//===-- RegisterContextLLDB.cpp --------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/lldb-private.h" #include "lldb/Core/Address.h" #include "lldb/Core/AddressRange.h" #include "lldb/Core/DataBufferHeap.h" #include "lldb/Core/Log.h" #include "lldb/Core/Module.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/Value.h" #include "lldb/Expression/DWARFExpression.h" #include "lldb/Symbol/ArmUnwindInfo.h" #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Symbol/FuncUnwinders.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Symbol/SymbolContext.h" #include "lldb/Target/ABI.h" #include "lldb/Target/DynamicLoader.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Platform.h" #include "lldb/Target/Process.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "RegisterContextLLDB.h" using namespace lldb; using namespace lldb_private; static ConstString GetSymbolOrFunctionName(const SymbolContext &sym_ctx) { if (sym_ctx.symbol) return sym_ctx.symbol->GetName(); else if (sym_ctx.function) return sym_ctx.function->GetName(); return ConstString(); } RegisterContextLLDB::RegisterContextLLDB ( Thread& thread, const SharedPtr &next_frame, SymbolContext& sym_ctx, uint32_t frame_number, UnwindLLDB& unwind_lldb ) : RegisterContext (thread, frame_number), m_thread(thread), m_fast_unwind_plan_sp (), m_full_unwind_plan_sp (), m_fallback_unwind_plan_sp (), m_all_registers_available(false), m_frame_type (-1), m_cfa (LLDB_INVALID_ADDRESS), m_start_pc (), m_current_pc (), m_current_offset (0), m_current_offset_backed_up_one (0), m_sym_ctx(sym_ctx), m_sym_ctx_valid (false), m_frame_number (frame_number), m_registers(), m_parent_unwind (unwind_lldb) { m_sym_ctx.Clear(false); m_sym_ctx_valid = false; if (IsFrameZero ()) { InitializeZerothFrame (); } else { InitializeNonZerothFrame (); } // This same code exists over in the GetFullUnwindPlanForFrame() but it may not have been executed yet if (IsFrameZero() || next_frame->m_frame_type == eTrapHandlerFrame || next_frame->m_frame_type == eDebuggerFrame) { m_all_registers_available = true; } } bool RegisterContextLLDB::IsUnwindPlanValidForCurrentPC(lldb::UnwindPlanSP unwind_plan_sp, int &valid_pc_offset) { if (!unwind_plan_sp) return false; // check if m_current_pc is valid if (unwind_plan_sp->PlanValidAtAddress(m_current_pc)) { // yes - current offset can be used as is valid_pc_offset = m_current_offset; return true; } // if m_current_offset <= 0, we've got nothing else to try if (m_current_offset <= 0) return false; // check pc - 1 to see if it's valid Address pc_minus_one (m_current_pc); pc_minus_one.SetOffset(m_current_pc.GetOffset() - 1); if (unwind_plan_sp->PlanValidAtAddress(pc_minus_one)) { // *valid_pc_offset = m_current_offset - 1; valid_pc_offset = m_current_pc.GetOffset() - 1; return true; } return false; } // Initialize a RegisterContextLLDB which is the first frame of a stack -- the zeroth frame or currently // executing frame. void RegisterContextLLDB::InitializeZerothFrame() { Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); ExecutionContext exe_ctx(m_thread.shared_from_this()); RegisterContextSP reg_ctx_sp = m_thread.GetRegisterContext(); if (reg_ctx_sp.get() == NULL) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("frame does not have a register context"); return; } addr_t current_pc = reg_ctx_sp->GetPC(); if (current_pc == LLDB_INVALID_ADDRESS) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("frame does not have a pc"); return; } Process *process = exe_ctx.GetProcessPtr(); // Let ABIs fixup code addresses to make sure they are valid. In ARM ABIs // this will strip bit zero in case we read a PC from memory or from the LR. // (which would be a no-op in frame 0 where we get it from the register set, // but still a good idea to make the call here for other ABIs that may exist.) ABI *abi = process->GetABI().get(); if (abi) current_pc = abi->FixCodeAddress(current_pc); // Initialize m_current_pc, an Address object, based on current_pc, an addr_t. m_current_pc.SetLoadAddress (current_pc, &process->GetTarget()); // If we don't have a Module for some reason, we're not going to find symbol/function information - just // stick in some reasonable defaults and hope we can unwind past this frame. ModuleSP pc_module_sp (m_current_pc.GetModule()); if (!m_current_pc.IsValid() || !pc_module_sp) { UnwindLogMsg ("using architectural default unwind method"); } // We require either a symbol or function in the symbols context to be successfully // filled in or this context is of no use to us. const uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol; if (pc_module_sp.get() && (pc_module_sp->ResolveSymbolContextForAddress (m_current_pc, resolve_scope, m_sym_ctx) & resolve_scope)) { m_sym_ctx_valid = true; } if (m_sym_ctx.symbol) { UnwindLogMsg ("with pc value of 0x%" PRIx64 ", symbol name is '%s'", current_pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString("")); } else if (m_sym_ctx.function) { UnwindLogMsg ("with pc value of 0x%" PRIx64 ", function name is '%s'", current_pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString("")); } else { UnwindLogMsg ("with pc value of 0x%" PRIx64 ", no symbol/function name is known.", current_pc); } AddressRange addr_range; m_sym_ctx.GetAddressRange (resolve_scope, 0, false, addr_range); if (IsTrapHandlerSymbol (process, m_sym_ctx)) { m_frame_type = eTrapHandlerFrame; } else { // FIXME: Detect eDebuggerFrame here. m_frame_type = eNormalFrame; } // If we were able to find a symbol/function, set addr_range to the bounds of that symbol/function. // else treat the current pc value as the start_pc and record no offset. if (addr_range.GetBaseAddress().IsValid()) { m_start_pc = addr_range.GetBaseAddress(); if (m_current_pc.GetSection() == m_start_pc.GetSection()) { m_current_offset = m_current_pc.GetOffset() - m_start_pc.GetOffset(); } else if (m_current_pc.GetModule() == m_start_pc.GetModule()) { // This means that whatever symbol we kicked up isn't really correct // --- we should not cross section boundaries ... We really should NULL out // the function/symbol in this case unless there is a bad assumption // here due to inlined functions? m_current_offset = m_current_pc.GetFileAddress() - m_start_pc.GetFileAddress(); } m_current_offset_backed_up_one = m_current_offset; } else { m_start_pc = m_current_pc; m_current_offset = -1; m_current_offset_backed_up_one = -1; } // We've set m_frame_type and m_sym_ctx before these calls. m_fast_unwind_plan_sp = GetFastUnwindPlanForFrame (); m_full_unwind_plan_sp = GetFullUnwindPlanForFrame (); UnwindPlan::RowSP active_row; lldb::RegisterKind row_register_kind = eRegisterKindGeneric; if (m_full_unwind_plan_sp && m_full_unwind_plan_sp->PlanValidAtAddress (m_current_pc)) { active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); row_register_kind = m_full_unwind_plan_sp->GetRegisterKind (); if (active_row.get() && log) { StreamString active_row_strm; active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(), &m_thread, m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr())); UnwindLogMsg ("%s", active_row_strm.GetString().c_str()); } } if (!active_row.get()) { UnwindLogMsg ("could not find an unwindplan row for this frame's pc"); m_frame_type = eNotAValidFrame; return; } if (!ReadCFAValueForRow (row_register_kind, active_row, m_cfa)) { // Try the fall back unwind plan since the // full unwind plan failed. FuncUnwindersSP func_unwinders_sp; UnwindPlanSP call_site_unwind_plan; bool cfa_status = false; if (m_sym_ctx_valid) { func_unwinders_sp = pc_module_sp->GetObjectFile()->GetUnwindTable().GetFuncUnwindersContainingAddress (m_current_pc, m_sym_ctx); } if(func_unwinders_sp.get() != nullptr) call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(), m_current_offset_backed_up_one); if (call_site_unwind_plan.get() != nullptr) { m_fallback_unwind_plan_sp = call_site_unwind_plan; if(TryFallbackUnwindPlan()) cfa_status = true; } if (!cfa_status) { UnwindLogMsg ("could not read CFA value for first frame."); m_frame_type = eNotAValidFrame; return; } } UnwindLogMsg ("initialized frame current pc is 0x%" PRIx64 " cfa is 0x%" PRIx64 " using %s UnwindPlan", (uint64_t) m_current_pc.GetLoadAddress (exe_ctx.GetTargetPtr()), (uint64_t) m_cfa, m_full_unwind_plan_sp->GetSourceName().GetCString()); } // Initialize a RegisterContextLLDB for the non-zeroth frame -- rely on the RegisterContextLLDB "below" it // to provide things like its current pc value. void RegisterContextLLDB::InitializeNonZerothFrame() { Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); if (IsFrameZero ()) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("non-zeroth frame tests positive for IsFrameZero -- that shouldn't happen."); return; } if (!GetNextFrame().get() || !GetNextFrame()->IsValid()) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("Could not get next frame, marking this frame as invalid."); return; } if (!m_thread.GetRegisterContext()) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("Could not get register context for this thread, marking this frame as invalid."); return; } addr_t pc; if (!ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc)) { UnwindLogMsg ("could not get pc value"); m_frame_type = eNotAValidFrame; return; } if (log) { UnwindLogMsg ("pc = 0x%" PRIx64, pc); addr_t reg_val; if (ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FP, reg_val)) UnwindLogMsg ("fp = 0x%" PRIx64, reg_val); if (ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP, reg_val)) UnwindLogMsg ("sp = 0x%" PRIx64, reg_val); } // A pc of 0x0 means it's the end of the stack crawl unless we're above a trap handler function bool above_trap_handler = false; if (GetNextFrame().get() && GetNextFrame()->IsValid() && GetNextFrame()->IsTrapHandlerFrame()) above_trap_handler = true; if (pc == 0 || pc == 0x1) { if (above_trap_handler == false) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("this frame has a pc of 0x0"); return; } } ExecutionContext exe_ctx(m_thread.shared_from_this()); Process *process = exe_ctx.GetProcessPtr(); // Let ABIs fixup code addresses to make sure they are valid. In ARM ABIs // this will strip bit zero in case we read a PC from memory or from the LR. ABI *abi = process->GetABI().get(); if (abi) pc = abi->FixCodeAddress(pc); m_current_pc.SetLoadAddress (pc, &process->GetTarget()); // If we don't have a Module for some reason, we're not going to find symbol/function information - just // stick in some reasonable defaults and hope we can unwind past this frame. ModuleSP pc_module_sp (m_current_pc.GetModule()); if (!m_current_pc.IsValid() || !pc_module_sp) { UnwindLogMsg ("using architectural default unwind method"); // Test the pc value to see if we know it's in an unmapped/non-executable region of memory. uint32_t permissions; if (process->GetLoadAddressPermissions(pc, permissions) && (permissions & ePermissionsExecutable) == 0) { // If this is the second frame off the stack, we may have unwound the first frame // incorrectly. But using the architecture default unwind plan may get us back on // track -- albeit possibly skipping a real frame. Give this frame a clearly-invalid // pc and see if we can get any further. if (GetNextFrame().get() && GetNextFrame()->IsValid() && GetNextFrame()->IsFrameZero()) { UnwindLogMsg ("had a pc of 0x%" PRIx64 " which is not in executable memory but on frame 1 -- allowing it once.", (uint64_t) pc); m_frame_type = eSkipFrame; } else { // anywhere other than the second frame, a non-executable pc means we're off in the weeds -- stop now. m_frame_type = eNotAValidFrame; UnwindLogMsg ("pc is in a non-executable section of memory and this isn't the 2nd frame in the stack walk."); return; } } if (abi) { m_fast_unwind_plan_sp.reset (); m_full_unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric)); abi->CreateDefaultUnwindPlan(*m_full_unwind_plan_sp); if (m_frame_type != eSkipFrame) // don't override eSkipFrame { m_frame_type = eNormalFrame; } m_all_registers_available = false; m_current_offset = -1; m_current_offset_backed_up_one = -1; RegisterKind row_register_kind = m_full_unwind_plan_sp->GetRegisterKind (); UnwindPlan::RowSP row = m_full_unwind_plan_sp->GetRowForFunctionOffset(0); if (row.get()) { if (!ReadCFAValueForRow (row_register_kind, row, m_cfa)) { UnwindLogMsg ("failed to get cfa value"); if (m_frame_type != eSkipFrame) // don't override eSkipFrame { m_frame_type = eNotAValidFrame; } return; } // A couple of sanity checks.. if (m_cfa == LLDB_INVALID_ADDRESS || m_cfa == 0 || m_cfa == 1) { UnwindLogMsg ("could not find a valid cfa address"); m_frame_type = eNotAValidFrame; return; } // m_cfa should point into the stack memory; if we can query memory region permissions, // see if the memory is allocated & readable. if (process->GetLoadAddressPermissions(m_cfa, permissions) && (permissions & ePermissionsReadable) == 0) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("the CFA points to a region of memory that is not readable"); return; } } else { UnwindLogMsg ("could not find a row for function offset zero"); m_frame_type = eNotAValidFrame; return; } if (CheckIfLoopingStack ()) { TryFallbackUnwindPlan(); if (CheckIfLoopingStack ()) { UnwindLogMsg ("same CFA address as next frame, assuming the unwind is looping - stopping"); m_frame_type = eNotAValidFrame; return; } } UnwindLogMsg ("initialized frame cfa is 0x%" PRIx64, (uint64_t) m_cfa); return; } m_frame_type = eNotAValidFrame; UnwindLogMsg ("could not find any symbol for this pc, or a default unwind plan, to continue unwind."); return; } bool resolve_tail_call_address = false; // m_current_pc can be one past the address range of the function... // If the saved pc does not point to a function/symbol because it is // beyond the bounds of the correct function and there's no symbol there, // we do *not* want ResolveSymbolContextForAddress to back up the pc by 1, // because then we might not find the correct unwind information later. // Instead, let ResolveSymbolContextForAddress fail, and handle the case // via decr_pc_and_recompute_addr_range below. const uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol; uint32_t resolved_scope = pc_module_sp->ResolveSymbolContextForAddress (m_current_pc, resolve_scope, m_sym_ctx, resolve_tail_call_address); // We require either a symbol or function in the symbols context to be successfully // filled in or this context is of no use to us. if (resolve_scope & resolved_scope) { m_sym_ctx_valid = true; } if (m_sym_ctx.symbol) { UnwindLogMsg ("with pc value of 0x%" PRIx64 ", symbol name is '%s'", pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString("")); } else if (m_sym_ctx.function) { UnwindLogMsg ("with pc value of 0x%" PRIx64 ", function name is '%s'", pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString("")); } else { UnwindLogMsg ("with pc value of 0x%" PRIx64 ", no symbol/function name is known.", pc); } AddressRange addr_range; if (!m_sym_ctx.GetAddressRange (resolve_scope, 0, false, addr_range)) { m_sym_ctx_valid = false; } bool decr_pc_and_recompute_addr_range = false; // If the symbol lookup failed... if (m_sym_ctx_valid == false) decr_pc_and_recompute_addr_range = true; // Or if we're in the middle of the stack (and not "above" an asynchronous event like sigtramp), // and our "current" pc is the start of a function... if (m_sym_ctx_valid && GetNextFrame()->m_frame_type != eTrapHandlerFrame && GetNextFrame()->m_frame_type != eDebuggerFrame && addr_range.GetBaseAddress().IsValid() && addr_range.GetBaseAddress().GetSection() == m_current_pc.GetSection() && addr_range.GetBaseAddress().GetOffset() == m_current_pc.GetOffset()) { decr_pc_and_recompute_addr_range = true; } // We need to back up the pc by 1 byte and re-search for the Symbol to handle the case where the "saved pc" // value is pointing to the next function, e.g. if a function ends with a CALL instruction. // FIXME this may need to be an architectural-dependent behavior; if so we'll need to add a member function // to the ABI plugin and consult that. if (decr_pc_and_recompute_addr_range) { UnwindLogMsg ("Backing up the pc value of 0x%" PRIx64 " by 1 and re-doing symbol lookup; old symbol was %s", pc, GetSymbolOrFunctionName(m_sym_ctx).AsCString("")); Address temporary_pc; temporary_pc.SetLoadAddress (pc - 1, &process->GetTarget()); m_sym_ctx.Clear (false); m_sym_ctx_valid = false; uint32_t resolve_scope = eSymbolContextFunction | eSymbolContextSymbol; ModuleSP temporary_module_sp = temporary_pc.GetModule(); if (temporary_module_sp && temporary_module_sp->ResolveSymbolContextForAddress (temporary_pc, resolve_scope, m_sym_ctx) & resolve_scope) { if (m_sym_ctx.GetAddressRange (resolve_scope, 0, false, addr_range)) m_sym_ctx_valid = true; } UnwindLogMsg ("Symbol is now %s", GetSymbolOrFunctionName(m_sym_ctx).AsCString("")); } // If we were able to find a symbol/function, set addr_range_ptr to the bounds of that symbol/function. // else treat the current pc value as the start_pc and record no offset. if (addr_range.GetBaseAddress().IsValid()) { m_start_pc = addr_range.GetBaseAddress(); m_current_offset = pc - m_start_pc.GetLoadAddress (&process->GetTarget()); m_current_offset_backed_up_one = m_current_offset; if (decr_pc_and_recompute_addr_range && m_current_offset_backed_up_one > 0) { m_current_offset_backed_up_one--; if (m_sym_ctx_valid) { m_current_pc.SetLoadAddress (pc - 1, &process->GetTarget()); } } } else { m_start_pc = m_current_pc; m_current_offset = -1; m_current_offset_backed_up_one = -1; } if (IsTrapHandlerSymbol (process, m_sym_ctx)) { m_frame_type = eTrapHandlerFrame; } else { // FIXME: Detect eDebuggerFrame here. if (m_frame_type != eSkipFrame) // don't override eSkipFrame { m_frame_type = eNormalFrame; } } // We've set m_frame_type and m_sym_ctx before this call. m_fast_unwind_plan_sp = GetFastUnwindPlanForFrame (); UnwindPlan::RowSP active_row; RegisterKind row_register_kind = eRegisterKindGeneric; // Try to get by with just the fast UnwindPlan if possible - the full UnwindPlan may be expensive to get // (e.g. if we have to parse the entire eh_frame section of an ObjectFile for the first time.) if (m_fast_unwind_plan_sp && m_fast_unwind_plan_sp->PlanValidAtAddress (m_current_pc)) { active_row = m_fast_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); row_register_kind = m_fast_unwind_plan_sp->GetRegisterKind (); if (active_row.get() && log) { StreamString active_row_strm; active_row->Dump(active_row_strm, m_fast_unwind_plan_sp.get(), &m_thread, m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr())); UnwindLogMsg ("active row: %s", active_row_strm.GetString().c_str()); } } else { m_full_unwind_plan_sp = GetFullUnwindPlanForFrame (); int valid_offset = -1; if (IsUnwindPlanValidForCurrentPC(m_full_unwind_plan_sp, valid_offset)) { active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (valid_offset); row_register_kind = m_full_unwind_plan_sp->GetRegisterKind (); if (active_row.get() && log) { StreamString active_row_strm; active_row->Dump(active_row_strm, m_full_unwind_plan_sp.get(), &m_thread, m_start_pc.GetLoadAddress(exe_ctx.GetTargetPtr())); UnwindLogMsg ("active row: %s", active_row_strm.GetString().c_str()); } } } if (!active_row.get()) { m_frame_type = eNotAValidFrame; UnwindLogMsg ("could not find unwind row for this pc"); return; } if (!ReadCFAValueForRow (row_register_kind, active_row, m_cfa)) { UnwindLogMsg ("failed to get cfa"); m_frame_type = eNotAValidFrame; return; } UnwindLogMsg ("m_cfa = 0x%" PRIx64, m_cfa); if (CheckIfLoopingStack ()) { TryFallbackUnwindPlan(); if (CheckIfLoopingStack ()) { UnwindLogMsg ("same CFA address as next frame, assuming the unwind is looping - stopping"); m_frame_type = eNotAValidFrame; return; } } UnwindLogMsg ("initialized frame current pc is 0x%" PRIx64 " cfa is 0x%" PRIx64, (uint64_t) m_current_pc.GetLoadAddress (exe_ctx.GetTargetPtr()), (uint64_t) m_cfa); } bool RegisterContextLLDB::CheckIfLoopingStack () { // If we have a bad stack setup, we can get the same CFA value multiple times -- or even // more devious, we can actually oscillate between two CFA values. Detect that here and // break out to avoid a possible infinite loop in lldb trying to unwind the stack. // To detect when we have the same CFA value multiple times, we compare the CFA of the current // frame with the 2nd next frame because in some specail case (e.g. signal hanlders, hand // written assembly without ABI compiance) we can have 2 frames with the same CFA (in theory we // can have arbitrary number of frames with the same CFA, but more then 2 is very very unlikely) RegisterContextLLDB::SharedPtr next_frame = GetNextFrame(); if (next_frame) { RegisterContextLLDB::SharedPtr next_next_frame = next_frame->GetNextFrame(); addr_t next_next_frame_cfa = LLDB_INVALID_ADDRESS; if (next_next_frame && next_next_frame->GetCFA(next_next_frame_cfa)) { if (next_next_frame_cfa == m_cfa) { // We have a loop in the stack unwind return true; } } } return false; } bool RegisterContextLLDB::IsFrameZero () const { return m_frame_number == 0; } // Find a fast unwind plan for this frame, if possible. // // On entry to this method, // // 1. m_frame_type should already be set to eTrapHandlerFrame/eDebuggerFrame if either of those are correct, // 2. m_sym_ctx should already be filled in, and // 3. m_current_pc should have the current pc value for this frame // 4. m_current_offset_backed_up_one should have the current byte offset into the function, maybe backed up by 1, -1 if unknown UnwindPlanSP RegisterContextLLDB::GetFastUnwindPlanForFrame () { UnwindPlanSP unwind_plan_sp; ModuleSP pc_module_sp (m_current_pc.GetModule()); if (!m_current_pc.IsValid() || !pc_module_sp || pc_module_sp->GetObjectFile() == NULL) return unwind_plan_sp; if (IsFrameZero ()) return unwind_plan_sp; FuncUnwindersSP func_unwinders_sp (pc_module_sp->GetObjectFile()->GetUnwindTable().GetFuncUnwindersContainingAddress (m_current_pc, m_sym_ctx)); if (!func_unwinders_sp) return unwind_plan_sp; // If we're in _sigtramp(), unwinding past this frame requires special knowledge. if (m_frame_type == eTrapHandlerFrame || m_frame_type == eDebuggerFrame) return unwind_plan_sp; unwind_plan_sp = func_unwinders_sp->GetUnwindPlanFastUnwind (*m_thread.CalculateTarget(), m_thread); if (unwind_plan_sp) { if (unwind_plan_sp->PlanValidAtAddress (m_current_pc)) { Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); if (log && log->GetVerbose()) { if (m_fast_unwind_plan_sp) UnwindLogMsgVerbose ("frame, and has a fast UnwindPlan"); else UnwindLogMsgVerbose ("frame"); } m_frame_type = eNormalFrame; return unwind_plan_sp; } else { unwind_plan_sp.reset(); } } return unwind_plan_sp; } // On entry to this method, // // 1. m_frame_type should already be set to eTrapHandlerFrame/eDebuggerFrame if either of those are correct, // 2. m_sym_ctx should already be filled in, and // 3. m_current_pc should have the current pc value for this frame // 4. m_current_offset_backed_up_one should have the current byte offset into the function, maybe backed up by 1, -1 if unknown UnwindPlanSP RegisterContextLLDB::GetFullUnwindPlanForFrame () { UnwindPlanSP unwind_plan_sp; UnwindPlanSP arch_default_unwind_plan_sp; ExecutionContext exe_ctx(m_thread.shared_from_this()); Process *process = exe_ctx.GetProcessPtr(); ABI *abi = process ? process->GetABI().get() : NULL; if (abi) { arch_default_unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric)); abi->CreateDefaultUnwindPlan(*arch_default_unwind_plan_sp); } else { UnwindLogMsg ("unable to get architectural default UnwindPlan from ABI plugin"); } bool behaves_like_zeroth_frame = false; if (IsFrameZero () || GetNextFrame()->m_frame_type == eTrapHandlerFrame || GetNextFrame()->m_frame_type == eDebuggerFrame) { behaves_like_zeroth_frame = true; // If this frame behaves like a 0th frame (currently executing or // interrupted asynchronously), all registers can be retrieved. m_all_registers_available = true; } // If we've done a jmp 0x0 / bl 0x0 (called through a null function pointer) so the pc is 0x0 // in the zeroth frame, we need to use the "unwind at first instruction" arch default UnwindPlan // Also, if this Process can report on memory region attributes, any non-executable region means // we jumped through a bad function pointer - handle the same way as 0x0. // Note, if we have a symbol context & a symbol, we don't want to follow this code path. This is // for jumping to memory regions without any information available. if ((!m_sym_ctx_valid || (m_sym_ctx.function == NULL && m_sym_ctx.symbol == NULL)) && behaves_like_zeroth_frame && m_current_pc.IsValid()) { uint32_t permissions; addr_t current_pc_addr = m_current_pc.GetLoadAddress (exe_ctx.GetTargetPtr()); if (current_pc_addr == 0 || (process && process->GetLoadAddressPermissions (current_pc_addr, permissions) && (permissions & ePermissionsExecutable) == 0)) { if (abi) { unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric)); abi->CreateFunctionEntryUnwindPlan(*unwind_plan_sp); m_frame_type = eNormalFrame; return unwind_plan_sp; } } } // No Module for the current pc, try using the architecture default unwind. ModuleSP pc_module_sp (m_current_pc.GetModule()); if (!m_current_pc.IsValid() || !pc_module_sp || pc_module_sp->GetObjectFile() == NULL) { m_frame_type = eNormalFrame; return arch_default_unwind_plan_sp; } FuncUnwindersSP func_unwinders_sp; if (m_sym_ctx_valid) { func_unwinders_sp = pc_module_sp->GetObjectFile()->GetUnwindTable().GetFuncUnwindersContainingAddress (m_current_pc, m_sym_ctx); } // No FuncUnwinders available for this pc (stripped function symbols, lldb could not augment its // function table with another source, like LC_FUNCTION_STARTS or eh_frame in ObjectFileMachO). // See if eh_frame or the .ARM.exidx tables have unwind information for this address, else fall // back to the architectural default unwind. if (!func_unwinders_sp) { m_frame_type = eNormalFrame; if (!pc_module_sp || !pc_module_sp->GetObjectFile() || !m_current_pc.IsValid()) return arch_default_unwind_plan_sp; // Even with -fomit-frame-pointer, we can try eh_frame to get back on track. DWARFCallFrameInfo *eh_frame = pc_module_sp->GetObjectFile()->GetUnwindTable().GetEHFrameInfo(); if (eh_frame) { unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric)); if (eh_frame->GetUnwindPlan (m_current_pc, *unwind_plan_sp)) return unwind_plan_sp; else unwind_plan_sp.reset(); } ArmUnwindInfo *arm_exidx = pc_module_sp->GetObjectFile()->GetUnwindTable().GetArmUnwindInfo(); if (arm_exidx) { unwind_plan_sp.reset (new UnwindPlan (lldb::eRegisterKindGeneric)); if (arm_exidx->GetUnwindPlan (exe_ctx.GetTargetRef(), m_current_pc, *unwind_plan_sp)) return unwind_plan_sp; else unwind_plan_sp.reset(); } return arch_default_unwind_plan_sp; } // If we're in _sigtramp(), unwinding past this frame requires special knowledge. On Mac OS X this knowledge // is properly encoded in the eh_frame section, so prefer that if available. // On other platforms we may need to provide a platform-specific UnwindPlan which encodes the details of // how to unwind out of sigtramp. if (m_frame_type == eTrapHandlerFrame && process) { m_fast_unwind_plan_sp.reset(); unwind_plan_sp = func_unwinders_sp->GetEHFrameUnwindPlan (process->GetTarget(), m_current_offset_backed_up_one); if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress (m_current_pc) && unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolYes) { return unwind_plan_sp; } } // Ask the DynamicLoader if the eh_frame CFI should be trusted in this frame even when it's frame zero // This comes up if we have hand-written functions in a Module and hand-written eh_frame. The assembly // instruction inspection may fail and the eh_frame CFI were probably written with some care to do the // right thing. It'd be nice if there was a way to ask the eh_frame directly if it is asynchronous // (can be trusted at every instruction point) or synchronous (the normal case - only at call sites). // But there is not. if (process && process->GetDynamicLoader() && process->GetDynamicLoader()->AlwaysRelyOnEHUnwindInfo (m_sym_ctx)) { // We must specifically call the GetEHFrameUnwindPlan() method here -- normally we would // call GetUnwindPlanAtCallSite() -- because CallSite may return an unwind plan sourced from // either eh_frame (that's what we intend) or compact unwind (this won't work) unwind_plan_sp = func_unwinders_sp->GetEHFrameUnwindPlan (process->GetTarget(), m_current_offset_backed_up_one); if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress (m_current_pc)) { UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan because the DynamicLoader suggested we prefer it", unwind_plan_sp->GetSourceName().GetCString()); return unwind_plan_sp; } } // Typically the NonCallSite UnwindPlan is the unwind created by inspecting the assembly language instructions if (behaves_like_zeroth_frame && process) { unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtNonCallSite (process->GetTarget(), m_thread, m_current_offset_backed_up_one); if (unwind_plan_sp && unwind_plan_sp->PlanValidAtAddress (m_current_pc)) { if (unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolNo) { // We probably have an UnwindPlan created by inspecting assembly instructions. The // assembly profilers work really well with compiler-generated functions but hand- // written assembly can be problematic. We set the eh_frame based unwind plan as our // fallback unwind plan if instruction emulation doesn't work out even for non call // sites if it is available and use the architecture default unwind plan if it is // not available. The eh_frame unwind plan is more reliable even on non call sites // then the architecture default plan and for hand written assembly code it is often // written in a way that it valid at all location what helps in the most common // cases when the instruction emulation fails. UnwindPlanSP call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(), m_current_offset_backed_up_one); if (call_site_unwind_plan && call_site_unwind_plan.get() != unwind_plan_sp.get() && call_site_unwind_plan->GetSourceName() != unwind_plan_sp->GetSourceName()) { m_fallback_unwind_plan_sp = call_site_unwind_plan; } else { m_fallback_unwind_plan_sp = arch_default_unwind_plan_sp; } } UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString()); return unwind_plan_sp; } } // Typically this is unwind info from an eh_frame section intended for exception handling; only valid at call sites if (process) { unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtCallSite (process->GetTarget(), m_current_offset_backed_up_one); } int valid_offset = -1; if (IsUnwindPlanValidForCurrentPC(unwind_plan_sp, valid_offset)) { UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString()); return unwind_plan_sp; } // We'd prefer to use an UnwindPlan intended for call sites when we're at a call site but if we've // struck out on that, fall back to using the non-call-site assembly inspection UnwindPlan if possible. if (process) { unwind_plan_sp = func_unwinders_sp->GetUnwindPlanAtNonCallSite (process->GetTarget(), m_thread, m_current_offset_backed_up_one); } if (unwind_plan_sp && unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolNo) { // We probably have an UnwindPlan created by inspecting assembly instructions. The assembly // profilers work really well with compiler-generated functions but hand- written assembly // can be problematic. We set the eh_frame based unwind plan as our fallback unwind plan if // instruction emulation doesn't work out even for non call sites if it is available and use // the architecture default unwind plan if it is not available. The eh_frame unwind plan is // more reliable even on non call sites then the architecture default plan and for hand // written assembly code it is often written in a way that it valid at all location what // helps in the most common cases when the instruction emulation fails. UnwindPlanSP call_site_unwind_plan = func_unwinders_sp->GetUnwindPlanAtCallSite(process->GetTarget(), m_current_offset_backed_up_one); if (call_site_unwind_plan && call_site_unwind_plan.get() != unwind_plan_sp.get() && call_site_unwind_plan->GetSourceName() != unwind_plan_sp->GetSourceName()) { m_fallback_unwind_plan_sp = call_site_unwind_plan; } else { m_fallback_unwind_plan_sp = arch_default_unwind_plan_sp; } } if (IsUnwindPlanValidForCurrentPC(unwind_plan_sp, valid_offset)) { UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString()); return unwind_plan_sp; } // If we're on the first instruction of a function, and we have an architectural default UnwindPlan // for the initial instruction of a function, use that. if (m_current_offset_backed_up_one == 0) { unwind_plan_sp = func_unwinders_sp->GetUnwindPlanArchitectureDefaultAtFunctionEntry (m_thread); if (unwind_plan_sp) { UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", unwind_plan_sp->GetSourceName().GetCString()); return unwind_plan_sp; } } // If nothing else, use the architectural default UnwindPlan and hope that does the job. if (arch_default_unwind_plan_sp) UnwindLogMsgVerbose ("frame uses %s for full UnwindPlan", arch_default_unwind_plan_sp->GetSourceName().GetCString()); else UnwindLogMsg ("Unable to find any UnwindPlan for full unwind of this frame."); return arch_default_unwind_plan_sp; } void RegisterContextLLDB::InvalidateAllRegisters () { m_frame_type = eNotAValidFrame; } size_t RegisterContextLLDB::GetRegisterCount () { return m_thread.GetRegisterContext()->GetRegisterCount(); } const RegisterInfo * RegisterContextLLDB::GetRegisterInfoAtIndex (size_t reg) { return m_thread.GetRegisterContext()->GetRegisterInfoAtIndex (reg); } size_t RegisterContextLLDB::GetRegisterSetCount () { return m_thread.GetRegisterContext()->GetRegisterSetCount (); } const RegisterSet * RegisterContextLLDB::GetRegisterSet (size_t reg_set) { return m_thread.GetRegisterContext()->GetRegisterSet (reg_set); } uint32_t RegisterContextLLDB::ConvertRegisterKindToRegisterNumber (lldb::RegisterKind kind, uint32_t num) { return m_thread.GetRegisterContext()->ConvertRegisterKindToRegisterNumber (kind, num); } bool RegisterContextLLDB::ReadRegisterValueFromRegisterLocation (lldb_private::UnwindLLDB::RegisterLocation regloc, const RegisterInfo *reg_info, RegisterValue &value) { if (!IsValid()) return false; bool success = false; switch (regloc.type) { case UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext: { const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number); if (!other_reg_info) return false; success = m_thread.GetRegisterContext()->ReadRegister (other_reg_info, value); } break; case UnwindLLDB::RegisterLocation::eRegisterInRegister: { const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number); if (!other_reg_info) return false; if (IsFrameZero ()) { success = m_thread.GetRegisterContext()->ReadRegister (other_reg_info, value); } else { success = GetNextFrame()->ReadRegister (other_reg_info, value); } } break; case UnwindLLDB::RegisterLocation::eRegisterValueInferred: success = value.SetUInt (regloc.location.inferred_value, reg_info->byte_size); break; case UnwindLLDB::RegisterLocation::eRegisterNotSaved: break; case UnwindLLDB::RegisterLocation::eRegisterSavedAtHostMemoryLocation: assert ("FIXME debugger inferior function call unwind"); break; case UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation: { Error error (ReadRegisterValueFromMemory(reg_info, regloc.location.target_memory_location, reg_info->byte_size, value)); success = error.Success(); } break; default: assert ("Unknown RegisterLocation type."); break; } return success; } bool RegisterContextLLDB::WriteRegisterValueToRegisterLocation (lldb_private::UnwindLLDB::RegisterLocation regloc, const RegisterInfo *reg_info, const RegisterValue &value) { if (!IsValid()) return false; bool success = false; switch (regloc.type) { case UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext: { const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number); success = m_thread.GetRegisterContext()->WriteRegister (other_reg_info, value); } break; case UnwindLLDB::RegisterLocation::eRegisterInRegister: { const RegisterInfo *other_reg_info = GetRegisterInfoAtIndex(regloc.location.register_number); if (IsFrameZero ()) { success = m_thread.GetRegisterContext()->WriteRegister (other_reg_info, value); } else { success = GetNextFrame()->WriteRegister (other_reg_info, value); } } break; case UnwindLLDB::RegisterLocation::eRegisterValueInferred: case UnwindLLDB::RegisterLocation::eRegisterNotSaved: break; case UnwindLLDB::RegisterLocation::eRegisterSavedAtHostMemoryLocation: assert ("FIXME debugger inferior function call unwind"); break; case UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation: { Error error (WriteRegisterValueToMemory (reg_info, regloc.location.target_memory_location, reg_info->byte_size, value)); success = error.Success(); } break; default: assert ("Unknown RegisterLocation type."); break; } return success; } bool RegisterContextLLDB::IsValid () const { return m_frame_type != eNotAValidFrame; } // After the final stack frame in a stack walk we'll get one invalid (eNotAValidFrame) stack frame -- // one past the end of the stack walk. But higher-level code will need to tell the differnece between // "the unwind plan below this frame failed" versus "we successfully completed the stack walk" so // this method helps to disambiguate that. bool RegisterContextLLDB::IsTrapHandlerFrame () const { return m_frame_type == eTrapHandlerFrame; } // A skip frame is a bogus frame on the stack -- but one where we're likely to find a real frame farther // up the stack if we keep looking. It's always the second frame in an unwind (i.e. the first frame after // frame zero) where unwinding can be the trickiest. Ideally we'll mark up this frame in some way so the // user knows we're displaying bad data and we may have skipped one frame of their real program in the // process of getting back on track. bool RegisterContextLLDB::IsSkipFrame () const { return m_frame_type == eSkipFrame; } bool RegisterContextLLDB::IsTrapHandlerSymbol (lldb_private::Process *process, const lldb_private::SymbolContext &m_sym_ctx) const { PlatformSP platform_sp (process->GetTarget().GetPlatform()); if (platform_sp) { const std::vector trap_handler_names (platform_sp->GetTrapHandlerSymbolNames()); for (ConstString name : trap_handler_names) { if ((m_sym_ctx.function && m_sym_ctx.function->GetName() == name) || (m_sym_ctx.symbol && m_sym_ctx.symbol->GetName() == name)) { return true; } } } const std::vector user_specified_trap_handler_names (m_parent_unwind.GetUserSpecifiedTrapHandlerFunctionNames()); for (ConstString name : user_specified_trap_handler_names) { if ((m_sym_ctx.function && m_sym_ctx.function->GetName() == name) || (m_sym_ctx.symbol && m_sym_ctx.symbol->GetName() == name)) { return true; } } return false; } // Answer the question: Where did THIS frame save the CALLER frame ("previous" frame)'s register value? enum UnwindLLDB::RegisterSearchResult RegisterContextLLDB::SavedLocationForRegister (uint32_t lldb_regnum, lldb_private::UnwindLLDB::RegisterLocation ®loc) { RegisterNumber regnum (m_thread, eRegisterKindLLDB, lldb_regnum); // Have we already found this register location? if (!m_registers.empty()) { std::map::const_iterator iterator; iterator = m_registers.find (regnum.GetAsKind (eRegisterKindLLDB)); if (iterator != m_registers.end()) { regloc = iterator->second; UnwindLogMsg ("supplying caller's saved %s (%d)'s location, cached", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } } // Look through the available UnwindPlans for the register location. UnwindPlan::Row::RegisterLocation unwindplan_regloc; bool have_unwindplan_regloc = false; RegisterKind unwindplan_registerkind = kNumRegisterKinds; if (m_fast_unwind_plan_sp) { UnwindPlan::RowSP active_row = m_fast_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); unwindplan_registerkind = m_fast_unwind_plan_sp->GetRegisterKind (); if (regnum.GetAsKind (unwindplan_registerkind) == LLDB_INVALID_REGNUM) { UnwindLogMsg ("could not convert lldb regnum %s (%d) into %d RegisterKind reg numbering scheme", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), (int) unwindplan_registerkind); return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } if (active_row->GetRegisterInfo (regnum.GetAsKind (unwindplan_registerkind), unwindplan_regloc)) { UnwindLogMsg ("supplying caller's saved %s (%d)'s location using FastUnwindPlan", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); have_unwindplan_regloc = true; } } if (!have_unwindplan_regloc) { // m_full_unwind_plan_sp being NULL means that we haven't tried to find a full UnwindPlan yet if (!m_full_unwind_plan_sp) m_full_unwind_plan_sp = GetFullUnwindPlanForFrame (); if (m_full_unwind_plan_sp) { RegisterNumber pc_regnum (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); UnwindPlan::RowSP active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); unwindplan_registerkind = m_full_unwind_plan_sp->GetRegisterKind (); RegisterNumber return_address_reg; // If we're fetching the saved pc and this UnwindPlan defines a ReturnAddress register (e.g. lr on arm), // look for the return address register number in the UnwindPlan's row. if (pc_regnum.IsValid() && pc_regnum == regnum && m_full_unwind_plan_sp->GetReturnAddressRegister() != LLDB_INVALID_REGNUM) { return_address_reg.init (m_thread, m_full_unwind_plan_sp->GetRegisterKind(), m_full_unwind_plan_sp->GetReturnAddressRegister()); regnum = return_address_reg; UnwindLogMsg ("requested caller's saved PC but this UnwindPlan uses a RA reg; getting %s (%d) instead", return_address_reg.GetName(), return_address_reg.GetAsKind (eRegisterKindLLDB)); } else { if (regnum.GetAsKind (unwindplan_registerkind) == LLDB_INVALID_REGNUM) { if (unwindplan_registerkind == eRegisterKindGeneric) { UnwindLogMsg ("could not convert lldb regnum %s (%d) into eRegisterKindGeneric reg numbering scheme", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); } else { UnwindLogMsg ("could not convert lldb regnum %s (%d) into %d RegisterKind reg numbering scheme", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), (int) unwindplan_registerkind); } return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } } if (regnum.IsValid() && active_row->GetRegisterInfo (regnum.GetAsKind (unwindplan_registerkind), unwindplan_regloc)) { have_unwindplan_regloc = true; UnwindLogMsg ("supplying caller's saved %s (%d)'s location using %s UnwindPlan", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), m_full_unwind_plan_sp->GetSourceName().GetCString()); } // This is frame 0 and we're retrieving the PC and it's saved in a Return Address register and // it hasn't been saved anywhere yet -- that is, it's still live in the actual register. // Handle this specially. if (have_unwindplan_regloc == false && return_address_reg.IsValid() && IsFrameZero()) { if (return_address_reg.GetAsKind (eRegisterKindLLDB) != LLDB_INVALID_REGNUM) { lldb_private::UnwindLLDB::RegisterLocation new_regloc; new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext; new_regloc.location.register_number = return_address_reg.GetAsKind (eRegisterKindLLDB); m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = new_regloc; regloc = new_regloc; UnwindLogMsg ("supplying caller's register %s (%d) from the live RegisterContext at frame 0, saved in %d", return_address_reg.GetName(), return_address_reg.GetAsKind (eRegisterKindLLDB), return_address_reg.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } } // If this architecture stores the return address in a register (it defines a Return Address register) // and we're on a non-zero stack frame and the Full UnwindPlan says that the pc is stored in the // RA registers (e.g. lr on arm), then we know that the full unwindplan is not trustworthy -- this // is an impossible situation and the instruction emulation code has likely been misled. // If this stack frame meets those criteria, we need to throw away the Full UnwindPlan that the // instruction emulation came up with and fall back to the architecture's Default UnwindPlan so // the stack walk can get past this point. // Special note: If the Full UnwindPlan was generated from the compiler, don't second-guess it // when we're at a call site location. // arch_default_ra_regnum is the return address register # in the Full UnwindPlan register numbering RegisterNumber arch_default_ra_regnum (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_RA); if (arch_default_ra_regnum.GetAsKind (unwindplan_registerkind) != LLDB_INVALID_REGNUM && pc_regnum == regnum && unwindplan_regloc.IsInOtherRegister() && unwindplan_regloc.GetRegisterNumber() == arch_default_ra_regnum.GetAsKind (unwindplan_registerkind) && m_full_unwind_plan_sp->GetSourcedFromCompiler() != eLazyBoolYes && !m_all_registers_available) { UnwindLogMsg ("%s UnwindPlan tried to restore the pc from the link register but this is a non-zero frame", m_full_unwind_plan_sp->GetSourceName().GetCString()); // Throw away the full unwindplan; install the arch default unwindplan if (ForceSwitchToFallbackUnwindPlan()) { // Update for the possibly new unwind plan unwindplan_registerkind = m_full_unwind_plan_sp->GetRegisterKind (); UnwindPlan::RowSP active_row = m_full_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); // Sanity check: Verify that we can fetch a pc value and CFA value with this unwind plan RegisterNumber arch_default_pc_reg (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); bool can_fetch_pc_value = false; bool can_fetch_cfa = false; addr_t cfa_value; if (active_row) { if (arch_default_pc_reg.GetAsKind (unwindplan_registerkind) != LLDB_INVALID_REGNUM && active_row->GetRegisterInfo (arch_default_pc_reg.GetAsKind (unwindplan_registerkind), unwindplan_regloc)) { can_fetch_pc_value = true; } if (ReadCFAValueForRow (unwindplan_registerkind, active_row, cfa_value)) { can_fetch_cfa = true; } } if (can_fetch_pc_value && can_fetch_cfa) { have_unwindplan_regloc = true; } else { have_unwindplan_regloc = false; } } else { // We were unable to fall back to another unwind plan have_unwindplan_regloc = false; } } } } ExecutionContext exe_ctx(m_thread.shared_from_this()); Process *process = exe_ctx.GetProcessPtr(); if (have_unwindplan_regloc == false) { // If the UnwindPlan failed to give us an unwind location for this register, we may be able to fall back // to some ABI-defined default. For example, some ABIs allow to determine the caller's SP via the CFA. // Also, the ABI may set volatile registers to the undefined state. ABI *abi = process ? process->GetABI().get() : NULL; if (abi) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(regnum.GetAsKind (eRegisterKindLLDB)); if (reg_info && abi->GetFallbackRegisterLocation (reg_info, unwindplan_regloc)) { UnwindLogMsg ("supplying caller's saved %s (%d)'s location using ABI default", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); have_unwindplan_regloc = true; } } } if (have_unwindplan_regloc == false) { if (IsFrameZero ()) { // This is frame 0 - we should return the actual live register context value lldb_private::UnwindLLDB::RegisterLocation new_regloc; new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterInLiveRegisterContext; new_regloc.location.register_number = regnum.GetAsKind (eRegisterKindLLDB); m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = new_regloc; regloc = new_regloc; UnwindLogMsg ("supplying caller's register %s (%d) from the live RegisterContext at frame 0", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } else { std::string unwindplan_name (""); if (m_full_unwind_plan_sp) { unwindplan_name += "via '"; unwindplan_name += m_full_unwind_plan_sp->GetSourceName().AsCString(); unwindplan_name += "'"; } UnwindLogMsg ("no save location for %s (%d) %s", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), unwindplan_name.c_str()); } return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } // unwindplan_regloc has valid contents about where to retrieve the register if (unwindplan_regloc.IsUnspecified()) { lldb_private::UnwindLLDB::RegisterLocation new_regloc; new_regloc.type = UnwindLLDB::RegisterLocation::eRegisterNotSaved; m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = new_regloc; UnwindLogMsg ("save location for %s (%d) is unspecified, continue searching", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } if (unwindplan_regloc.IsUndefined()) { UnwindLogMsg ("did not supply reg location for %s (%d) because it is volatile", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterIsVolatile; } if (unwindplan_regloc.IsSame()) { if (IsFrameZero() == false && (regnum.GetAsKind (eRegisterKindGeneric) == LLDB_REGNUM_GENERIC_PC || regnum.GetAsKind (eRegisterKindGeneric) == LLDB_REGNUM_GENERIC_RA)) { UnwindLogMsg ("register %s (%d) is marked as 'IsSame' - it is a pc or return address reg on a non-zero frame -- treat as if we have no information", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } else { regloc.type = UnwindLLDB::RegisterLocation::eRegisterInRegister; regloc.location.register_number = regnum.GetAsKind (eRegisterKindLLDB); m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc; UnwindLogMsg ("supplying caller's register %s (%d), saved in register %s (%d)", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } } if (unwindplan_regloc.IsCFAPlusOffset()) { int offset = unwindplan_regloc.GetOffset(); regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred; regloc.location.inferred_value = m_cfa + offset; m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc; UnwindLogMsg ("supplying caller's register %s (%d), value is CFA plus offset %d [value is 0x%" PRIx64 "]", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), offset, regloc.location.inferred_value); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } if (unwindplan_regloc.IsAtCFAPlusOffset()) { int offset = unwindplan_regloc.GetOffset(); regloc.type = UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation; regloc.location.target_memory_location = m_cfa + offset; m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc; UnwindLogMsg ("supplying caller's register %s (%d) from the stack, saved at CFA plus offset %d [saved at 0x%" PRIx64 "]", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), offset, regloc.location.target_memory_location); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } if (unwindplan_regloc.IsInOtherRegister()) { uint32_t unwindplan_regnum = unwindplan_regloc.GetRegisterNumber(); RegisterNumber row_regnum (m_thread, unwindplan_registerkind, unwindplan_regnum); if (row_regnum.GetAsKind (eRegisterKindLLDB) == LLDB_INVALID_REGNUM) { UnwindLogMsg ("could not supply caller's %s (%d) location - was saved in another reg but couldn't convert that regnum", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } regloc.type = UnwindLLDB::RegisterLocation::eRegisterInRegister; regloc.location.register_number = row_regnum.GetAsKind (eRegisterKindLLDB); m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc; UnwindLogMsg ("supplying caller's register %s (%d), saved in register %s (%d)", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB), row_regnum.GetName(), row_regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } if (unwindplan_regloc.IsDWARFExpression() || unwindplan_regloc.IsAtDWARFExpression()) { DataExtractor dwarfdata (unwindplan_regloc.GetDWARFExpressionBytes(), unwindplan_regloc.GetDWARFExpressionLength(), process->GetByteOrder(), process->GetAddressByteSize()); ModuleSP opcode_ctx; DWARFExpression dwarfexpr (opcode_ctx, dwarfdata, nullptr, 0, unwindplan_regloc.GetDWARFExpressionLength()); dwarfexpr.SetRegisterKind (unwindplan_registerkind); Value result; Error error; if (dwarfexpr.Evaluate (&exe_ctx, nullptr, nullptr, this, 0, nullptr, nullptr, result, &error)) { addr_t val; val = result.GetScalar().ULongLong(); if (unwindplan_regloc.IsDWARFExpression()) { regloc.type = UnwindLLDB::RegisterLocation::eRegisterValueInferred; regloc.location.inferred_value = val; m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc; UnwindLogMsg ("supplying caller's register %s (%d) via DWARF expression (IsDWARFExpression)", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } else { regloc.type = UnwindLLDB::RegisterLocation::eRegisterSavedAtMemoryLocation; regloc.location.target_memory_location = val; m_registers[regnum.GetAsKind (eRegisterKindLLDB)] = regloc; UnwindLogMsg ("supplying caller's register %s (%d) via DWARF expression (IsAtDWARFExpression)", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterFound; } } UnwindLogMsg ("tried to use IsDWARFExpression or IsAtDWARFExpression for %s (%d) but failed", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } UnwindLogMsg ("no save location for %s (%d) in this stack frame", regnum.GetName(), regnum.GetAsKind (eRegisterKindLLDB)); // FIXME UnwindPlan::Row types atDWARFExpression and isDWARFExpression are unsupported. return UnwindLLDB::RegisterSearchResult::eRegisterNotFound; } // TryFallbackUnwindPlan() -- this method is a little tricky. // // When this is called, the frame above -- the caller frame, the "previous" frame -- // is invalid or bad. // // Instead of stopping the stack walk here, we'll try a different UnwindPlan and see // if we can get a valid frame above us. // // This most often happens when an unwind plan based on assembly instruction inspection // is not correct -- mostly with hand-written assembly functions or functions where the // stack frame is set up "out of band", e.g. the kernel saved the register context and // then called an asynchronous trap handler like _sigtramp. // // Often in these cases, if we just do a dumb stack walk we'll get past this tricky // frame and our usual techniques can continue to be used. bool RegisterContextLLDB::TryFallbackUnwindPlan () { if (m_fallback_unwind_plan_sp.get() == nullptr) return false; if (m_full_unwind_plan_sp.get() == nullptr) return false; if (m_full_unwind_plan_sp.get() == m_fallback_unwind_plan_sp.get() || m_full_unwind_plan_sp->GetSourceName() == m_fallback_unwind_plan_sp->GetSourceName()) { return false; } // If a compiler generated unwind plan failed, trying the arch default unwindplan // isn't going to do any better. if (m_full_unwind_plan_sp->GetSourcedFromCompiler() == eLazyBoolYes) return false; // Get the caller's pc value and our own CFA value. // Swap in the fallback unwind plan, re-fetch the caller's pc value and CFA value. // If they're the same, then the fallback unwind plan provides no benefit. RegisterNumber pc_regnum (m_thread, eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); addr_t old_caller_pc_value = LLDB_INVALID_ADDRESS; addr_t new_caller_pc_value = LLDB_INVALID_ADDRESS; addr_t old_this_frame_cfa_value = m_cfa; UnwindLLDB::RegisterLocation regloc; if (SavedLocationForRegister (pc_regnum.GetAsKind (eRegisterKindLLDB), regloc) == UnwindLLDB::RegisterSearchResult::eRegisterFound) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(pc_regnum.GetAsKind (eRegisterKindLLDB)); if (reg_info) { RegisterValue reg_value; if (ReadRegisterValueFromRegisterLocation (regloc, reg_info, reg_value)) { old_caller_pc_value = reg_value.GetAsUInt64(); } } } // This is a tricky wrinkle! If SavedLocationForRegister() detects a really impossible // register location for the full unwind plan, it may call ForceSwitchToFallbackUnwindPlan() // which in turn replaces the full unwindplan with the fallback... in short, we're done, // we're using the fallback UnwindPlan. // We checked if m_fallback_unwind_plan_sp was nullptr at the top -- the only way it // became nullptr since then is via SavedLocationForRegister(). if (m_fallback_unwind_plan_sp.get() == nullptr) return true; // Switch the full UnwindPlan to be the fallback UnwindPlan. If we decide this isn't // working, we need to restore. // We'll also need to save & restore the value of the m_cfa ivar. Save is down below a bit in 'old_cfa'. UnwindPlanSP original_full_unwind_plan_sp = m_full_unwind_plan_sp; addr_t old_cfa = m_cfa; m_registers.clear(); m_full_unwind_plan_sp = m_fallback_unwind_plan_sp; UnwindPlan::RowSP active_row = m_fallback_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); if (active_row && active_row->GetCFAValue().GetValueType() != UnwindPlan::Row::CFAValue::unspecified) { addr_t new_cfa; if (!ReadCFAValueForRow (m_fallback_unwind_plan_sp->GetRegisterKind(), active_row, new_cfa) || new_cfa == 0 || new_cfa == 1 || new_cfa == LLDB_INVALID_ADDRESS) { UnwindLogMsg ("failed to get cfa with fallback unwindplan"); m_fallback_unwind_plan_sp.reset(); m_full_unwind_plan_sp = original_full_unwind_plan_sp; m_cfa = old_cfa; return false; } m_cfa = new_cfa; if (SavedLocationForRegister (pc_regnum.GetAsKind (eRegisterKindLLDB), regloc) == UnwindLLDB::RegisterSearchResult::eRegisterFound) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex(pc_regnum.GetAsKind (eRegisterKindLLDB)); if (reg_info) { RegisterValue reg_value; if (ReadRegisterValueFromRegisterLocation (regloc, reg_info, reg_value)) { new_caller_pc_value = reg_value.GetAsUInt64(); } } } if (new_caller_pc_value == LLDB_INVALID_ADDRESS) { UnwindLogMsg ("failed to get a pc value for the caller frame with the fallback unwind plan"); m_fallback_unwind_plan_sp.reset(); m_full_unwind_plan_sp = original_full_unwind_plan_sp; m_cfa = old_cfa; return false; } if (old_caller_pc_value != LLDB_INVALID_ADDRESS) { if (old_caller_pc_value == new_caller_pc_value && new_cfa == old_this_frame_cfa_value) { UnwindLogMsg ("fallback unwind plan got the same values for this frame CFA and caller frame pc, not using"); m_fallback_unwind_plan_sp.reset(); m_full_unwind_plan_sp = original_full_unwind_plan_sp; m_cfa = old_cfa; return false; } } UnwindLogMsg ("trying to unwind from this function with the UnwindPlan '%s' because UnwindPlan '%s' failed.", m_fallback_unwind_plan_sp->GetSourceName().GetCString(), original_full_unwind_plan_sp->GetSourceName().GetCString()); // We've copied the fallback unwind plan into the full - now clear the fallback. m_fallback_unwind_plan_sp.reset(); } return true; } bool RegisterContextLLDB::ForceSwitchToFallbackUnwindPlan () { if (m_fallback_unwind_plan_sp.get() == NULL) return false; if (m_full_unwind_plan_sp.get() == NULL) return false; if (m_full_unwind_plan_sp.get() == m_fallback_unwind_plan_sp.get() || m_full_unwind_plan_sp->GetSourceName() == m_fallback_unwind_plan_sp->GetSourceName()) { return false; } UnwindPlan::RowSP active_row = m_fallback_unwind_plan_sp->GetRowForFunctionOffset (m_current_offset); if (active_row && active_row->GetCFAValue().GetValueType() != UnwindPlan::Row::CFAValue::unspecified) { addr_t new_cfa; if (!ReadCFAValueForRow (m_fallback_unwind_plan_sp->GetRegisterKind(), active_row, new_cfa) || new_cfa == 0 || new_cfa == 1 || new_cfa == LLDB_INVALID_ADDRESS) { UnwindLogMsg ("failed to get cfa with fallback unwindplan"); m_fallback_unwind_plan_sp.reset(); return false; } m_full_unwind_plan_sp = m_fallback_unwind_plan_sp; m_fallback_unwind_plan_sp.reset(); m_registers.clear(); m_cfa = new_cfa; UnwindLogMsg ("switched unconditionally to the fallback unwindplan %s", m_full_unwind_plan_sp->GetSourceName().GetCString()); return true; } return false; } bool RegisterContextLLDB::ReadCFAValueForRow (lldb::RegisterKind row_register_kind, const UnwindPlan::RowSP &row, addr_t &cfa_value) { RegisterValue reg_value; cfa_value = LLDB_INVALID_ADDRESS; addr_t cfa_reg_contents; switch (row->GetCFAValue().GetValueType()) { case UnwindPlan::Row::CFAValue::isRegisterDereferenced: { RegisterNumber cfa_reg (m_thread, row_register_kind, row->GetCFAValue().GetRegisterNumber()); if (ReadGPRValue (cfa_reg, cfa_reg_contents)) { const RegisterInfo *reg_info = GetRegisterInfoAtIndex (cfa_reg.GetAsKind (eRegisterKindLLDB)); RegisterValue reg_value; if (reg_info) { Error error = ReadRegisterValueFromMemory(reg_info, cfa_reg_contents, reg_info->byte_size, reg_value); if (error.Success ()) { cfa_value = reg_value.GetAsUInt64(); UnwindLogMsg ("CFA value via dereferencing reg %s (%d): reg has val 0x%" PRIx64 ", CFA value is 0x%" PRIx64, cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB), cfa_reg_contents, cfa_value); return true; } else { UnwindLogMsg ("Tried to deref reg %s (%d) [0x%" PRIx64 "] but memory read failed.", cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB), cfa_reg_contents); } } } break; } case UnwindPlan::Row::CFAValue::isRegisterPlusOffset: { RegisterNumber cfa_reg (m_thread, row_register_kind, row->GetCFAValue().GetRegisterNumber()); if (ReadGPRValue (cfa_reg, cfa_reg_contents)) { if (cfa_reg_contents == LLDB_INVALID_ADDRESS || cfa_reg_contents == 0 || cfa_reg_contents == 1) { UnwindLogMsg ("Got an invalid CFA register value - reg %s (%d), value 0x%" PRIx64, cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB), cfa_reg_contents); cfa_reg_contents = LLDB_INVALID_ADDRESS; return false; } cfa_value = cfa_reg_contents + row->GetCFAValue().GetOffset(); UnwindLogMsg ("CFA is 0x%" PRIx64 ": Register %s (%d) contents are 0x%" PRIx64 ", offset is %d", cfa_value, cfa_reg.GetName(), cfa_reg.GetAsKind (eRegisterKindLLDB), cfa_reg_contents, row->GetCFAValue().GetOffset()); return true; } break; } case UnwindPlan::Row::CFAValue::isDWARFExpression: { ExecutionContext exe_ctx(m_thread.shared_from_this()); Process *process = exe_ctx.GetProcessPtr(); DataExtractor dwarfdata (row->GetCFAValue().GetDWARFExpressionBytes(), row->GetCFAValue().GetDWARFExpressionLength(), process->GetByteOrder(), process->GetAddressByteSize()); ModuleSP opcode_ctx; DWARFExpression dwarfexpr (opcode_ctx, dwarfdata, nullptr, 0, row->GetCFAValue().GetDWARFExpressionLength()); dwarfexpr.SetRegisterKind (row_register_kind); Value result; Error error; if (dwarfexpr.Evaluate (&exe_ctx, nullptr, nullptr, this, 0, nullptr, nullptr, result, &error)) { cfa_value = result.GetScalar().ULongLong(); UnwindLogMsg ("CFA value set by DWARF expression is 0x%" PRIx64, cfa_value); return true; } UnwindLogMsg ("Failed to set CFA value via DWARF expression: %s", error.AsCString()); break; } default: return false; } return false; } // Retrieve a general purpose register value for THIS frame, as saved by the NEXT frame, i.e. the frame that // this frame called. e.g. // // foo () { } // bar () { foo (); } // main () { bar (); } // // stopped in foo() so // frame 0 - foo // frame 1 - bar // frame 2 - main // and this RegisterContext is for frame 1 (bar) - if we want to get the pc value for frame 1, we need to ask // where frame 0 (the "next" frame) saved that and retrieve the value. bool RegisterContextLLDB::ReadGPRValue (lldb::RegisterKind register_kind, uint32_t regnum, addr_t &value) { if (!IsValid()) return false; uint32_t lldb_regnum; if (register_kind == eRegisterKindLLDB) { lldb_regnum = regnum; } else if (!m_thread.GetRegisterContext()->ConvertBetweenRegisterKinds (register_kind, regnum, eRegisterKindLLDB, lldb_regnum)) { return false; } const RegisterInfo *reg_info = GetRegisterInfoAtIndex(lldb_regnum); RegisterValue reg_value; // if this is frame 0 (currently executing frame), get the requested reg contents from the actual thread registers if (IsFrameZero ()) { if (m_thread.GetRegisterContext()->ReadRegister (reg_info, reg_value)) { value = reg_value.GetAsUInt64(); return true; } return false; } bool pc_register = false; uint32_t generic_regnum; if (register_kind == eRegisterKindGeneric && (regnum == LLDB_REGNUM_GENERIC_PC || regnum == LLDB_REGNUM_GENERIC_RA)) { pc_register = true; } else if (m_thread.GetRegisterContext()->ConvertBetweenRegisterKinds (register_kind, regnum, eRegisterKindGeneric, generic_regnum) && (generic_regnum == LLDB_REGNUM_GENERIC_PC || generic_regnum == LLDB_REGNUM_GENERIC_RA)) { pc_register = true; } lldb_private::UnwindLLDB::RegisterLocation regloc; if (!m_parent_unwind.SearchForSavedLocationForRegister (lldb_regnum, regloc, m_frame_number - 1, pc_register)) { return false; } if (ReadRegisterValueFromRegisterLocation (regloc, reg_info, reg_value)) { value = reg_value.GetAsUInt64(); return true; } return false; } bool RegisterContextLLDB::ReadGPRValue (const RegisterNumber ®num, addr_t &value) { return ReadGPRValue (regnum.GetRegisterKind(), regnum.GetRegisterNumber(), value); } // Find the value of a register in THIS frame bool RegisterContextLLDB::ReadRegister (const RegisterInfo *reg_info, RegisterValue &value) { if (!IsValid()) return false; const uint32_t lldb_regnum = reg_info->kinds[eRegisterKindLLDB]; UnwindLogMsgVerbose ("looking for register saved location for reg %d", lldb_regnum); // If this is the 0th frame, hand this over to the live register context if (IsFrameZero ()) { UnwindLogMsgVerbose ("passing along to the live register context for reg %d", lldb_regnum); return m_thread.GetRegisterContext()->ReadRegister (reg_info, value); } bool is_pc_regnum = false; if (reg_info->kinds[eRegisterKindGeneric] == LLDB_REGNUM_GENERIC_PC || reg_info->kinds[eRegisterKindGeneric] == LLDB_REGNUM_GENERIC_RA) { is_pc_regnum = true; } lldb_private::UnwindLLDB::RegisterLocation regloc; // Find out where the NEXT frame saved THIS frame's register contents if (!m_parent_unwind.SearchForSavedLocationForRegister (lldb_regnum, regloc, m_frame_number - 1, is_pc_regnum)) return false; return ReadRegisterValueFromRegisterLocation (regloc, reg_info, value); } bool RegisterContextLLDB::WriteRegister (const RegisterInfo *reg_info, const RegisterValue &value) { if (!IsValid()) return false; const uint32_t lldb_regnum = reg_info->kinds[eRegisterKindLLDB]; UnwindLogMsgVerbose ("looking for register saved location for reg %d", lldb_regnum); // If this is the 0th frame, hand this over to the live register context if (IsFrameZero ()) { UnwindLogMsgVerbose ("passing along to the live register context for reg %d", lldb_regnum); return m_thread.GetRegisterContext()->WriteRegister (reg_info, value); } lldb_private::UnwindLLDB::RegisterLocation regloc; // Find out where the NEXT frame saved THIS frame's register contents if (!m_parent_unwind.SearchForSavedLocationForRegister (lldb_regnum, regloc, m_frame_number - 1, false)) return false; return WriteRegisterValueToRegisterLocation (regloc, reg_info, value); } // Don't need to implement this one bool RegisterContextLLDB::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) { return false; } // Don't need to implement this one bool RegisterContextLLDB::WriteAllRegisterValues (const lldb::DataBufferSP& data_sp) { return false; } // Retrieve the pc value for THIS from bool RegisterContextLLDB::GetCFA (addr_t& cfa) { if (!IsValid()) { return false; } if (m_cfa == LLDB_INVALID_ADDRESS) { return false; } cfa = m_cfa; return true; } RegisterContextLLDB::SharedPtr RegisterContextLLDB::GetNextFrame () const { RegisterContextLLDB::SharedPtr regctx; if (m_frame_number == 0) return regctx; return m_parent_unwind.GetRegisterContextForFrameNum (m_frame_number - 1); } RegisterContextLLDB::SharedPtr RegisterContextLLDB::GetPrevFrame () const { RegisterContextLLDB::SharedPtr regctx; return m_parent_unwind.GetRegisterContextForFrameNum (m_frame_number + 1); } // Retrieve the address of the start of the function of THIS frame bool RegisterContextLLDB::GetStartPC (addr_t& start_pc) { if (!IsValid()) return false; if (!m_start_pc.IsValid()) { return ReadPC (start_pc); } start_pc = m_start_pc.GetLoadAddress (CalculateTarget().get()); return true; } // Retrieve the current pc value for THIS frame, as saved by the NEXT frame. bool RegisterContextLLDB::ReadPC (addr_t& pc) { if (!IsValid()) return false; bool above_trap_handler = false; if (GetNextFrame().get() && GetNextFrame()->IsValid() && GetNextFrame()->IsTrapHandlerFrame()) above_trap_handler = true; if (ReadGPRValue (eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC, pc)) { // A pc value of 0 or 1 is impossible in the middle of the stack -- it indicates the end of a stack walk. // On the currently executing frame (or such a frame interrupted asynchronously by sigtramp et al) this may // occur if code has jumped through a NULL pointer -- we want to be able to unwind past that frame to help // find the bug. if (m_all_registers_available == false && above_trap_handler == false && (pc == 0 || pc == 1)) { return false; } else { return true; } } else { return false; } } void RegisterContextLLDB::UnwindLogMsg (const char *fmt, ...) { Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); if (log) { va_list args; va_start (args, fmt); char *logmsg; if (vasprintf (&logmsg, fmt, args) == -1 || logmsg == NULL) { if (logmsg) free (logmsg); va_end (args); return; } va_end (args); log->Printf ("%*sth%d/fr%u %s", m_frame_number < 100 ? m_frame_number : 100, "", m_thread.GetIndexID(), m_frame_number, logmsg); free (logmsg); } } void RegisterContextLLDB::UnwindLogMsgVerbose (const char *fmt, ...) { Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND)); if (log && log->GetVerbose()) { va_list args; va_start (args, fmt); char *logmsg; if (vasprintf (&logmsg, fmt, args) == -1 || logmsg == NULL) { if (logmsg) free (logmsg); va_end (args); return; } va_end (args); log->Printf ("%*sth%d/fr%u %s", m_frame_number < 100 ? m_frame_number : 100, "", m_thread.GetIndexID(), m_frame_number, logmsg); free (logmsg); } }