//===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the template classes ExplodedNode and ExplodedGraph, // which represent a path-sensitive, intra-procedural "exploded graph." // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ParentMap.h" #include "clang/AST/Stmt.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Analysis/Support/BumpVector.h" #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include #include #include using namespace clang; using namespace ento; //===----------------------------------------------------------------------===// // Cleanup. //===----------------------------------------------------------------------===// ExplodedGraph::ExplodedGraph() = default; ExplodedGraph::~ExplodedGraph() = default; //===----------------------------------------------------------------------===// // Node reclamation. //===----------------------------------------------------------------------===// bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) { if (!Ex->isLValue()) return false; return isa(Ex); } bool ExplodedGraph::shouldCollect(const ExplodedNode *node) { // First, we only consider nodes for reclamation of the following // conditions apply: // // (1) 1 predecessor (that has one successor) // (2) 1 successor (that has one predecessor) // // If a node has no successor it is on the "frontier", while a node // with no predecessor is a root. // // After these prerequisites, we discard all "filler" nodes that // are used only for intermediate processing, and are not essential // for analyzer history: // // (a) PreStmtPurgeDeadSymbols // // We then discard all other nodes where *all* of the following conditions // apply: // // (3) The ProgramPoint is for a PostStmt, but not a PostStore. // (4) There is no 'tag' for the ProgramPoint. // (5) The 'store' is the same as the predecessor. // (6) The 'GDM' is the same as the predecessor. // (7) The LocationContext is the same as the predecessor. // (8) Expressions that are *not* lvalue expressions. // (9) The PostStmt isn't for a non-consumed Stmt or Expr. // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or // PreImplicitCall (so that we would be able to find it when retrying a // call with no inlining). // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well. // Conditions 1 and 2. if (node->pred_size() != 1 || node->succ_size() != 1) return false; const ExplodedNode *pred = *(node->pred_begin()); if (pred->succ_size() != 1) return false; const ExplodedNode *succ = *(node->succ_begin()); if (succ->pred_size() != 1) return false; // Now reclaim any nodes that are (by definition) not essential to // analysis history and are not consulted by any client code. ProgramPoint progPoint = node->getLocation(); if (progPoint.getAs()) return !progPoint.getTag(); // Condition 3. if (!progPoint.getAs() || progPoint.getAs()) return false; // Condition 4. if (progPoint.getTag()) return false; // Conditions 5, 6, and 7. ProgramStateRef state = node->getState(); ProgramStateRef pred_state = pred->getState(); if (state->store != pred_state->store || state->GDM != pred_state->GDM || progPoint.getLocationContext() != pred->getLocationContext()) return false; // All further checks require expressions. As per #3, we know that we have // a PostStmt. const Expr *Ex = dyn_cast(progPoint.castAs().getStmt()); if (!Ex) return false; // Condition 8. // Do not collect nodes for "interesting" lvalue expressions since they are // used extensively for generating path diagnostics. if (isInterestingLValueExpr(Ex)) return false; // Condition 9. // Do not collect nodes for non-consumed Stmt or Expr to ensure precise // diagnostic generation; specifically, so that we could anchor arrows // pointing to the beginning of statements (as written in code). const ParentMap &PM = progPoint.getLocationContext()->getParentMap(); if (!PM.isConsumedExpr(Ex)) return false; // Condition 10. const ProgramPoint SuccLoc = succ->getLocation(); if (std::optional SP = SuccLoc.getAs()) if (CallEvent::isCallStmt(SP->getStmt())) return false; // Condition 10, continuation. if (SuccLoc.getAs() || SuccLoc.getAs()) return false; return true; } void ExplodedGraph::collectNode(ExplodedNode *node) { // Removing a node means: // (a) changing the predecessors successor to the successor of this node // (b) changing the successors predecessor to the predecessor of this node // (c) Putting 'node' onto freeNodes. assert(node->pred_size() == 1 || node->succ_size() == 1); ExplodedNode *pred = *(node->pred_begin()); ExplodedNode *succ = *(node->succ_begin()); pred->replaceSuccessor(succ); succ->replacePredecessor(pred); FreeNodes.push_back(node); Nodes.RemoveNode(node); --NumNodes; node->~ExplodedNode(); } void ExplodedGraph::reclaimRecentlyAllocatedNodes() { if (ChangedNodes.empty()) return; // Only periodically reclaim nodes so that we can build up a set of // nodes that meet the reclamation criteria. Freshly created nodes // by definition have no successor, and thus cannot be reclaimed (see below). assert(ReclaimCounter > 0); if (--ReclaimCounter != 0) return; ReclaimCounter = ReclaimNodeInterval; for (const auto node : ChangedNodes) if (shouldCollect(node)) collectNode(node); ChangedNodes.clear(); } //===----------------------------------------------------------------------===// // ExplodedNode. //===----------------------------------------------------------------------===// // An NodeGroup's storage type is actually very much like a TinyPtrVector: // it can be either a pointer to a single ExplodedNode, or a pointer to a // BumpVector allocated with the ExplodedGraph's allocator. This allows the // common case of single-node NodeGroups to be implemented with no extra memory. // // Consequently, each of the NodeGroup methods have up to four cases to handle: // 1. The flag is set and this group does not actually contain any nodes. // 2. The group is empty, in which case the storage value is null. // 3. The group contains a single node. // 4. The group contains more than one node. using ExplodedNodeVector = BumpVector; using GroupStorage = llvm::PointerUnion; void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) { assert(!V->isSink()); Preds.addNode(V, G); V->Succs.addNode(this, G); } void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) { assert(!getFlag()); GroupStorage &Storage = reinterpret_cast(P); assert(Storage.is()); Storage = node; assert(Storage.is()); } void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) { assert(!getFlag()); GroupStorage &Storage = reinterpret_cast(P); if (Storage.isNull()) { Storage = N; assert(Storage.is()); return; } ExplodedNodeVector *V = Storage.dyn_cast(); if (!V) { // Switch from single-node to multi-node representation. ExplodedNode *Old = Storage.get(); BumpVectorContext &Ctx = G.getNodeAllocator(); V = new (G.getAllocator()) ExplodedNodeVector(Ctx, 4); V->push_back(Old, Ctx); Storage = V; assert(!getFlag()); assert(Storage.is()); } V->push_back(N, G.getNodeAllocator()); } unsigned ExplodedNode::NodeGroup::size() const { if (getFlag()) return 0; const GroupStorage &Storage = reinterpret_cast(P); if (Storage.isNull()) return 0; if (ExplodedNodeVector *V = Storage.dyn_cast()) return V->size(); return 1; } ExplodedNode * const *ExplodedNode::NodeGroup::begin() const { if (getFlag()) return nullptr; const GroupStorage &Storage = reinterpret_cast(P); if (Storage.isNull()) return nullptr; if (ExplodedNodeVector *V = Storage.dyn_cast()) return V->begin(); return Storage.getAddrOfPtr1(); } ExplodedNode * const *ExplodedNode::NodeGroup::end() const { if (getFlag()) return nullptr; const GroupStorage &Storage = reinterpret_cast(P); if (Storage.isNull()) return nullptr; if (ExplodedNodeVector *V = Storage.dyn_cast()) return V->end(); return Storage.getAddrOfPtr1() + 1; } bool ExplodedNode::isTrivial() const { return pred_size() == 1 && succ_size() == 1 && getFirstPred()->getState()->getID() == getState()->getID() && getFirstPred()->succ_size() == 1; } const CFGBlock *ExplodedNode::getCFGBlock() const { ProgramPoint P = getLocation(); if (auto BEP = P.getAs()) return BEP->getBlock(); // Find the node's current statement in the CFG. // FIXME: getStmtForDiagnostics() does nasty things in order to provide // a valid statement for body farms, do we need this behavior here? if (const Stmt *S = getStmtForDiagnostics()) return getLocationContext() ->getAnalysisDeclContext() ->getCFGStmtMap() ->getBlock(S); return nullptr; } static const LocationContext * findTopAutosynthesizedParentContext(const LocationContext *LC) { assert(LC->getAnalysisDeclContext()->isBodyAutosynthesized()); const LocationContext *ParentLC = LC->getParent(); assert(ParentLC && "We don't start analysis from autosynthesized code"); while (ParentLC->getAnalysisDeclContext()->isBodyAutosynthesized()) { LC = ParentLC; ParentLC = LC->getParent(); assert(ParentLC && "We don't start analysis from autosynthesized code"); } return LC; } const Stmt *ExplodedNode::getStmtForDiagnostics() const { // We cannot place diagnostics on autosynthesized code. // Put them onto the call site through which we jumped into autosynthesized // code for the first time. const LocationContext *LC = getLocationContext(); if (LC->getAnalysisDeclContext()->isBodyAutosynthesized()) { // It must be a stack frame because we only autosynthesize functions. return cast(findTopAutosynthesizedParentContext(LC)) ->getCallSite(); } // Otherwise, see if the node's program point directly points to a statement. // FIXME: Refactor into a ProgramPoint method? ProgramPoint P = getLocation(); if (auto SP = P.getAs()) return SP->getStmt(); if (auto BE = P.getAs()) return BE->getSrc()->getTerminatorStmt(); if (auto CE = P.getAs()) return CE->getCallExpr(); if (auto CEE = P.getAs()) return CEE->getCalleeContext()->getCallSite(); if (auto PIPP = P.getAs()) return PIPP->getInitializer()->getInit(); if (auto CEB = P.getAs()) return CEB->getReturnStmt(); if (auto FEP = P.getAs()) return FEP->getStmt(); return nullptr; } const Stmt *ExplodedNode::getNextStmtForDiagnostics() const { for (const ExplodedNode *N = getFirstSucc(); N; N = N->getFirstSucc()) { if (const Stmt *S = N->getStmtForDiagnostics()) { // Check if the statement is '?' or '&&'/'||'. These are "merges", // not actual statement points. switch (S->getStmtClass()) { case Stmt::ChooseExprClass: case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: continue; case Stmt::BinaryOperatorClass: { BinaryOperatorKind Op = cast(S)->getOpcode(); if (Op == BO_LAnd || Op == BO_LOr) continue; break; } default: break; } // We found the statement, so return it. return S; } } return nullptr; } const Stmt *ExplodedNode::getPreviousStmtForDiagnostics() const { for (const ExplodedNode *N = getFirstPred(); N; N = N->getFirstPred()) if (const Stmt *S = N->getStmtForDiagnostics()) return S; return nullptr; } const Stmt *ExplodedNode::getCurrentOrPreviousStmtForDiagnostics() const { if (const Stmt *S = getStmtForDiagnostics()) return S; return getPreviousStmtForDiagnostics(); } ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L, ProgramStateRef State, bool IsSink, bool* IsNew) { // Profile 'State' to determine if we already have an existing node. llvm::FoldingSetNodeID profile; void *InsertPos = nullptr; NodeTy::Profile(profile, L, State, IsSink); NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos); if (!V) { if (!FreeNodes.empty()) { V = FreeNodes.back(); FreeNodes.pop_back(); } else { // Allocate a new node. V = getAllocator().Allocate(); } ++NumNodes; new (V) NodeTy(L, State, NumNodes, IsSink); if (ReclaimNodeInterval) ChangedNodes.push_back(V); // Insert the node into the node set and return it. Nodes.InsertNode(V, InsertPos); if (IsNew) *IsNew = true; } else if (IsNew) *IsNew = false; return V; } ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L, ProgramStateRef State, int64_t Id, bool IsSink) { NodeTy *V = getAllocator().Allocate(); new (V) NodeTy(L, State, Id, IsSink); return V; } std::unique_ptr ExplodedGraph::trim(ArrayRef Sinks, InterExplodedGraphMap *ForwardMap, InterExplodedGraphMap *InverseMap) const { if (Nodes.empty()) return nullptr; using Pass1Ty = llvm::DenseSet; Pass1Ty Pass1; using Pass2Ty = InterExplodedGraphMap; InterExplodedGraphMap Pass2Scratch; Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch; SmallVector WL1, WL2; // ===- Pass 1 (reverse DFS) -=== for (const auto Sink : Sinks) if (Sink) WL1.push_back(Sink); // Process the first worklist until it is empty. while (!WL1.empty()) { const ExplodedNode *N = WL1.pop_back_val(); // Have we already visited this node? If so, continue to the next one. if (!Pass1.insert(N).second) continue; // If this is a root enqueue it to the second worklist. if (N->Preds.empty()) { WL2.push_back(N); continue; } // Visit our predecessors and enqueue them. WL1.append(N->Preds.begin(), N->Preds.end()); } // We didn't hit a root? Return with a null pointer for the new graph. if (WL2.empty()) return nullptr; // Create an empty graph. std::unique_ptr G = MakeEmptyGraph(); // ===- Pass 2 (forward DFS to construct the new graph) -=== while (!WL2.empty()) { const ExplodedNode *N = WL2.pop_back_val(); // Skip this node if we have already processed it. if (Pass2.contains(N)) continue; // Create the corresponding node in the new graph and record the mapping // from the old node to the new node. ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State, N->getID(), N->isSink()); Pass2[N] = NewN; // Also record the reverse mapping from the new node to the old node. if (InverseMap) (*InverseMap)[NewN] = N; // If this node is a root, designate it as such in the graph. if (N->Preds.empty()) G->addRoot(NewN); // In the case that some of the intended predecessors of NewN have already // been created, we should hook them up as predecessors. // Walk through the predecessors of 'N' and hook up their corresponding // nodes in the new graph (if any) to the freshly created node. for (const ExplodedNode *Pred : N->Preds) { Pass2Ty::iterator PI = Pass2.find(Pred); if (PI == Pass2.end()) continue; NewN->addPredecessor(const_cast(PI->second), *G); } // In the case that some of the intended successors of NewN have already // been created, we should hook them up as successors. Otherwise, enqueue // the new nodes from the original graph that should have nodes created // in the new graph. for (const ExplodedNode *Succ : N->Succs) { Pass2Ty::iterator PI = Pass2.find(Succ); if (PI != Pass2.end()) { const_cast(PI->second)->addPredecessor(NewN, *G); continue; } // Enqueue nodes to the worklist that were marked during pass 1. if (Pass1.count(Succ)) WL2.push_back(Succ); } } return G; }