//===-- ThreadPlanStepRange.cpp ---------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "lldb/Target/ThreadPlanStepRange.h" #include "lldb/Breakpoint/BreakpointLocation.h" #include "lldb/Breakpoint/BreakpointSite.h" #include "lldb/Core/Disassembler.h" #include "lldb/Symbol/Function.h" #include "lldb/Symbol/Symbol.h" #include "lldb/Target/ExecutionContext.h" #include "lldb/Target/Process.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Target/StopInfo.h" #include "lldb/Target/Target.h" #include "lldb/Target/Thread.h" #include "lldb/Target/ThreadPlanRunToAddress.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/Stream.h" using namespace lldb; using namespace lldb_private; //---------------------------------------------------------------------- // ThreadPlanStepRange: Step through a stack range, either stepping over or // into based on the value of \a type. //---------------------------------------------------------------------- ThreadPlanStepRange::ThreadPlanStepRange(ThreadPlanKind kind, const char *name, Thread &thread, const AddressRange &range, const SymbolContext &addr_context, lldb::RunMode stop_others, bool given_ranges_only) : ThreadPlan(kind, name, thread, eVoteNoOpinion, eVoteNoOpinion), m_addr_context(addr_context), m_address_ranges(), m_stop_others(stop_others), m_stack_id(), m_parent_stack_id(), m_no_more_plans(false), m_first_run_event(true), m_use_fast_step(false), m_given_ranges_only(given_ranges_only) { m_use_fast_step = GetTarget().GetUseFastStepping(); AddRange(range); m_stack_id = m_thread.GetStackFrameAtIndex(0)->GetStackID(); StackFrameSP parent_stack = m_thread.GetStackFrameAtIndex(1); if (parent_stack) m_parent_stack_id = parent_stack->GetStackID(); } ThreadPlanStepRange::~ThreadPlanStepRange() { ClearNextBranchBreakpoint(); } void ThreadPlanStepRange::DidPush() { // See if we can find a "next range" breakpoint: SetNextBranchBreakpoint(); } bool ThreadPlanStepRange::ValidatePlan(Stream *error) { if (m_could_not_resolve_hw_bp) { if (error) error->PutCString( "Could not create hardware breakpoint for thread plan."); return false; } return true; } Vote ThreadPlanStepRange::ShouldReportStop(Event *event_ptr) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); const Vote vote = IsPlanComplete() ? eVoteYes : eVoteNo; if (log) log->Printf("ThreadPlanStepRange::ShouldReportStop() returning vote %i\n", vote); return vote; } void ThreadPlanStepRange::AddRange(const AddressRange &new_range) { // For now I'm just adding the ranges. At some point we may want to condense // the ranges if they overlap, though I don't think it is likely to be very // important. m_address_ranges.push_back(new_range); // Fill the slot for this address range with an empty DisassemblerSP in the // instruction ranges. I want the indices to match, but I don't want to do // the work to disassemble this range if I don't step into it. m_instruction_ranges.push_back(DisassemblerSP()); } void ThreadPlanStepRange::DumpRanges(Stream *s) { size_t num_ranges = m_address_ranges.size(); if (num_ranges == 1) { m_address_ranges[0].Dump(s, m_thread.CalculateTarget().get(), Address::DumpStyleLoadAddress); } else { for (size_t i = 0; i < num_ranges; i++) { s->Printf(" %" PRIu64 ": ", uint64_t(i)); m_address_ranges[i].Dump(s, m_thread.CalculateTarget().get(), Address::DumpStyleLoadAddress); } } } bool ThreadPlanStepRange::InRange() { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); bool ret_value = false; lldb::addr_t pc_load_addr = m_thread.GetRegisterContext()->GetPC(); size_t num_ranges = m_address_ranges.size(); for (size_t i = 0; i < num_ranges; i++) { ret_value = m_address_ranges[i].ContainsLoadAddress( pc_load_addr, m_thread.CalculateTarget().get()); if (ret_value) break; } if (!ret_value && !m_given_ranges_only) { // See if we've just stepped to another part of the same line number... StackFrame *frame = m_thread.GetStackFrameAtIndex(0).get(); SymbolContext new_context( frame->GetSymbolContext(eSymbolContextEverything)); if (m_addr_context.line_entry.IsValid() && new_context.line_entry.IsValid()) { if (m_addr_context.line_entry.original_file == new_context.line_entry.original_file) { if (m_addr_context.line_entry.line == new_context.line_entry.line) { m_addr_context = new_context; AddRange( m_addr_context.line_entry.GetSameLineContiguousAddressRange()); ret_value = true; if (log) { StreamString s; m_addr_context.line_entry.Dump(&s, m_thread.CalculateTarget().get(), true, Address::DumpStyleLoadAddress, Address::DumpStyleLoadAddress, true); log->Printf( "Step range plan stepped to another range of same line: %s", s.GetData()); } } else if (new_context.line_entry.line == 0) { new_context.line_entry.line = m_addr_context.line_entry.line; m_addr_context = new_context; AddRange( m_addr_context.line_entry.GetSameLineContiguousAddressRange()); ret_value = true; if (log) { StreamString s; m_addr_context.line_entry.Dump(&s, m_thread.CalculateTarget().get(), true, Address::DumpStyleLoadAddress, Address::DumpStyleLoadAddress, true); log->Printf("Step range plan stepped to a range at linenumber 0 " "stepping through that range: %s", s.GetData()); } } else if (new_context.line_entry.range.GetBaseAddress().GetLoadAddress( m_thread.CalculateTarget().get()) != pc_load_addr) { // Another thing that sometimes happens here is that we step out of // one line into the MIDDLE of another line. So far I mostly see // this due to bugs in the debug information. But we probably don't // want to be in the middle of a line range, so in that case reset // the stepping range to the line we've stepped into the middle of // and continue. m_addr_context = new_context; m_address_ranges.clear(); AddRange(m_addr_context.line_entry.range); ret_value = true; if (log) { StreamString s; m_addr_context.line_entry.Dump(&s, m_thread.CalculateTarget().get(), true, Address::DumpStyleLoadAddress, Address::DumpStyleLoadAddress, true); log->Printf("Step range plan stepped to the middle of new " "line(%d): %s, continuing to clear this line.", new_context.line_entry.line, s.GetData()); } } } } } if (!ret_value && log) log->Printf("Step range plan out of range to 0x%" PRIx64, pc_load_addr); return ret_value; } bool ThreadPlanStepRange::InSymbol() { lldb::addr_t cur_pc = m_thread.GetRegisterContext()->GetPC(); if (m_addr_context.function != nullptr) { return m_addr_context.function->GetAddressRange().ContainsLoadAddress( cur_pc, m_thread.CalculateTarget().get()); } else if (m_addr_context.symbol && m_addr_context.symbol->ValueIsAddress()) { AddressRange range(m_addr_context.symbol->GetAddressRef(), m_addr_context.symbol->GetByteSize()); return range.ContainsLoadAddress(cur_pc, m_thread.CalculateTarget().get()); } return false; } // FIXME: This should also handle inlining if we aren't going to do inlining in // the // main stack. // // Ideally we should remember the whole stack frame list, and then compare that // to the current list. lldb::FrameComparison ThreadPlanStepRange::CompareCurrentFrameToStartFrame() { FrameComparison frame_order; StackID cur_frame_id = m_thread.GetStackFrameAtIndex(0)->GetStackID(); if (cur_frame_id == m_stack_id) { frame_order = eFrameCompareEqual; } else if (cur_frame_id < m_stack_id) { frame_order = eFrameCompareYounger; } else { StackFrameSP cur_parent_frame = m_thread.GetStackFrameAtIndex(1); StackID cur_parent_id; if (cur_parent_frame) cur_parent_id = cur_parent_frame->GetStackID(); if (m_parent_stack_id.IsValid() && cur_parent_id.IsValid() && m_parent_stack_id == cur_parent_id) frame_order = eFrameCompareSameParent; else frame_order = eFrameCompareOlder; } return frame_order; } bool ThreadPlanStepRange::StopOthers() { return (m_stop_others == lldb::eOnlyThisThread || m_stop_others == lldb::eOnlyDuringStepping); } InstructionList *ThreadPlanStepRange::GetInstructionsForAddress( lldb::addr_t addr, size_t &range_index, size_t &insn_offset) { size_t num_ranges = m_address_ranges.size(); for (size_t i = 0; i < num_ranges; i++) { if (m_address_ranges[i].ContainsLoadAddress(addr, &GetTarget())) { // Some joker added a zero size range to the stepping range... if (m_address_ranges[i].GetByteSize() == 0) return nullptr; if (!m_instruction_ranges[i]) { // Disassemble the address range given: ExecutionContext exe_ctx(m_thread.GetProcess()); const char *plugin_name = nullptr; const char *flavor = nullptr; const bool prefer_file_cache = true; m_instruction_ranges[i] = Disassembler::DisassembleRange( GetTarget().GetArchitecture(), plugin_name, flavor, exe_ctx, m_address_ranges[i], prefer_file_cache); } if (!m_instruction_ranges[i]) return nullptr; else { // Find where we are in the instruction list as well. If we aren't at // an instruction, return nullptr. In this case, we're probably lost, // and shouldn't try to do anything fancy. insn_offset = m_instruction_ranges[i] ->GetInstructionList() .GetIndexOfInstructionAtLoadAddress(addr, GetTarget()); if (insn_offset == UINT32_MAX) return nullptr; else { range_index = i; return &m_instruction_ranges[i]->GetInstructionList(); } } } } return nullptr; } void ThreadPlanStepRange::ClearNextBranchBreakpoint() { if (m_next_branch_bp_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log) log->Printf("Removing next branch breakpoint: %d.", m_next_branch_bp_sp->GetID()); GetTarget().RemoveBreakpointByID(m_next_branch_bp_sp->GetID()); m_next_branch_bp_sp.reset(); m_could_not_resolve_hw_bp = false; } } bool ThreadPlanStepRange::SetNextBranchBreakpoint() { if (m_next_branch_bp_sp) return true; Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); // Stepping through ranges using breakpoints doesn't work yet, but with this // off we fall back to instruction single stepping. if (!m_use_fast_step) return false; lldb::addr_t cur_addr = GetThread().GetRegisterContext()->GetPC(); // Find the current address in our address ranges, and fetch the disassembly // if we haven't already: size_t pc_index; size_t range_index; InstructionList *instructions = GetInstructionsForAddress(cur_addr, range_index, pc_index); if (instructions == nullptr) return false; else { Target &target = GetThread().GetProcess()->GetTarget(); uint32_t branch_index; branch_index = instructions->GetIndexOfNextBranchInstruction(pc_index, target); Address run_to_address; // If we didn't find a branch, run to the end of the range. if (branch_index == UINT32_MAX) { uint32_t last_index = instructions->GetSize() - 1; if (last_index - pc_index > 1) { InstructionSP last_inst = instructions->GetInstructionAtIndex(last_index); size_t last_inst_size = last_inst->GetOpcode().GetByteSize(); run_to_address = last_inst->GetAddress(); run_to_address.Slide(last_inst_size); } } else if (branch_index - pc_index > 1) { run_to_address = instructions->GetInstructionAtIndex(branch_index)->GetAddress(); } if (run_to_address.IsValid()) { const bool is_internal = true; m_next_branch_bp_sp = GetTarget().CreateBreakpoint(run_to_address, is_internal, false); if (m_next_branch_bp_sp) { if (m_next_branch_bp_sp->IsHardware() && !m_next_branch_bp_sp->HasResolvedLocations()) m_could_not_resolve_hw_bp = true; if (log) { lldb::break_id_t bp_site_id = LLDB_INVALID_BREAK_ID; BreakpointLocationSP bp_loc = m_next_branch_bp_sp->GetLocationAtIndex(0); if (bp_loc) { BreakpointSiteSP bp_site = bp_loc->GetBreakpointSite(); if (bp_site) { bp_site_id = bp_site->GetID(); } } log->Printf("ThreadPlanStepRange::SetNextBranchBreakpoint - Setting " "breakpoint %d (site %d) to run to address 0x%" PRIx64, m_next_branch_bp_sp->GetID(), bp_site_id, run_to_address.GetLoadAddress( &m_thread.GetProcess()->GetTarget())); } m_next_branch_bp_sp->SetThreadID(m_thread.GetID()); m_next_branch_bp_sp->SetBreakpointKind("next-branch-location"); return true; } else return false; } } return false; } bool ThreadPlanStepRange::NextRangeBreakpointExplainsStop( lldb::StopInfoSP stop_info_sp) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (!m_next_branch_bp_sp) return false; break_id_t bp_site_id = stop_info_sp->GetValue(); BreakpointSiteSP bp_site_sp = m_thread.GetProcess()->GetBreakpointSiteList().FindByID(bp_site_id); if (!bp_site_sp) return false; else if (!bp_site_sp->IsBreakpointAtThisSite(m_next_branch_bp_sp->GetID())) return false; else { // If we've hit the next branch breakpoint, then clear it. size_t num_owners = bp_site_sp->GetNumberOfOwners(); bool explains_stop = true; // If all the owners are internal, then we are probably just stepping over // this range from multiple threads, or multiple frames, so we want to // continue. If one is not internal, then we should not explain the stop, // and let the user breakpoint handle the stop. for (size_t i = 0; i < num_owners; i++) { if (!bp_site_sp->GetOwnerAtIndex(i)->GetBreakpoint().IsInternal()) { explains_stop = false; break; } } if (log) log->Printf("ThreadPlanStepRange::NextRangeBreakpointExplainsStop - Hit " "next range breakpoint which has %" PRIu64 " owners - explains stop: %u.", (uint64_t)num_owners, explains_stop); ClearNextBranchBreakpoint(); return explains_stop; } } bool ThreadPlanStepRange::WillStop() { return true; } StateType ThreadPlanStepRange::GetPlanRunState() { if (m_next_branch_bp_sp) return eStateRunning; else return eStateStepping; } bool ThreadPlanStepRange::MischiefManaged() { // If we have pushed some plans between ShouldStop & MischiefManaged, then // we're not done... // I do this check first because we might have stepped somewhere that will // fool InRange into // thinking it needs to step past the end of that line. This happens, for // instance, when stepping over inlined code that is in the middle of the // current line. if (!m_no_more_plans) return false; bool done = true; if (!IsPlanComplete()) { if (InRange()) { done = false; } else { FrameComparison frame_order = CompareCurrentFrameToStartFrame(); done = (frame_order != eFrameCompareOlder) ? m_no_more_plans : true; } } if (done) { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); if (log) log->Printf("Completed step through range plan."); ClearNextBranchBreakpoint(); ThreadPlan::MischiefManaged(); return true; } else { return false; } } bool ThreadPlanStepRange::IsPlanStale() { Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_STEP)); FrameComparison frame_order = CompareCurrentFrameToStartFrame(); if (frame_order == eFrameCompareOlder) { if (log) { log->Printf("ThreadPlanStepRange::IsPlanStale returning true, we've " "stepped out."); } return true; } else if (frame_order == eFrameCompareEqual && InSymbol()) { // If we are not in a place we should step through, we've gotten stale. One // tricky bit here is that some stubs don't push a frame, so we should. // check that we are in the same symbol. if (!InRange()) { // Set plan Complete when we reach next instruction just after the range lldb::addr_t addr = m_thread.GetRegisterContext()->GetPC() - 1; size_t num_ranges = m_address_ranges.size(); for (size_t i = 0; i < num_ranges; i++) { bool in_range = m_address_ranges[i].ContainsLoadAddress( addr, m_thread.CalculateTarget().get()); if (in_range) { SetPlanComplete(); } } return true; } } return false; }