//===-- CPPLanguageRuntime.cpp //-------------------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Target/CPPLanguageRuntime.h" #include #include "llvm/ADT/StringRef.h" #include "lldb/Symbol/Block.h" #include "lldb/Symbol/VariableList.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/UniqueCStringMap.h" #include "lldb/Symbol/ClangASTContext.h" #include "lldb/Target/ABI.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/SectionLoadList.h" #include "lldb/Target/StackFrame.h" #include "lldb/Target/ThreadPlanRunToAddress.h" #include "lldb/Target/ThreadPlanStepInRange.h" using namespace lldb; using namespace lldb_private; //---------------------------------------------------------------------- // Destructor //---------------------------------------------------------------------- CPPLanguageRuntime::~CPPLanguageRuntime() {} CPPLanguageRuntime::CPPLanguageRuntime(Process *process) : LanguageRuntime(process) {} bool CPPLanguageRuntime::GetObjectDescription(Stream &str, ValueObject &object) { // C++ has no generic way to do this. return false; } bool CPPLanguageRuntime::GetObjectDescription( Stream &str, Value &value, ExecutionContextScope *exe_scope) { // C++ has no generic way to do this. return false; } CPPLanguageRuntime::LibCppStdFunctionCallableInfo CPPLanguageRuntime::FindLibCppStdFunctionCallableInfo( lldb::ValueObjectSP &valobj_sp) { LibCppStdFunctionCallableInfo optional_info; if (!valobj_sp) return optional_info; // Member __f_ has type __base*, the contents of which will hold: // 1) a vtable entry which may hold type information needed to discover the // lambda being called // 2) possibly hold a pointer to the callable object // e.g. // // (lldb) frame var -R f_display // (std::__1::function) f_display = { // __buf_ = { // … // } // __f_ = 0x00007ffeefbffa00 // } // (lldb) memory read -fA 0x00007ffeefbffa00 // 0x7ffeefbffa00: ... `vtable for std::__1::__function::__funcGetChildMemberWithName(ConstString("__f_"), true)); if (member__f_) { ValueObjectSP sub_member__f_( member__f_->GetChildMemberWithName(ConstString("__f_"), true)); if (sub_member__f_) member__f_ = sub_member__f_; } lldb::addr_t member__f_pointer_value = member__f_->GetValueAsUnsigned(0); optional_info.member__f_pointer_value = member__f_pointer_value; ExecutionContext exe_ctx(valobj_sp->GetExecutionContextRef()); Process *process = exe_ctx.GetProcessPtr(); if (process == nullptr) return optional_info; uint32_t address_size = process->GetAddressByteSize(); Status status; // First item pointed to by __f_ should be the pointer to the vtable for // a __base object. lldb::addr_t vtable_address = process->ReadPointerFromMemory(member__f_pointer_value, status); if (status.Fail()) return optional_info; lldb::addr_t address_after_vtable = member__f_pointer_value + address_size; // As commened above we may not have a function pointer but if we do we will // need it. lldb::addr_t possible_function_address = process->ReadPointerFromMemory(address_after_vtable, status); if (status.Fail()) return optional_info; Target &target = process->GetTarget(); if (target.GetSectionLoadList().IsEmpty()) return optional_info; Address vtable_addr_resolved; SymbolContext sc; Symbol *symbol; if (!target.GetSectionLoadList().ResolveLoadAddress(vtable_address, vtable_addr_resolved)) return optional_info; target.GetImages().ResolveSymbolContextForAddress( vtable_addr_resolved, eSymbolContextEverything, sc); symbol = sc.symbol; if (symbol == nullptr) return optional_info; llvm::StringRef vtable_name(symbol->GetName().GetCString()); bool found_expected_start_string = vtable_name.startswith("vtable for std::__1::__function::__func<"); if (!found_expected_start_string) return optional_info; // Given case 1 or 3 we have a vtable name, we are want to extract the first // template parameter // // ... __func ... // ^^^^^^^^^ // // We do this by find the first < and , and extracting in between. // // This covers the case of the lambda known at compile time. size_t first_open_angle_bracket = vtable_name.find('<') + 1; size_t first_comma = vtable_name.find_first_of(','); llvm::StringRef first_template_parameter = vtable_name.slice(first_open_angle_bracket, first_comma); Address function_address_resolved; // Setup for cases 2, 4 and 5 we have a pointer to a function after the // vtable. We will use a process of elimination to drop through each case // and obtain the data we need. if (target.GetSectionLoadList().ResolveLoadAddress( possible_function_address, function_address_resolved)) { target.GetImages().ResolveSymbolContextForAddress( function_address_resolved, eSymbolContextEverything, sc); symbol = sc.symbol; } auto get_name = [&first_template_parameter, &symbol]() { // Given case 1: // // main::$_0 // // we want to append ::operator()() if (first_template_parameter.contains("$_")) return llvm::Regex::escape(first_template_parameter.str()) + R"(::operator\(\)\(.*\))"; if (symbol != NULL && symbol->GetName().GetStringRef().contains("__invoke")) { llvm::StringRef symbol_name = symbol->GetName().GetStringRef(); size_t pos2 = symbol_name.find_last_of(':'); // Given case 2: // // main::$_1::__invoke(...) // // We want to slice off __invoke(...) and append operator()() std::string lambda_operator = llvm::Regex::escape(symbol_name.slice(0, pos2 + 1).str()) + R"(operator\(\)\(.*\))"; return lambda_operator; } // Case 3 return first_template_parameter.str() + R"(::operator\(\)\(.*\))"; ; }; std::string func_to_match = get_name(); SymbolContextList scl; target.GetImages().FindFunctions(RegularExpression{func_to_match}, true, true, true, scl); // Case 1,2 or 3 if (scl.GetSize() >= 1) { SymbolContext sc2 = scl[0]; AddressRange range; sc2.GetAddressRange(eSymbolContextEverything, 0, false, range); Address address = range.GetBaseAddress(); Address addr; if (target.ResolveLoadAddress(address.GetCallableLoadAddress(&target), addr)) { LineEntry line_entry; addr.CalculateSymbolContextLineEntry(line_entry); if (first_template_parameter.contains("$_") || (symbol != nullptr && symbol->GetName().GetStringRef().contains("__invoke"))) { // Case 1 and 2 optional_info.callable_case = LibCppStdFunctionCallableCase::Lambda; } else { // Case 3 optional_info.callable_case = LibCppStdFunctionCallableCase::CallableObject; } optional_info.callable_symbol = *symbol; optional_info.callable_line_entry = line_entry; optional_info.callable_address = addr; return optional_info; } } // Case 4 or 5 if (!symbol->GetName().GetStringRef().startswith("vtable for")) { optional_info.callable_case = LibCppStdFunctionCallableCase::FreeOrMemberFunction; optional_info.callable_address = function_address_resolved; optional_info.callable_symbol = *symbol; return optional_info; } return optional_info; } lldb::ThreadPlanSP CPPLanguageRuntime::GetStepThroughTrampolinePlan(Thread &thread, bool stop_others) { ThreadPlanSP ret_plan_sp; lldb::addr_t curr_pc = thread.GetRegisterContext()->GetPC(); TargetSP target_sp(thread.CalculateTarget()); if (target_sp->GetSectionLoadList().IsEmpty()) return ret_plan_sp; Address pc_addr_resolved; SymbolContext sc; Symbol *symbol; if (!target_sp->GetSectionLoadList().ResolveLoadAddress(curr_pc, pc_addr_resolved)) return ret_plan_sp; target_sp->GetImages().ResolveSymbolContextForAddress( pc_addr_resolved, eSymbolContextEverything, sc); symbol = sc.symbol; if (symbol == nullptr) return ret_plan_sp; llvm::StringRef function_name(symbol->GetName().GetCString()); // Handling the case where we are attempting to step into std::function. // The behavior will be that we will attempt to obtain the wrapped // callable via FindLibCppStdFunctionCallableInfo() and if we find it we // will return a ThreadPlanRunToAddress to the callable. Therefore we will // step into the wrapped callable. // bool found_expected_start_string = function_name.startswith("std::__1::function<"); if (!found_expected_start_string) return ret_plan_sp; AddressRange range_of_curr_func; sc.GetAddressRange(eSymbolContextEverything, 0, false, range_of_curr_func); StackFrameSP frame = thread.GetStackFrameAtIndex(0); if (frame) { ValueObjectSP value_sp = frame->FindVariable(ConstString("this")); CPPLanguageRuntime::LibCppStdFunctionCallableInfo callable_info = FindLibCppStdFunctionCallableInfo(value_sp); if (callable_info.callable_case != LibCppStdFunctionCallableCase::Invalid && value_sp->GetValueIsValid()) { // We found the std::function wrapped callable and we have its address. // We now create a ThreadPlan to run to the callable. ret_plan_sp.reset(new ThreadPlanRunToAddress( thread, callable_info.callable_address, stop_others)); return ret_plan_sp; } else { // We are in std::function but we could not obtain the callable. // We create a ThreadPlan to keep stepping through using the address range // of the current function. ret_plan_sp.reset(new ThreadPlanStepInRange(thread, range_of_curr_func, sc, eOnlyThisThread, eLazyBoolYes, eLazyBoolYes)); return ret_plan_sp; } } return ret_plan_sp; }