//===-- ClangUserExpression.cpp ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include #if HAVE_SYS_TYPES_H #include #endif #include #include #include #include "ClangUserExpression.h" #include "ASTResultSynthesizer.h" #include "ClangDiagnostic.h" #include "ClangExpressionDeclMap.h" #include "ClangExpressionParser.h" #include "ClangModulesDeclVendor.h" #include "ClangPersistentVariables.h" #include "lldb/Core/ConstString.h" #include "lldb/Core/Debugger.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/StreamFile.h" #include "lldb/Core/StreamString.h" #include "lldb/Core/ValueObjectConstResult.h" #include "lldb/Expression/ExpressionSourceCode.h" #include "lldb/Expression/IRExecutionUnit.h" #include "lldb/Expression/IRInterpreter.h" #include "lldb/Expression/Materializer.h" #include "lldb/Host/HostInfo.h" #include "lldb/Symbol/Block.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Symbol/ClangExternalASTSourceCommon.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/SymbolVendor.h" #include "lldb/Symbol/Type.h" #include "lldb/Symbol/VariableList.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/ThreadPlan.h" #include "lldb/Target/ThreadPlanCallUserExpression.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" using namespace lldb_private; ClangUserExpression::ClangUserExpression( ExecutionContextScope &exe_scope, llvm::StringRef expr, llvm::StringRef prefix, lldb::LanguageType language, ResultType desired_type, const EvaluateExpressionOptions &options) : LLVMUserExpression(exe_scope, expr, prefix, language, desired_type, options), m_type_system_helper(*m_target_wp.lock().get(), options.GetExecutionPolicy() == eExecutionPolicyTopLevel) { switch (m_language) { case lldb::eLanguageTypeC_plus_plus: m_allow_cxx = true; break; case lldb::eLanguageTypeObjC: m_allow_objc = true; break; case lldb::eLanguageTypeObjC_plus_plus: default: m_allow_cxx = true; m_allow_objc = true; break; } } ClangUserExpression::~ClangUserExpression() {} void ClangUserExpression::ScanContext(ExecutionContext &exe_ctx, Error &err) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); if (log) log->Printf("ClangUserExpression::ScanContext()"); m_target = exe_ctx.GetTargetPtr(); if (!(m_allow_cxx || m_allow_objc)) { if (log) log->Printf(" [CUE::SC] Settings inhibit C++ and Objective-C"); return; } StackFrame *frame = exe_ctx.GetFramePtr(); if (frame == NULL) { if (log) log->Printf(" [CUE::SC] Null stack frame"); return; } SymbolContext sym_ctx = frame->GetSymbolContext(lldb::eSymbolContextFunction | lldb::eSymbolContextBlock); if (!sym_ctx.function) { if (log) log->Printf(" [CUE::SC] Null function"); return; } // Find the block that defines the function represented by "sym_ctx" Block *function_block = sym_ctx.GetFunctionBlock(); if (!function_block) { if (log) log->Printf(" [CUE::SC] Null function block"); return; } CompilerDeclContext decl_context = function_block->GetDeclContext(); if (!decl_context) { if (log) log->Printf(" [CUE::SC] Null decl context"); return; } if (clang::CXXMethodDecl *method_decl = ClangASTContext::DeclContextGetAsCXXMethodDecl(decl_context)) { if (m_allow_cxx && method_decl->isInstance()) { if (m_enforce_valid_object) { lldb::VariableListSP variable_list_sp( function_block->GetBlockVariableList(true)); const char *thisErrorString = "Stopped in a C++ method, but 'this' " "isn't available; pretending we are in a " "generic context"; if (!variable_list_sp) { err.SetErrorString(thisErrorString); return; } lldb::VariableSP this_var_sp( variable_list_sp->FindVariable(ConstString("this"))); if (!this_var_sp || !this_var_sp->IsInScope(frame) || !this_var_sp->LocationIsValidForFrame(frame)) { err.SetErrorString(thisErrorString); return; } } m_in_cplusplus_method = true; m_needs_object_ptr = true; } } else if (clang::ObjCMethodDecl *method_decl = ClangASTContext::DeclContextGetAsObjCMethodDecl( decl_context)) { if (m_allow_objc) { if (m_enforce_valid_object) { lldb::VariableListSP variable_list_sp( function_block->GetBlockVariableList(true)); const char *selfErrorString = "Stopped in an Objective-C method, but " "'self' isn't available; pretending we " "are in a generic context"; if (!variable_list_sp) { err.SetErrorString(selfErrorString); return; } lldb::VariableSP self_variable_sp = variable_list_sp->FindVariable(ConstString("self")); if (!self_variable_sp || !self_variable_sp->IsInScope(frame) || !self_variable_sp->LocationIsValidForFrame(frame)) { err.SetErrorString(selfErrorString); return; } } m_in_objectivec_method = true; m_needs_object_ptr = true; if (!method_decl->isInstanceMethod()) m_in_static_method = true; } } else if (clang::FunctionDecl *function_decl = ClangASTContext::DeclContextGetAsFunctionDecl(decl_context)) { // We might also have a function that said in the debug information that it // captured an // object pointer. The best way to deal with getting to the ivars at // present is by pretending // that this is a method of a class in whatever runtime the debug info says // the object pointer // belongs to. Do that here. ClangASTMetadata *metadata = ClangASTContext::DeclContextGetMetaData(decl_context, function_decl); if (metadata && metadata->HasObjectPtr()) { lldb::LanguageType language = metadata->GetObjectPtrLanguage(); if (language == lldb::eLanguageTypeC_plus_plus) { if (m_enforce_valid_object) { lldb::VariableListSP variable_list_sp( function_block->GetBlockVariableList(true)); const char *thisErrorString = "Stopped in a context claiming to " "capture a C++ object pointer, but " "'this' isn't available; pretending we " "are in a generic context"; if (!variable_list_sp) { err.SetErrorString(thisErrorString); return; } lldb::VariableSP this_var_sp( variable_list_sp->FindVariable(ConstString("this"))); if (!this_var_sp || !this_var_sp->IsInScope(frame) || !this_var_sp->LocationIsValidForFrame(frame)) { err.SetErrorString(thisErrorString); return; } } m_in_cplusplus_method = true; m_needs_object_ptr = true; } else if (language == lldb::eLanguageTypeObjC) { if (m_enforce_valid_object) { lldb::VariableListSP variable_list_sp( function_block->GetBlockVariableList(true)); const char *selfErrorString = "Stopped in a context claiming to capture an Objective-C object " "pointer, but 'self' isn't available; pretending we are in a " "generic context"; if (!variable_list_sp) { err.SetErrorString(selfErrorString); return; } lldb::VariableSP self_variable_sp = variable_list_sp->FindVariable(ConstString("self")); if (!self_variable_sp || !self_variable_sp->IsInScope(frame) || !self_variable_sp->LocationIsValidForFrame(frame)) { err.SetErrorString(selfErrorString); return; } Type *self_type = self_variable_sp->GetType(); if (!self_type) { err.SetErrorString(selfErrorString); return; } CompilerType self_clang_type = self_type->GetForwardCompilerType(); if (!self_clang_type) { err.SetErrorString(selfErrorString); return; } if (ClangASTContext::IsObjCClassType(self_clang_type)) { return; } else if (ClangASTContext::IsObjCObjectPointerType( self_clang_type)) { m_in_objectivec_method = true; m_needs_object_ptr = true; } else { err.SetErrorString(selfErrorString); return; } } else { m_in_objectivec_method = true; m_needs_object_ptr = true; } } } } } // This is a really nasty hack, meant to fix Objective-C expressions of the form // (int)[myArray count]. Right now, because the type information for count is // not available, [myArray count] returns id, which can't be directly cast to // int without causing a clang error. static void ApplyObjcCastHack(std::string &expr) { #define OBJC_CAST_HACK_FROM "(int)[" #define OBJC_CAST_HACK_TO "(int)(long long)[" size_t from_offset; while ((from_offset = expr.find(OBJC_CAST_HACK_FROM)) != expr.npos) expr.replace(from_offset, sizeof(OBJC_CAST_HACK_FROM) - 1, OBJC_CAST_HACK_TO); #undef OBJC_CAST_HACK_TO #undef OBJC_CAST_HACK_FROM } bool ClangUserExpression::Parse(DiagnosticManager &diagnostic_manager, ExecutionContext &exe_ctx, lldb_private::ExecutionPolicy execution_policy, bool keep_result_in_memory, bool generate_debug_info) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS)); Error err; InstallContext(exe_ctx); if (Target *target = exe_ctx.GetTargetPtr()) { if (PersistentExpressionState *persistent_state = target->GetPersistentExpressionStateForLanguage( lldb::eLanguageTypeC)) { m_result_delegate.RegisterPersistentState(persistent_state); } else { diagnostic_manager.PutString( eDiagnosticSeverityError, "couldn't start parsing (no persistent data)"); return false; } } else { diagnostic_manager.PutString(eDiagnosticSeverityError, "error: couldn't start parsing (no target)"); return false; } ScanContext(exe_ctx, err); if (!err.Success()) { diagnostic_manager.PutString(eDiagnosticSeverityWarning, err.AsCString()); } //////////////////////////////////// // Generate the expression // ApplyObjcCastHack(m_expr_text); // ApplyUnicharHack(m_expr_text); std::string prefix = m_expr_prefix; if (ClangModulesDeclVendor *decl_vendor = m_target->GetClangModulesDeclVendor()) { const ClangModulesDeclVendor::ModuleVector &hand_imported_modules = llvm::cast( m_target->GetPersistentExpressionStateForLanguage( lldb::eLanguageTypeC)) ->GetHandLoadedClangModules(); ClangModulesDeclVendor::ModuleVector modules_for_macros; for (ClangModulesDeclVendor::ModuleID module : hand_imported_modules) { modules_for_macros.push_back(module); } if (m_target->GetEnableAutoImportClangModules()) { if (StackFrame *frame = exe_ctx.GetFramePtr()) { if (Block *block = frame->GetFrameBlock()) { SymbolContext sc; block->CalculateSymbolContext(&sc); if (sc.comp_unit) { StreamString error_stream; decl_vendor->AddModulesForCompileUnit( *sc.comp_unit, modules_for_macros, error_stream); } } } } } lldb::LanguageType lang_type = lldb::eLanguageTypeUnknown; if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) { m_transformed_text = m_expr_text; } else { std::unique_ptr source_code( ExpressionSourceCode::CreateWrapped(prefix.c_str(), m_expr_text.c_str())); if (m_in_cplusplus_method) lang_type = lldb::eLanguageTypeC_plus_plus; else if (m_in_objectivec_method) lang_type = lldb::eLanguageTypeObjC; else lang_type = lldb::eLanguageTypeC; if (!source_code->GetText(m_transformed_text, lang_type, m_in_static_method, exe_ctx)) { diagnostic_manager.PutString(eDiagnosticSeverityError, "couldn't construct expression body"); return false; } } if (log) log->Printf("Parsing the following code:\n%s", m_transformed_text.c_str()); //////////////////////////////////// // Set up the target and compiler // Target *target = exe_ctx.GetTargetPtr(); if (!target) { diagnostic_manager.PutString(eDiagnosticSeverityError, "invalid target"); return false; } ////////////////////////// // Parse the expression // m_materializer_ap.reset(new Materializer()); ResetDeclMap(exe_ctx, m_result_delegate, keep_result_in_memory); class OnExit { public: typedef std::function Callback; OnExit(Callback const &callback) : m_callback(callback) {} ~OnExit() { m_callback(); } private: Callback m_callback; }; OnExit on_exit([this]() { ResetDeclMap(); }); if (!DeclMap()->WillParse(exe_ctx, m_materializer_ap.get())) { diagnostic_manager.PutString( eDiagnosticSeverityError, "current process state is unsuitable for expression parsing"); ResetDeclMap(); // We are being careful here in the case of breakpoint // conditions. return false; } if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) { DeclMap()->SetLookupsEnabled(true); } Process *process = exe_ctx.GetProcessPtr(); ExecutionContextScope *exe_scope = process; if (!exe_scope) exe_scope = exe_ctx.GetTargetPtr(); // We use a shared pointer here so we can use the original parser - if it // succeeds // or the rewrite parser we might make if it fails. But the parser_sp will // never be empty. ClangExpressionParser parser(exe_scope, *this, generate_debug_info); unsigned num_errors = parser.Parse(diagnostic_manager); // Check here for FixItHints. If there are any try to apply the fixits and // set the fixed text in m_fixed_text // before returning an error. if (num_errors) { if (diagnostic_manager.HasFixIts()) { if (parser.RewriteExpression(diagnostic_manager)) { size_t fixed_start; size_t fixed_end; const std::string &fixed_expression = diagnostic_manager.GetFixedExpression(); if (ExpressionSourceCode::GetOriginalBodyBounds( fixed_expression, lang_type, fixed_start, fixed_end)) m_fixed_text = fixed_expression.substr(fixed_start, fixed_end - fixed_start); } } ResetDeclMap(); // We are being careful here in the case of breakpoint // conditions. return false; } ////////////////////////////////////////////////////////////////////////////////////////// // Prepare the output of the parser for execution, evaluating it statically if // possible // { Error jit_error = parser.PrepareForExecution( m_jit_start_addr, m_jit_end_addr, m_execution_unit_sp, exe_ctx, m_can_interpret, execution_policy); if (!jit_error.Success()) { const char *error_cstr = jit_error.AsCString(); if (error_cstr && error_cstr[0]) diagnostic_manager.PutString(eDiagnosticSeverityError, error_cstr); else diagnostic_manager.PutString(eDiagnosticSeverityError, "expression can't be interpreted or run"); return false; } } if (exe_ctx.GetProcessPtr() && execution_policy == eExecutionPolicyTopLevel) { Error static_init_error = parser.RunStaticInitializers(m_execution_unit_sp, exe_ctx); if (!static_init_error.Success()) { const char *error_cstr = static_init_error.AsCString(); if (error_cstr && error_cstr[0]) diagnostic_manager.Printf(eDiagnosticSeverityError, "couldn't run static initializers: %s\n", error_cstr); else diagnostic_manager.PutString(eDiagnosticSeverityError, "couldn't run static initializers\n"); return false; } } if (m_execution_unit_sp) { bool register_execution_unit = false; if (m_options.GetExecutionPolicy() == eExecutionPolicyTopLevel) { register_execution_unit = true; } // If there is more than one external function in the execution // unit, it needs to keep living even if it's not top level, because // the result could refer to that function. if (m_execution_unit_sp->GetJittedFunctions().size() > 1) { register_execution_unit = true; } if (register_execution_unit) { llvm::cast( exe_ctx.GetTargetPtr()->GetPersistentExpressionStateForLanguage( m_language)) ->RegisterExecutionUnit(m_execution_unit_sp); } } if (generate_debug_info) { lldb::ModuleSP jit_module_sp(m_execution_unit_sp->GetJITModule()); if (jit_module_sp) { ConstString const_func_name(FunctionName()); FileSpec jit_file; jit_file.GetFilename() = const_func_name; jit_module_sp->SetFileSpecAndObjectName(jit_file, ConstString()); m_jit_module_wp = jit_module_sp; target->GetImages().Append(jit_module_sp); } } ResetDeclMap(); // Make this go away since we don't need any of its state // after parsing. This also gets rid of any // ClangASTImporter::Minions. if (process && m_jit_start_addr != LLDB_INVALID_ADDRESS) m_jit_process_wp = lldb::ProcessWP(process->shared_from_this()); return true; } bool ClangUserExpression::AddArguments(ExecutionContext &exe_ctx, std::vector &args, lldb::addr_t struct_address, DiagnosticManager &diagnostic_manager) { lldb::addr_t object_ptr = LLDB_INVALID_ADDRESS; lldb::addr_t cmd_ptr = LLDB_INVALID_ADDRESS; if (m_needs_object_ptr) { lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP(); if (!frame_sp) return true; ConstString object_name; if (m_in_cplusplus_method) { object_name.SetCString("this"); } else if (m_in_objectivec_method) { object_name.SetCString("self"); } else { diagnostic_manager.PutString( eDiagnosticSeverityError, "need object pointer but don't know the language"); return false; } Error object_ptr_error; object_ptr = GetObjectPointer(frame_sp, object_name, object_ptr_error); if (!object_ptr_error.Success()) { exe_ctx.GetTargetRef().GetDebugger().GetAsyncOutputStream()->Printf( "warning: `%s' is not accessible (subsituting 0)\n", object_name.AsCString()); object_ptr = 0; } if (m_in_objectivec_method) { ConstString cmd_name("_cmd"); cmd_ptr = GetObjectPointer(frame_sp, cmd_name, object_ptr_error); if (!object_ptr_error.Success()) { diagnostic_manager.Printf( eDiagnosticSeverityWarning, "couldn't get cmd pointer (substituting NULL): %s", object_ptr_error.AsCString()); cmd_ptr = 0; } } args.push_back(object_ptr); if (m_in_objectivec_method) args.push_back(cmd_ptr); args.push_back(struct_address); } else { args.push_back(struct_address); } return true; } lldb::ExpressionVariableSP ClangUserExpression::GetResultAfterDematerialization( ExecutionContextScope *exe_scope) { return m_result_delegate.GetVariable(); } void ClangUserExpression::ClangUserExpressionHelper::ResetDeclMap( ExecutionContext &exe_ctx, Materializer::PersistentVariableDelegate &delegate, bool keep_result_in_memory) { m_expr_decl_map_up.reset( new ClangExpressionDeclMap(keep_result_in_memory, &delegate, exe_ctx)); } clang::ASTConsumer * ClangUserExpression::ClangUserExpressionHelper::ASTTransformer( clang::ASTConsumer *passthrough) { m_result_synthesizer_up.reset( new ASTResultSynthesizer(passthrough, m_top_level, m_target)); return m_result_synthesizer_up.get(); } void ClangUserExpression::ClangUserExpressionHelper::CommitPersistentDecls() { if (m_result_synthesizer_up.get()) { m_result_synthesizer_up->CommitPersistentDecls(); } } ClangUserExpression::ResultDelegate::ResultDelegate() {} ConstString ClangUserExpression::ResultDelegate::GetName() { return m_persistent_state->GetNextPersistentVariableName(); } void ClangUserExpression::ResultDelegate::DidDematerialize( lldb::ExpressionVariableSP &variable) { m_variable = variable; } void ClangUserExpression::ResultDelegate::RegisterPersistentState( PersistentExpressionState *persistent_state) { m_persistent_state = persistent_state; } lldb::ExpressionVariableSP &ClangUserExpression::ResultDelegate::GetVariable() { return m_variable; }