//===- utils/TableGen/X86EVEX2VEXTablesEmitter.cpp - X86 backend-*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// This tablegen backend is responsible for emitting the X86 backend EVEX2VEX /// compression tables. /// //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "CodeGenTarget.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/TableGenBackend.h" using namespace llvm; namespace { class X86EVEX2VEXTablesEmitter { CodeGenTarget Target; // Hold all non-masked & non-broadcasted EVEX encoded instructions std::vector EVEXInsts; // Hold all VEX encoded instructions. Divided into groups with same opcodes // to make the search more efficient std::map> VEXInsts; typedef std::pair Entry; // Represent both compress tables std::vector EVEX2VEX128; std::vector EVEX2VEX256; // Represents a manually added entry to the tables struct ManualEntry { const char *EVEXInstStr; const char *VEXInstStr; bool Is128Bit; }; public: X86EVEX2VEXTablesEmitter(RecordKeeper &R) : Target(R) {} // run - Output X86 EVEX2VEX tables. void run(raw_ostream &OS); private: // Prints the given table as a C++ array of type // X86EvexToVexCompressTableEntry void printTable(const std::vector &Table, raw_ostream &OS); bool inExceptionList(const CodeGenInstruction *Inst) { // List of EVEX instructions that match VEX instructions by the encoding // but do not perform the same operation. static constexpr const char *ExceptionList[] = { "VCVTQQ2PD", "VCVTQQ2PS", "VPMAXSQ", "VPMAXUQ", "VPMINSQ", "VPMINUQ", "VPMULLQ", "VPSRAQ", "VDBPSADBW", "VRNDSCALE", "VSCALEFPS" }; // Instruction's name starts with one of the entries in the exception list for (StringRef InstStr : ExceptionList) { if (Inst->TheDef->getName().startswith(InstStr)) return true; } return false; } }; void X86EVEX2VEXTablesEmitter::printTable(const std::vector &Table, raw_ostream &OS) { std::string Size = (Table == EVEX2VEX128) ? "128" : "256"; OS << "// X86 EVEX encoded instructions that have a VEX " << Size << " encoding\n" << "// (table format: ).\n" << "static const X86EvexToVexCompressTableEntry X86EvexToVex" << Size << "CompressTable[] = {\n" << " // EVEX scalar with corresponding VEX.\n"; // Print all entries added to the table for (auto Pair : Table) { OS << " { X86::" << Pair.first->TheDef->getName() << ", X86::" << Pair.second->TheDef->getName() << " },\n"; } // Some VEX instructions were duplicated to multiple EVEX versions due the // introduction of mask variants, and thus some of the EVEX versions have // different encoding than the VEX instruction. In order to maximize the // compression we add these entries manually. static constexpr ManualEntry ManuallyAddedEntries[] = { // EVEX-Inst VEX-Inst Is128-bit {"VMOVDQU8Z128mr", "VMOVDQUmr", true}, {"VMOVDQU8Z128rm", "VMOVDQUrm", true}, {"VMOVDQU8Z128rr", "VMOVDQUrr", true}, {"VMOVDQU8Z128rr_REV", "VMOVDQUrr_REV", true}, {"VMOVDQU16Z128mr", "VMOVDQUmr", true}, {"VMOVDQU16Z128rm", "VMOVDQUrm", true}, {"VMOVDQU16Z128rr", "VMOVDQUrr", true}, {"VMOVDQU16Z128rr_REV", "VMOVDQUrr_REV", true}, {"VMOVDQU8Z256mr", "VMOVDQUYmr", false}, {"VMOVDQU8Z256rm", "VMOVDQUYrm", false}, {"VMOVDQU8Z256rr", "VMOVDQUYrr", false}, {"VMOVDQU8Z256rr_REV", "VMOVDQUYrr_REV", false}, {"VMOVDQU16Z256mr", "VMOVDQUYmr", false}, {"VMOVDQU16Z256rm", "VMOVDQUYrm", false}, {"VMOVDQU16Z256rr", "VMOVDQUYrr", false}, {"VMOVDQU16Z256rr_REV", "VMOVDQUYrr_REV", false}, {"VPERMILPDZ128mi", "VPERMILPDmi", true}, {"VPERMILPDZ128ri", "VPERMILPDri", true}, {"VPERMILPDZ128rm", "VPERMILPDrm", true}, {"VPERMILPDZ128rr", "VPERMILPDrr", true}, {"VPERMILPDZ256mi", "VPERMILPDYmi", false}, {"VPERMILPDZ256ri", "VPERMILPDYri", false}, {"VPERMILPDZ256rm", "VPERMILPDYrm", false}, {"VPERMILPDZ256rr", "VPERMILPDYrr", false}, {"VPBROADCASTQZ128m", "VPBROADCASTQrm", true}, {"VPBROADCASTQZ128r", "VPBROADCASTQrr", true}, {"VPBROADCASTQZ256m", "VPBROADCASTQYrm", false}, {"VPBROADCASTQZ256r", "VPBROADCASTQYrr", false}, {"VBROADCASTSDZ256m", "VBROADCASTSDYrm", false}, {"VBROADCASTSDZ256r", "VBROADCASTSDYrr", false}, {"VEXTRACTF64x2Z256mr", "VEXTRACTF128mr", false}, {"VEXTRACTF64x2Z256rr", "VEXTRACTF128rr", false}, {"VEXTRACTI64x2Z256mr", "VEXTRACTI128mr", false}, {"VEXTRACTI64x2Z256rr", "VEXTRACTI128rr", false}, {"VINSERTF64x2Z256rm", "VINSERTF128rm", false}, {"VINSERTF64x2Z256rr", "VINSERTF128rr", false}, {"VINSERTI64x2Z256rm", "VINSERTI128rm", false}, {"VINSERTI64x2Z256rr", "VINSERTI128rr", false} }; // Print the manually added entries for (const ManualEntry &Entry : ManuallyAddedEntries) { if ((Table == EVEX2VEX128 && Entry.Is128Bit) || (Table == EVEX2VEX256 && !Entry.Is128Bit)) { OS << " { X86::" << Entry.EVEXInstStr << ", X86::" << Entry.VEXInstStr << " },\n"; } } OS << "};\n\n"; } // Return true if the 2 BitsInits are equal static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { if (B1->getNumBits() != B2->getNumBits()) PrintFatalError("Comparing two BitsInits with different sizes!"); for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { if (BitInit *Bit1 = dyn_cast(B1->getBit(i))) { if (BitInit *Bit2 = dyn_cast(B2->getBit(i))) { if (Bit1->getValue() != Bit2->getValue()) return false; } else PrintFatalError("Invalid BitsInit bit"); } else PrintFatalError("Invalid BitsInit bit"); } return true; } // Calculates the integer value residing BitsInit object static inline uint64_t getValueFromBitsInit(const BitsInit *B) { uint64_t Value = 0; for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { if (BitInit *Bit = dyn_cast(B->getBit(i))) Value |= uint64_t(Bit->getValue()) << i; else PrintFatalError("Invalid VectSize bit"); } return Value; } // Function object - Operator() returns true if the given VEX instruction // matches the EVEX instruction of this object. class IsMatch { const CodeGenInstruction *Inst; public: IsMatch(const CodeGenInstruction *Inst) : Inst(Inst) {} bool operator()(const CodeGenInstruction *Inst2) { Record *Rec1 = Inst->TheDef; Record *Rec2 = Inst2->TheDef; uint64_t Rec1WVEX = getValueFromBitsInit(Rec1->getValueAsBitsInit("VEX_WPrefix")); uint64_t Rec2WVEX = getValueFromBitsInit(Rec2->getValueAsBitsInit("VEX_WPrefix")); if (Rec2->getValueAsDef("OpEnc")->getName().str() != "EncVEX" || // VEX/EVEX fields Rec2->getValueAsDef("OpPrefix") != Rec1->getValueAsDef("OpPrefix") || Rec2->getValueAsDef("OpMap") != Rec1->getValueAsDef("OpMap") || Rec2->getValueAsBit("hasVEX_4V") != Rec1->getValueAsBit("hasVEX_4V") || !equalBitsInits(Rec2->getValueAsBitsInit("EVEX_LL"), Rec1->getValueAsBitsInit("EVEX_LL")) || (Rec1WVEX != 2 && Rec2WVEX != 2 && Rec1WVEX != Rec2WVEX) || // Instruction's format Rec2->getValueAsDef("Form") != Rec1->getValueAsDef("Form") || Rec2->getValueAsBit("isAsmParserOnly") != Rec1->getValueAsBit("isAsmParserOnly")) return false; // This is needed for instructions with intrinsic version (_Int). // Where the only difference is the size of the operands. // For example: VUCOMISDZrm and Int_VUCOMISDrm // Also for instructions that their EVEX version was upgraded to work with // k-registers. For example VPCMPEQBrm (xmm output register) and // VPCMPEQBZ128rm (k register output register). for (unsigned i = 0; i < Inst->Operands.size(); i++) { Record *OpRec1 = Inst->Operands[i].Rec; Record *OpRec2 = Inst2->Operands[i].Rec; if (OpRec1 == OpRec2) continue; if (isRegisterOperand(OpRec1) && isRegisterOperand(OpRec2)) { if (getRegOperandSize(OpRec1) != getRegOperandSize(OpRec2)) return false; } else if (isMemoryOperand(OpRec1) && isMemoryOperand(OpRec2)) { return false; } else if (isImmediateOperand(OpRec1) && isImmediateOperand(OpRec2)) { if (OpRec1->getValueAsDef("Type") != OpRec2->getValueAsDef("Type")) return false; } else return false; } return true; } private: static inline bool isRegisterOperand(const Record *Rec) { return Rec->isSubClassOf("RegisterClass") || Rec->isSubClassOf("RegisterOperand"); } static inline bool isMemoryOperand(const Record *Rec) { return Rec->isSubClassOf("Operand") && Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; } static inline bool isImmediateOperand(const Record *Rec) { return Rec->isSubClassOf("Operand") && Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; } static inline unsigned int getRegOperandSize(const Record *RegRec) { if (RegRec->isSubClassOf("RegisterClass")) return RegRec->getValueAsInt("Alignment"); if (RegRec->isSubClassOf("RegisterOperand")) return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment"); llvm_unreachable("Register operand's size not known!"); } }; void X86EVEX2VEXTablesEmitter::run(raw_ostream &OS) { emitSourceFileHeader("X86 EVEX2VEX tables", OS); ArrayRef NumberedInstructions = Target.getInstructionsByEnumValue(); for (const CodeGenInstruction *Inst : NumberedInstructions) { // Filter non-X86 instructions. if (!Inst->TheDef->isSubClassOf("X86Inst")) continue; // Add VEX encoded instructions to one of VEXInsts vectors according to // it's opcode. if (Inst->TheDef->getValueAsDef("OpEnc")->getName() == "EncVEX") { uint64_t Opcode = getValueFromBitsInit(Inst->TheDef-> getValueAsBitsInit("Opcode")); VEXInsts[Opcode].push_back(Inst); } // Add relevant EVEX encoded instructions to EVEXInsts else if (Inst->TheDef->getValueAsDef("OpEnc")->getName() == "EncEVEX" && !Inst->TheDef->getValueAsBit("hasEVEX_K") && !Inst->TheDef->getValueAsBit("hasEVEX_B") && getValueFromBitsInit(Inst->TheDef-> getValueAsBitsInit("EVEX_LL")) != 2 && !inExceptionList(Inst)) EVEXInsts.push_back(Inst); } for (const CodeGenInstruction *EVEXInst : EVEXInsts) { uint64_t Opcode = getValueFromBitsInit(EVEXInst->TheDef-> getValueAsBitsInit("Opcode")); // For each EVEX instruction look for a VEX match in the appropriate vector // (instructions with the same opcode) using function object IsMatch. auto Match = llvm::find_if(VEXInsts[Opcode], IsMatch(EVEXInst)); if (Match != VEXInsts[Opcode].end()) { const CodeGenInstruction *VEXInst = *Match; // In case a match is found add new entry to the appropriate table switch (getValueFromBitsInit( EVEXInst->TheDef->getValueAsBitsInit("EVEX_LL"))) { case 0: EVEX2VEX128.push_back(std::make_pair(EVEXInst, VEXInst)); // {0,0} break; case 1: EVEX2VEX256.push_back(std::make_pair(EVEXInst, VEXInst)); // {0,1} break; default: llvm_unreachable("Instruction's size not fit for the mapping!"); } } } // Print both tables printTable(EVEX2VEX128, OS); printTable(EVEX2VEX256, OS); } } namespace llvm { void EmitX86EVEX2VEXTables(RecordKeeper &RK, raw_ostream &OS) { X86EVEX2VEXTablesEmitter(RK).run(OS); } }