//===-- floatundidf.c - Implement __floatundidf ---------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements __floatundidf for the compiler_rt library. // //===----------------------------------------------------------------------===// // Returns: convert a to a double, rounding toward even. // Assumption: double is a IEEE 64 bit floating point type // du_int is a 64 bit integral type // seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm // mmmm #include "int_lib.h" #ifndef __SOFT_FP__ // Support for systems that have hardware floating-point; we'll set the inexact // flag as a side-effect of this computation. COMPILER_RT_ABI double __floatundidf(du_int a) { static const double twop52 = 4503599627370496.0; // 0x1.0p52 static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84 static const double twop84_plus_twop52 = 19342813118337666422669312.0; // 0x1.00000001p84 union { uint64_t x; double d; } high = {.d = twop84}; union { uint64_t x; double d; } low = {.d = twop52}; high.x |= a >> 32; low.x |= a & UINT64_C(0x00000000ffffffff); const double result = (high.d - twop84_plus_twop52) + low.d; return result; } #else // Support for systems that don't have hardware floating-point; there are no // flags to set, and we don't want to code-gen to an unknown soft-float // implementation. COMPILER_RT_ABI double __floatundidf(du_int a) { if (a == 0) return 0.0; const unsigned N = sizeof(du_int) * CHAR_BIT; int sd = N - __builtin_clzll(a); // number of significant digits int e = sd - 1; // exponent if (sd > DBL_MANT_DIG) { // start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx // finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR // 12345678901234567890123456 // 1 = msb 1 bit // P = bit DBL_MANT_DIG-1 bits to the right of 1 // Q = bit DBL_MANT_DIG bits to the right of 1 // R = "or" of all bits to the right of Q switch (sd) { case DBL_MANT_DIG + 1: a <<= 1; break; case DBL_MANT_DIG + 2: break; default: a = (a >> (sd - (DBL_MANT_DIG + 2))) | ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0); }; // finish: a |= (a & 4) != 0; // Or P into R ++a; // round - this step may add a significant bit a >>= 2; // dump Q and R // a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits if (a & ((du_int)1 << DBL_MANT_DIG)) { a >>= 1; ++e; } // a is now rounded to DBL_MANT_DIG bits } else { a <<= (DBL_MANT_DIG - sd); // a is now rounded to DBL_MANT_DIG bits } double_bits fb; fb.u.s.high = ((su_int)(e + 1023) << 20) | // exponent ((su_int)(a >> 32) & 0x000FFFFF); // mantissa-high fb.u.s.low = (su_int)a; // mantissa-low return fb.f; } #endif #if defined(__ARM_EABI__) #if defined(COMPILER_RT_ARMHF_TARGET) AEABI_RTABI double __aeabi_ul2d(du_int a) { return __floatundidf(a); } #else COMPILER_RT_ALIAS(__floatundidf, __aeabi_ul2d) #endif #endif