//===-- xray-graph.cc - XRay Function Call Graph Renderer -----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A class to get a color from a specified gradient. // //===----------------------------------------------------------------------===// #include "xray-color-helper.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace xray; // Sequential ColorMaps, which are used to represent information // from some minimum to some maximum. static const std::tuple SequentialMaps[][9] = { {// The greys color scheme from http://colorbrewer2.org/ std::make_tuple(255, 255, 255), std::make_tuple(240, 240, 240), std::make_tuple(217, 217, 217), std::make_tuple(189, 189, 189), std::make_tuple(150, 150, 150), std::make_tuple(115, 115, 115), std::make_tuple(82, 82, 82), std::make_tuple(37, 37, 37), std::make_tuple(0, 0, 0)}, {// The OrRd color scheme from http://colorbrewer2.org/ std::make_tuple(255, 247, 236), std::make_tuple(254, 232, 200), std::make_tuple(253, 212, 158), std::make_tuple(253, 187, 132), std::make_tuple(252, 141, 89), std::make_tuple(239, 101, 72), std::make_tuple(215, 48, 31), std::make_tuple(179, 0, 0), std::make_tuple(127, 0, 0)}, {// The PuBu color scheme from http://colorbrewer2.org/ std::make_tuple(255, 247, 251), std::make_tuple(236, 231, 242), std::make_tuple(208, 209, 230), std::make_tuple(166, 189, 219), std::make_tuple(116, 169, 207), std::make_tuple(54, 144, 192), std::make_tuple(5, 112, 176), std::make_tuple(4, 90, 141), std::make_tuple(2, 56, 88)}}; // Sequential Maps extend the last colors given out of range inputs. static const std::tuple SequentialBounds[][2] = { {// The Bounds for the greys color scheme std::make_tuple(255, 255, 255), std::make_tuple(0, 0, 0)}, {// The Bounds for the OrRd color Scheme std::make_tuple(255, 247, 236), std::make_tuple(127, 0, 0)}, {// The Bounds for the PuBu color Scheme std::make_tuple(255, 247, 251), std::make_tuple(2, 56, 88)}}; ColorHelper::ColorHelper(ColorHelper::SequentialScheme S) : MinIn(0.0), MaxIn(1.0), ColorMap(SequentialMaps[static_cast(S)]), BoundMap(SequentialBounds[static_cast(S)]) {} // Diverging ColorMaps, which are used to represent information // representing differenes, or a range that goes from negative to positive. // These take an input in the range [-1,1]. static const std::tuple DivergingCoeffs[][11] = { {// The PiYG color scheme from http://colorbrewer2.org/ std::make_tuple(142, 1, 82), std::make_tuple(197, 27, 125), std::make_tuple(222, 119, 174), std::make_tuple(241, 182, 218), std::make_tuple(253, 224, 239), std::make_tuple(247, 247, 247), std::make_tuple(230, 245, 208), std::make_tuple(184, 225, 134), std::make_tuple(127, 188, 65), std::make_tuple(77, 146, 33), std::make_tuple(39, 100, 25)}}; // Diverging maps use out of bounds ranges to show missing data. Missing Right // Being below min, and missing left being above max. static const std::tuple DivergingBounds[][2] = { {// The PiYG color scheme has green and red for missing right and left // respectively. std::make_tuple(255, 0, 0), std::make_tuple(0, 255, 0)}}; ColorHelper::ColorHelper(ColorHelper::DivergingScheme S) : MinIn(-1.0), MaxIn(1.0), ColorMap(DivergingCoeffs[static_cast(S)]), BoundMap(DivergingBounds[static_cast(S)]) {} // Takes a tuple of uint8_ts representing a color in RGB and converts them to // HSV represented by a tuple of doubles static std::tuple convertToHSV(const std::tuple &Color) { double Scaled[3] = {std::get<0>(Color) / 255.0, std::get<1>(Color) / 255.0, std::get<2>(Color) / 255.0}; int Min = 0; int Max = 0; for (int i = 1; i < 3; ++i) { if (Scaled[i] < Scaled[Min]) Min = i; if (Scaled[i] > Scaled[Max]) Max = i; } double C = Scaled[Max] - Scaled[Min]; double HPrime = (C == 0) ? 0 : (Scaled[(Max + 1) % 3] - Scaled[(Max + 2) % 3]) / C; HPrime = HPrime + 2.0 * Max; double H = (HPrime < 0) ? (HPrime + 6.0) * 60 : HPrime * 60; // Scale to between 0 and 360 double V = Scaled[Max]; double S = (V == 0.0) ? 0.0 : C / V; return std::make_tuple(H, S, V); } // Takes a double precision number, clips it between 0 and 1 and then converts // that to an integer between 0x00 and 0xFF with proxpper rounding. static uint8_t unitIntervalTo8BitChar(double B) { double n = std::max(std::min(B, 1.0), 0.0); return static_cast(255 * n + 0.5); } // Takes a typle of doubles representing a color in HSV and converts them to // RGB represented as a tuple of uint8_ts static std::tuple convertToRGB(const std::tuple &Color) { const double &H = std::get<0>(Color); const double &S = std::get<1>(Color); const double &V = std::get<2>(Color); double C = V * S; double HPrime = H / 60; double X = C * (1 - std::abs(std::fmod(HPrime, 2.0) - 1)); double RGB1[3]; int HPrimeInt = static_cast(HPrime); if (HPrimeInt % 2 == 0) { RGB1[(HPrimeInt / 2) % 3] = C; RGB1[(HPrimeInt / 2 + 1) % 3] = X; RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0; } else { RGB1[(HPrimeInt / 2) % 3] = X; RGB1[(HPrimeInt / 2 + 1) % 3] = C; RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0; } double Min = V - C; double RGB2[3] = {RGB1[0] + Min, RGB1[1] + Min, RGB1[2] + Min}; return std::make_tuple(unitIntervalTo8BitChar(RGB2[0]), unitIntervalTo8BitChar(RGB2[1]), unitIntervalTo8BitChar(RGB2[2])); } // The Hue component of the HSV interpolation Routine static double interpolateHue(double H0, double H1, double T) { double D = H1 - H0; if (H0 > H1) { std::swap(H0, H1); D = -D; T = 1 - T; } if (D <= 180) { return H0 + T * (H1 - H0); } else { H0 = H0 + 360; return std::fmod(H0 + T * (H1 - H0) + 720, 360); } } // Interpolates between two HSV Colors both represented as a tuple of doubles // Returns an HSV Color represented as a tuple of doubles static std::tuple interpolateHSV(const std::tuple &C0, const std::tuple &C1, double T) { double H = interpolateHue(std::get<0>(C0), std::get<0>(C1), T); double S = std::get<1>(C0) + T * (std::get<1>(C1) - std::get<1>(C0)); double V = std::get<2>(C0) + T * (std::get<2>(C1) - std::get<2>(C0)); return std::make_tuple(H, S, V); } // Get the Color as a tuple of uint8_ts std::tuple ColorHelper::getColorTuple(double Point) const { assert(!ColorMap.empty() && "ColorMap must not be empty!"); assert(!BoundMap.empty() && "BoundMap must not be empty!"); if (Point < MinIn) return BoundMap[0]; if (Point > MaxIn) return BoundMap[1]; size_t MaxIndex = ColorMap.size() - 1; double IntervalWidth = MaxIn - MinIn; double OffsetP = Point - MinIn; double SectionWidth = IntervalWidth / static_cast(MaxIndex); size_t SectionNo = std::floor(OffsetP / SectionWidth); double T = (OffsetP - SectionNo * SectionWidth) / SectionWidth; auto &RGBColor0 = ColorMap[SectionNo]; auto &RGBColor1 = ColorMap[std::min(SectionNo + 1, MaxIndex)]; auto HSVColor0 = convertToHSV(RGBColor0); auto HSVColor1 = convertToHSV(RGBColor1); auto InterpolatedHSVColor = interpolateHSV(HSVColor0, HSVColor1, T); return convertToRGB(InterpolatedHSVColor); } // A helper method to convert a color represented as tuple of uint8s to a hex // string. std::string ColorHelper::getColorString(std::tuple t) { return llvm::formatv("#{0:X-2}{1:X-2}{2:X-2}", std::get<0>(t), std::get<1>(t), std::get<2>(t)); } // Gets a color in a gradient given a number in the interval [0,1], it does this // by evaluating a polynomial which maps [0, 1] -> [0, 1] for each of the R G // and B values in the color. It then converts this [0,1] colors to a 24 bit // color as a hex string. std::string ColorHelper::getColorString(double Point) const { return getColorString(getColorTuple(Point)); }