//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// \file /// /// This file defines a register mapping file class. This class is responsible /// for managing hardware register files and the tracking of data dependencies /// between registers. /// //===----------------------------------------------------------------------===// #include "RegisterFile.h" #include "Instruction.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "llvm-mca" namespace mca { RegisterFile::RegisterFile(const llvm::MCSchedModel &SM, const llvm::MCRegisterInfo &mri, unsigned NumRegs) : MRI(mri), RegisterMappings(mri.getNumRegs(), {WriteRef(), {IndexPlusCostPairTy(0, 1), 0}}) { initialize(SM, NumRegs); } void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) { // Create a default register file that "sees" all the machine registers // declared by the target. The number of physical registers in the default // register file is set equal to `NumRegs`. A value of zero for `NumRegs` // means: this register file has an unbounded number of physical registers. addRegisterFile({} /* all registers */, NumRegs); if (!SM.hasExtraProcessorInfo()) return; // For each user defined register file, allocate a RegisterMappingTracker // object. The size of every register file, as well as the mapping between // register files and register classes is specified via tablegen. const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo(); for (unsigned I = 0, E = Info.NumRegisterFiles; I < E; ++I) { const MCRegisterFileDesc &RF = Info.RegisterFiles[I]; // Skip invalid register files with zero physical registers. unsigned Length = RF.NumRegisterCostEntries; if (!RF.NumPhysRegs) continue; // The cost of a register definition is equivalent to the number of // physical registers that are allocated at register renaming stage. const MCRegisterCostEntry *FirstElt = &Info.RegisterCostTable[RF.RegisterCostEntryIdx]; addRegisterFile(ArrayRef(FirstElt, Length), RF.NumPhysRegs); } } void RegisterFile::addRegisterFile(ArrayRef Entries, unsigned NumPhysRegs) { // A default register file is always allocated at index #0. That register file // is mainly used to count the total number of mappings created by all // register files at runtime. Users can limit the number of available physical // registers in register file #0 through the command line flag // `-register-file-size`. unsigned RegisterFileIndex = RegisterFiles.size(); RegisterFiles.emplace_back(NumPhysRegs); // Special case where there is no register class identifier in the set. // An empty set of register classes means: this register file contains all // the physical registers specified by the target. // We optimistically assume that a register can be renamed at the cost of a // single physical register. The constructor of RegisterFile ensures that // a RegisterMapping exists for each logical register defined by the Target. if (Entries.empty()) return; // Now update the cost of individual registers. for (const MCRegisterCostEntry &RCE : Entries) { const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID); for (const MCPhysReg Reg : RC) { RegisterRenamingInfo &Entry = RegisterMappings[Reg].second; IndexPlusCostPairTy &IPC = Entry.IndexPlusCost; if (IPC.first && IPC.first != RegisterFileIndex) { // The only register file that is allowed to overlap is the default // register file at index #0. The analysis is inaccurate if register // files overlap. errs() << "warning: register " << MRI.getName(Reg) << " defined in multiple register files."; } IPC = std::make_pair(RegisterFileIndex, RCE.Cost); Entry.RenameAs = Reg; // Assume the same cost for each sub-register. for (MCSubRegIterator I(Reg, &MRI); I.isValid(); ++I) { RegisterRenamingInfo &OtherEntry = RegisterMappings[*I].second; if (!OtherEntry.IndexPlusCost.first && (!OtherEntry.RenameAs || MRI.isSuperRegister(*I, OtherEntry.RenameAs))) { OtherEntry.IndexPlusCost = IPC; OtherEntry.RenameAs = Reg; } } } } } void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry, MutableArrayRef UsedPhysRegs) { unsigned RegisterFileIndex = Entry.IndexPlusCost.first; unsigned Cost = Entry.IndexPlusCost.second; if (RegisterFileIndex) { RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; RMT.NumUsedPhysRegs += Cost; UsedPhysRegs[RegisterFileIndex] += Cost; } // Now update the default register mapping tracker. RegisterFiles[0].NumUsedPhysRegs += Cost; UsedPhysRegs[0] += Cost; } void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry, MutableArrayRef FreedPhysRegs) { unsigned RegisterFileIndex = Entry.IndexPlusCost.first; unsigned Cost = Entry.IndexPlusCost.second; if (RegisterFileIndex) { RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex]; RMT.NumUsedPhysRegs -= Cost; FreedPhysRegs[RegisterFileIndex] += Cost; } // Now update the default register mapping tracker. RegisterFiles[0].NumUsedPhysRegs -= Cost; FreedPhysRegs[0] += Cost; } void RegisterFile::addRegisterWrite(WriteRef Write, MutableArrayRef UsedPhysRegs, bool ShouldAllocatePhysRegs) { WriteState &WS = *Write.getWriteState(); unsigned RegID = WS.getRegisterID(); assert(RegID && "Adding an invalid register definition?"); LLVM_DEBUG({ dbgs() << "RegisterFile: addRegisterWrite [ " << Write.getSourceIndex() << ", " << MRI.getName(RegID) << "]\n"; }); // If RenameAs is equal to RegID, then RegID is subject to register renaming // and false dependencies on RegID are all eliminated. // If RenameAs references the invalid register, then we optimistically assume // that it can be renamed. In the absence of tablegen descriptors for register // files, RenameAs is always set to the invalid register ID. In all other // cases, RenameAs must be either equal to RegID, or it must reference a // super-register of RegID. // If RenameAs is a super-register of RegID, then a write to RegID has always // a false dependency on RenameAs. The only exception is for when the write // implicitly clears the upper portion of the underlying register. // If a write clears its super-registers, then it is renamed as `RenameAs`. const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; if (RRI.RenameAs && RRI.RenameAs != RegID) { RegID = RRI.RenameAs; const WriteRef &OtherWrite = RegisterMappings[RegID].first; if (!WS.clearsSuperRegisters()) { // The processor keeps the definition of `RegID` together with register // `RenameAs`. Since this partial write is not renamed, no physical // register is allocated. ShouldAllocatePhysRegs = false; if (OtherWrite.getSourceIndex() != Write.getSourceIndex()) { // This partial write has a false dependency on RenameAs. WS.setDependentWrite(OtherWrite.getWriteState()); } } } // Update the mapping for register RegID including its sub-registers. RegisterMappings[RegID].first = Write; for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) RegisterMappings[*I].first = Write; // No physical registers are allocated for instructions that are optimized in // hardware. For example, zero-latency data-dependency breaking instructions // don't consume physical registers. if (ShouldAllocatePhysRegs) allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs); if (!WS.clearsSuperRegisters()) return; for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) RegisterMappings[*I].first = Write; } void RegisterFile::removeRegisterWrite(const WriteState &WS, MutableArrayRef FreedPhysRegs, bool ShouldFreePhysRegs) { unsigned RegID = WS.getRegisterID(); assert(RegID != 0 && "Invalidating an already invalid register?"); assert(WS.getCyclesLeft() != UNKNOWN_CYCLES && "Invalidating a write of unknown cycles!"); assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!"); unsigned RenameAs = RegisterMappings[RegID].second.RenameAs; if (RenameAs && RenameAs != RegID) { RegID = RenameAs; if (!WS.clearsSuperRegisters()) { // Keep the definition of `RegID` together with register `RenameAs`. ShouldFreePhysRegs = false; } } if (ShouldFreePhysRegs) freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs); WriteRef &WR = RegisterMappings[RegID].first; if (WR.getWriteState() == &WS) WR.invalidate(); for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { WriteRef &OtherWR = RegisterMappings[*I].first; if (OtherWR.getWriteState() == &WS) OtherWR.invalidate(); } if (!WS.clearsSuperRegisters()) return; for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) { WriteRef &OtherWR = RegisterMappings[*I].first; if (OtherWR.getWriteState() == &WS) OtherWR.invalidate(); } } void RegisterFile::collectWrites(SmallVectorImpl &Writes, unsigned RegID) const { assert(RegID && RegID < RegisterMappings.size()); LLVM_DEBUG(dbgs() << "RegisterFile: collecting writes for register " << MRI.getName(RegID) << '\n'); const WriteRef &WR = RegisterMappings[RegID].first; if (WR.isValid()) Writes.push_back(WR); // Handle potential partial register updates. for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) { const WriteRef &WR = RegisterMappings[*I].first; if (WR.isValid()) Writes.push_back(WR); } // Remove duplicate entries and resize the input vector. llvm::sort(Writes.begin(), Writes.end(), [](const WriteRef &Lhs, const WriteRef &Rhs) { return Lhs.getWriteState() < Rhs.getWriteState(); }); auto It = std::unique(Writes.begin(), Writes.end()); Writes.resize(std::distance(Writes.begin(), It)); LLVM_DEBUG({ for (const WriteRef &WR : Writes) { const WriteState &WS = *WR.getWriteState(); dbgs() << "[PRF] Found a dependent use of Register " << MRI.getName(WS.getRegisterID()) << " (defined by intruction #" << WR.getSourceIndex() << ")\n"; } }); } unsigned RegisterFile::isAvailable(ArrayRef Regs) const { SmallVector NumPhysRegs(getNumRegisterFiles()); // Find how many new mappings must be created for each register file. for (const unsigned RegID : Regs) { const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second; const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost; if (Entry.first) NumPhysRegs[Entry.first] += Entry.second; NumPhysRegs[0] += Entry.second; } unsigned Response = 0; for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { unsigned NumRegs = NumPhysRegs[I]; if (!NumRegs) continue; const RegisterMappingTracker &RMT = RegisterFiles[I]; if (!RMT.NumPhysRegs) { // The register file has an unbounded number of microarchitectural // registers. continue; } if (RMT.NumPhysRegs < NumRegs) { // The current register file is too small. This may occur if the number of // microarchitectural registers in register file #0 was changed by the // users via flag -reg-file-size. Alternatively, the scheduling model // specified a too small number of registers for this register file. report_fatal_error( "Not enough microarchitectural registers in the register file"); } if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs)) Response |= (1U << I); } return Response; } #ifndef NDEBUG void RegisterFile::dump() const { for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) { const RegisterMapping &RM = RegisterMappings[I]; if (!RM.first.getWriteState()) continue; const RegisterRenamingInfo &RRI = RM.second; dbgs() << MRI.getName(I) << ", " << I << ", PRF=" << RRI.IndexPlusCost.first << ", Cost=" << RRI.IndexPlusCost.second << ", RenameAs=" << RRI.RenameAs << ", "; RM.first.dump(); dbgs() << '\n'; } for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) { dbgs() << "Register File #" << I; const RegisterMappingTracker &RMT = RegisterFiles[I]; dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs << "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n'; } } #endif } // namespace mca