTargetOpts().ABI = abi; // 3. Now allow the runtime to provide custom configuration options for the // target. // In this case, a specialized language runtime is available and we can query // it for extra options. // For 99% of use cases, this will not be needed and should be provided when // basic platform detection is not enough. if (lang_rt) overridden_target_opts = lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts()); if (overridden_target_opts) if (log && log->GetVerbose()) { LLDB_LOGV( log, "Using overridden target options for the expression evaluation"); auto opts = m_compiler->getTargetOpts(); LLDB_LOGV(log, "Triple: '{0}'", opts.Triple); LLDB_LOGV(log, "CPU: '{0}'", opts.CPU); LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath); LLDB_LOGV(log, "ABI: '{0}'", opts.ABI); LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion); StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten"); StringList::LogDump(log, opts.Features, "Features"); } // 4. Create and install the target on the compiler. m_compiler->createDiagnostics(); auto target_info = TargetInfo::CreateTargetInfo( m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts); if (log) { log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign()); log->Printf("Target datalayout string: '%s'", target_info->getDataLayout().getStringRepresentation().c_str()); log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str()); log->Printf("Target vector alignment: %d", target_info->getMaxVectorAlign()); } m_compiler->setTarget(target_info); assert(m_compiler->hasTarget()); // 5. Set language options. lldb::LanguageType language = expr.Language(); switch (language) { case lldb::eLanguageTypeC: case lldb::eLanguageTypeC89: case lldb::eLanguageTypeC99: case lldb::eLanguageTypeC11: // FIXME: the following language option is a temporary workaround, // to "ask for C, get C++." // For now, the expression parser must use C++ anytime the // language is a C family language, because the expression parser // uses features of C++ to capture values. m_compiler->getLangOpts().CPlusPlus = true; break; case lldb::eLanguageTypeObjC: m_compiler->getLangOpts().ObjC1 = true; m_compiler->getLangOpts().ObjC2 = true; // FIXME: the following language option is a temporary workaround, // to "ask for ObjC, get ObjC++" (see comment above). m_compiler->getLangOpts().CPlusPlus = true; // Clang now sets as default C++14 as the default standard (with // GNU extensions), so we do the same here to avoid mismatches that // cause compiler error when evaluating expressions (e.g. nullptr // not found as it's a C++11 feature). Currently lldb evaluates // C++14 as C++11 (see two lines below) so we decide to be consistent // with that, but this could be re-evaluated in the future. m_compiler->getLangOpts().CPlusPlus11 = true; break; case lldb::eLanguageTypeC_plus_plus: case lldb::eLanguageTypeC_plus_plus_11: case lldb::eLanguageTypeC_plus_plus_14: m_compiler->getLangOpts().CPlusPlus11 = true; m_compiler->getHeaderSearchOpts().UseLibcxx = true; LLVM_FALLTHROUGH; case lldb::eLanguageTypeC_plus_plus_03: m_compiler->getLangOpts().CPlusPlus = true; // FIXME: the following language option is a temporary workaround, // to "ask for C++, get ObjC++". Apple hopes to remove this requirement // on non-Apple platforms, but for now it is needed. m_compiler->getLangOpts().ObjC1 = true; break; case lldb::eLanguageTypeObjC_plus_plus: case lldb::eLanguageTypeUnknown: default: m_compiler->getLangOpts().ObjC1 = true; m_compiler->getLangOpts().ObjC2 = true; m_compiler->getLangOpts().CPlusPlus = true; m_compiler->getLangOpts().CPlusPlus11 = true; m_compiler->getHeaderSearchOpts().UseLibcxx = true; break; } m_compiler->getLangOpts().Bool = true; m_compiler->getLangOpts().WChar = true; m_compiler->getLangOpts().Blocks = true; m_compiler->getLangOpts().DebuggerSupport = true; // Features specifically for debugger clients if (expr.DesiredResultType() == Expression::eResultTypeId) m_compiler->getLangOpts().DebuggerCastResultToId = true; m_compiler->getLangOpts().CharIsSigned = ArchSpec(m_compiler->getTargetOpts().Triple.c_str()) .CharIsSignedByDefault(); // Spell checking is a nice feature, but it ends up completing a // lot of types that we didn't strictly speaking need to complete. // As a result, we spend a long time parsing and importing debug // information. m_compiler->getLangOpts().SpellChecking = false; if (process_sp && m_compiler->getLangOpts().ObjC1) { if (process_sp->GetObjCLanguageRuntime()) { if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() == ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2) m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX, VersionTuple(10, 7)); else m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX, VersionTuple(10, 7)); if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing()) m_compiler->getLangOpts().DebuggerObjCLiteral = true; } } m_compiler->getLangOpts().ThreadsafeStatics = false; m_compiler->getLangOpts().AccessControl = false; // Debuggers get universal access m_compiler->getLangOpts().DollarIdents = true; // $ indicates a persistent variable name // Set CodeGen options m_compiler->getCodeGenOpts().EmitDeclMetadata = true; m_compiler->getCodeGenOpts().InstrumentFunctions = false; m_compiler->getCodeGenOpts().DisableFPElim = true; m_compiler->getCodeGenOpts().OmitLeafFramePointer = false; if (generate_debug_info) m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo); else m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo); // Disable some warnings. m_compiler->getDiagnostics().setSeverityForGroup( clang::diag::Flavor::WarningOrError, "unused-value", clang::diag::Severity::Ignored, SourceLocation()); m_compiler->getDiagnostics().setSeverityForGroup( clang::diag::Flavor::WarningOrError, "odr", clang::diag::Severity::Ignored, SourceLocation()); // Inform the target of the language options // // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. m_compiler->getTarget().adjust(m_compiler->getLangOpts()); // 6. Set up the diagnostic buffer for reporting errors m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter); // 7. Set up the source management objects inside the compiler clang::FileSystemOptions file_system_options; m_file_manager.reset(new clang::FileManager(file_system_options)); if (!m_compiler->hasSourceManager()) m_compiler->createSourceManager(*m_file_manager.get()); m_compiler->createFileManager(); m_compiler->createPreprocessor(TU_Complete); if (ClangModulesDeclVendor *decl_vendor = target_sp->GetClangModulesDeclVendor()) { ClangPersistentVariables *clang_persistent_vars = llvm::cast( target_sp->GetPersistentExpressionStateForLanguage( lldb::eLanguageTypeC)); std::unique_ptr pp_callbacks( new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars)); m_pp_callbacks = static_cast(pp_callbacks.get()); m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks)); } // 8. Most of this we get from the CompilerInstance, but we // also want to give the context an ExternalASTSource. m_selector_table.reset(new SelectorTable()); m_builtin_context.reset(new Builtin::Context()); std::unique_ptr ast_context( new ASTContext(m_compiler->getLangOpts(), m_compiler->getSourceManager(), m_compiler->getPreprocessor().getIdentifierTable(), *m_selector_table.get(), *m_builtin_context.get())); ast_context->InitBuiltinTypes(m_compiler->getTarget()); ClangExpressionHelper *type_system_helper = dyn_cast(m_expr.GetTypeSystemHelper()); ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); if (decl_map) { llvm::IntrusiveRefCntPtr ast_source( decl_map->CreateProxy()); decl_map->InstallASTContext(*ast_context, m_compiler->getFileManager()); ast_context->setExternalSource(ast_source); } m_ast_context.reset( new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str())); m_ast_context->setASTContext(ast_context.get()); m_compiler->setASTContext(ast_context.release()); std::string module_name("$__lldb_module"); m_llvm_context.reset(new LLVMContext()); m_code_generator.reset(CreateLLVMCodeGen( m_compiler->getDiagnostics(), module_name, m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(), m_compiler->getCodeGenOpts(), *m_llvm_context)); } ClangExpressionParser::~ClangExpressionParser() {} unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) { ClangDiagnosticManagerAdapter *adapter = static_cast( m_compiler->getDiagnostics().getClient()); clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough(); diag_buf->FlushDiagnostics(m_compiler->getDiagnostics()); adapter->ResetManager(&diagnostic_manager); const char *expr_text = m_expr.Text(); clang::SourceManager &source_mgr = m_compiler->getSourceManager(); bool created_main_file = false; if (m_compiler->getCodeGenOpts().getDebugInfo() == codegenoptions::FullDebugInfo) { int temp_fd = -1; llvm::SmallString result_path; FileSpec tmpdir_file_spec; if (HostInfo::GetLLDBPath(lldb::ePathTypeLLDBTempSystemDir, tmpdir_file_spec)) { tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr"); std::string temp_source_path = tmpdir_file_spec.GetPath(); llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path); } else { llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path); } if (temp_fd != -1) { lldb_private::File file(temp_fd, true); const size_t expr_text_len = strlen(expr_text); size_t bytes_written = expr_text_len; if (file.Write(expr_text, bytes_written).Success()) { if (bytes_written == expr_text_len) { file.Close(); source_mgr.setMainFileID( source_mgr.createFileID(m_file_manager->getFile(result_path), SourceLocation(), SrcMgr::C_User)); created_main_file = true; } } } } if (!created_main_file) { std::unique_ptr memory_buffer = MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__); source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer))); } diag_buf->BeginSourceFile(m_compiler->getLangOpts(), &m_compiler->getPreprocessor()); ClangExpressionHelper *type_system_helper = dyn_cast(m_expr.GetTypeSystemHelper()); ASTConsumer *ast_transformer = type_system_helper->ASTTransformer(m_code_generator.get()); if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap()) decl_map->InstallCodeGenerator(m_code_generator.get()); if (ast_transformer) { ast_transformer->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), ast_transformer, m_compiler->getASTContext()); } else { m_code_generator->Initialize(m_compiler->getASTContext()); ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(), m_compiler->getASTContext()); } diag_buf->EndSourceFile(); unsigned num_errors = diag_buf->getNumErrors(); if (m_pp_callbacks && m_pp_callbacks->hasErrors()) { num_errors++; diagnostic_manager.PutString(eDiagnosticSeverityError, "while importing modules:"); diagnostic_manager.AppendMessageToDiagnostic( m_pp_callbacks->getErrorString()); } if (!num_errors) { if (type_system_helper->DeclMap() && !type_system_helper->DeclMap()->ResolveUnknownTypes()) { diagnostic_manager.Printf(eDiagnosticSeverityError, "Couldn't infer the type of a variable"); num_errors++; } } if (!num_errors) { type_system_helper->CommitPersistentDecls(); } adapter->ResetManager(); return num_errors; } std::string ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) { std::string abi; if (target_arch.IsMIPS()) { switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) { case ArchSpec::eMIPSABI_N64: abi = "n64"; break; case ArchSpec::eMIPSABI_N32: abi = "n32"; break; case ArchSpec::eMIPSABI_O32: abi = "o32"; break; default: break; } } return abi; } bool ClangExpressionParser::RewriteExpression( DiagnosticManager &diagnostic_manager) { clang::SourceManager &source_manager = m_compiler->getSourceManager(); clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(), nullptr); clang::edit::Commit commit(editor); clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts()); class RewritesReceiver : public edit::EditsReceiver { Rewriter &rewrite; public: RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {} void insert(SourceLocation loc, StringRef text) override { rewrite.InsertText(loc, text); } void replace(CharSourceRange range, StringRef text) override { rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text); } }; RewritesReceiver rewrites_receiver(rewriter); const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics(); size_t num_diags = diagnostics.size(); if (num_diags == 0) return false; for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) { const ClangDiagnostic *diagnostic = llvm::dyn_cast(diag); if (diagnostic && diagnostic->HasFixIts()) { for (const FixItHint &fixit : diagnostic->FixIts()) { // This is cobbed from clang::Rewrite::FixItRewriter. if (fixit.CodeToInsert.empty()) { if (fixit.InsertFromRange.isValid()) { commit.insertFromRange(fixit.RemoveRange.getBegin(), fixit.InsertFromRange, /*afterToken=*/false, fixit.BeforePreviousInsertions); } else commit.remove(fixit.RemoveRange); } else { if (fixit.RemoveRange.isTokenRange() || fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd()) commit.replace(fixit.RemoveRange, fixit.CodeToInsert); else commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert, /*afterToken=*/false, fixit.BeforePreviousInsertions); } } } } // FIXME - do we want to try to propagate specific errors here? if (!commit.isCommitable()) return false; else if (!editor.commit(commit)) return false; // Now play all the edits, and stash the result in the diagnostic manager. editor.applyRewrites(rewrites_receiver); RewriteBuffer &main_file_buffer = rewriter.getEditBuffer(source_manager.getMainFileID()); std::string fixed_expression; llvm::raw_string_ostream out_stream(fixed_expression); main_file_buffer.write(out_stream); out_stream.flush(); diagnostic_manager.SetFixedExpression(fixed_expression); return true; } static bool FindFunctionInModule(ConstString &mangled_name, llvm::Module *module, const char *orig_name) { for (const auto &func : module->getFunctionList()) { const StringRef &name = func.getName(); if (name.find(orig_name) != StringRef::npos) { mangled_name.SetString(name); return true; } } return false; } lldb_private::Status ClangExpressionParser::PrepareForExecution( lldb::addr_t &func_addr, lldb::addr_t &func_end, lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx, bool &can_interpret, ExecutionPolicy execution_policy) { func_addr = LLDB_INVALID_ADDRESS; func_end = LLDB_INVALID_ADDRESS; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); lldb_private::Status err; std::unique_ptr llvm_module_ap( m_code_generator->ReleaseModule()); if (!llvm_module_ap.get()) { err.SetErrorToGenericError(); err.SetErrorString("IR doesn't contain a module"); return err; } ConstString function_name; if (execution_policy != eExecutionPolicyTopLevel) { // Find the actual name of the function (it's often mangled somehow) if (!FindFunctionInModule(function_name, llvm_module_ap.get(), m_expr.FunctionName())) { err.SetErrorToGenericError(); err.SetErrorStringWithFormat("Couldn't find %s() in the module", m_expr.FunctionName()); return err; } else { if (log) log->Printf("Found function %s for %s", function_name.AsCString(), m_expr.FunctionName()); } } SymbolContext sc; if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) { sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything); } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) { sc.target_sp = target_sp; } LLVMUserExpression::IRPasses custom_passes; { auto lang = m_expr.Language(); if (log) log->Printf("%s - Currrent expression language is %s\n", __FUNCTION__, Language::GetNameForLanguageType(lang)); lldb::ProcessSP process_sp = exe_ctx.GetProcessSP(); if (process_sp && lang != lldb::eLanguageTypeUnknown) { auto runtime = process_sp->GetLanguageRuntime(lang); if (runtime) runtime->GetIRPasses(custom_passes); } } if (custom_passes.EarlyPasses) { if (log) log->Printf("%s - Running Early IR Passes from LanguageRuntime on " "expression module '%s'", __FUNCTION__, m_expr.FunctionName()); custom_passes.EarlyPasses->run(*llvm_module_ap); } execution_unit_sp.reset( new IRExecutionUnit(m_llvm_context, // handed off here llvm_module_ap, // handed off here function_name, exe_ctx.GetTargetSP(), sc, m_compiler->getTargetOpts().Features)); ClangExpressionHelper *type_system_helper = dyn_cast(m_expr.GetTypeSystemHelper()); ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap(); // result can be NULL if (decl_map) { Stream *error_stream = NULL; Target *target = exe_ctx.GetTargetPtr(); error_stream = target->GetDebugger().GetErrorFile().get(); IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(), *execution_unit_sp, *error_stream, function_name.AsCString()); bool ir_can_run = ir_for_target.runOnModule(*execution_unit_sp->GetModule()); if (!ir_can_run) { err.SetErrorString( "The expression could not be prepared to run in the target"); return err; } Process *process = exe_ctx.GetProcessPtr(); if (execution_policy != eExecutionPolicyAlways && execution_policy != eExecutionPolicyTopLevel) { lldb_private::Status interpret_error; bool interpret_function_calls = !process ? false : process->CanInterpretFunctionCalls(); can_interpret = IRInterpreter::CanInterpret( *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(), interpret_error, interpret_function_calls); if (!can_interpret && execution_policy == eExecutionPolicyNever) { err.SetErrorStringWithFormat("Can't run the expression locally: %s", interpret_error.AsCString()); return err; } } if (!process && execution_policy == eExecutionPolicyAlways) { err.SetErrorString("Expression needed to run in the target, but the " "target can't be run"); return err; } if (!process && execution_policy == eExecutionPolicyTopLevel) { err.SetErrorString("Top-level code needs to be inserted into a runnable " "target, but the target can't be run"); return err; } if (execution_policy == eExecutionPolicyAlways || (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) { if (m_expr.NeedsValidation() && process) { if (!process->GetDynamicCheckers()) { DynamicCheckerFunctions *dynamic_checkers = new DynamicCheckerFunctions(); DiagnosticManager install_diagnostics; if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) { if (install_diagnostics.Diagnostics().size()) err.SetErrorString("couldn't install checkers, unknown error"); else err.SetErrorString(install_diagnostics.GetString().c_str()); return err; } process->SetDynamicCheckers(dynamic_checkers); if (log) log->Printf("== [ClangUserExpression::Evaluate] Finished " "installing dynamic checkers =="); } IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(), function_name.AsCString()); llvm::Module *module = execution_unit_sp->GetModule(); if (!module || !ir_dynamic_checks.runOnModule(*module)) { err.SetErrorToGenericError(); err.SetErrorString("Couldn't add dynamic checks to the expression"); return err; } if (custom_passes.LatePasses) { if (log) log->Printf("%s - Running Late IR Passes from LanguageRuntime on " "expression module '%s'", __FUNCTION__, m_expr.FunctionName()); custom_passes.LatePasses->run(*module); } } } if (execution_policy == eExecutionPolicyAlways || execution_policy == eExecutionPolicyTopLevel || !can_interpret) { execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); } } else { execution_unit_sp->GetRunnableInfo(err, func_addr, func_end); } return err; } lldb_private::Status ClangExpressionParser::RunStaticInitializers( lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) { lldb_private::Status err; lldbassert(execution_unit_sp.get()); lldbassert(exe_ctx.HasThreadScope()); if (!execution_unit_sp.get()) { err.SetErrorString( "can't run static initializers for a NULL execution unit"); return err; } if (!exe_ctx.HasThreadScope()) { err.SetErrorString("can't run static initializers without a thread"); return err; } std::vector static_initializers; execution_unit_sp->GetStaticInitializers(static_initializers); for (lldb::addr_t static_initializer : static_initializers) { EvaluateExpressionOptions options; lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction( exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(), llvm::ArrayRef(), options)); DiagnosticManager execution_errors; lldb::ExpressionResults results = exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan( exe_ctx, call_static_initializer, options, execution_errors); if (results != lldb::eExpressionCompleted) { err.SetErrorStringWithFormat("couldn't run static initializer: %s", execution_errors.GetString().c_str()); return err; } } return err; }