//===-- gcc_personality_v0.c - Implement __gcc_personality_v0 -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "int_lib.h" #include #include /* * XXX On FreeBSD, this file is compiled into three libraries: * - libcompiler_rt * - libgcc_eh * - libgcc_s * * In the former, the include path points to the contrib/libcxxrt/unwind-arm.h * copy of unwind.h. In the latter, the include path points to the * contrib/libunwind/include/unwind.h header (LLVM libunwind). * * Neither (seemingly redundant) variant of unwind.h needs the redefinitions * provided in the "helpful" header below, and libcxxrt's unwind-arm.h provides * *no* useful distinguishing macros, so just forcibly disable the helper * header on FreeBSD. */ #if defined(__arm__) && !defined(__ARM_DWARF_EH__) && \ !defined(__USING_SJLJ_EXCEPTIONS__) && !defined(__FreeBSD__) // When building with older compilers (e.g. clang <3.9), it is possible that we // have a version of unwind.h which does not provide the EHABI declarations // which are quired for the C personality to conform to the specification. In // order to provide forward compatibility for such compilers, we re-declare the // necessary interfaces in the helper to permit a standalone compilation of the // builtins (which contains the C unwinding personality for historical reasons). #include "unwind-ehabi-helpers.h" #endif #if defined(__SEH__) && !defined(__USING_SJLJ_EXCEPTIONS__) #include #include EXCEPTION_DISPOSITION _GCC_specific_handler(PEXCEPTION_RECORD, void *, PCONTEXT, PDISPATCHER_CONTEXT, _Unwind_Personality_Fn); #endif // Pointer encodings documented at: // http://refspecs.freestandards.org/LSB_1.3.0/gLSB/gLSB/ehframehdr.html #define DW_EH_PE_omit 0xff // no data follows #define DW_EH_PE_absptr 0x00 #define DW_EH_PE_uleb128 0x01 #define DW_EH_PE_udata2 0x02 #define DW_EH_PE_udata4 0x03 #define DW_EH_PE_udata8 0x04 #define DW_EH_PE_sleb128 0x09 #define DW_EH_PE_sdata2 0x0A #define DW_EH_PE_sdata4 0x0B #define DW_EH_PE_sdata8 0x0C #define DW_EH_PE_pcrel 0x10 #define DW_EH_PE_textrel 0x20 #define DW_EH_PE_datarel 0x30 #define DW_EH_PE_funcrel 0x40 #define DW_EH_PE_aligned 0x50 #define DW_EH_PE_indirect 0x80 // gcc extension // read a uleb128 encoded value and advance pointer static size_t readULEB128(const uint8_t **data) { size_t result = 0; size_t shift = 0; unsigned char byte; const uint8_t *p = *data; do { byte = *p++; result |= (byte & 0x7f) << shift; shift += 7; } while (byte & 0x80); *data = p; return result; } // read a pointer encoded value and advance pointer static uintptr_t readEncodedPointer(const uint8_t **data, uint8_t encoding) { const uint8_t *p = *data; uintptr_t result = 0; if (encoding == DW_EH_PE_omit) return 0; // first get value switch (encoding & 0x0F) { case DW_EH_PE_absptr: result = *((const uintptr_t *)p); p += sizeof(uintptr_t); break; case DW_EH_PE_uleb128: result = readULEB128(&p); break; case DW_EH_PE_udata2: result = *((const uint16_t *)p); p += sizeof(uint16_t); break; case DW_EH_PE_udata4: result = *((const uint32_t *)p); p += sizeof(uint32_t); break; case DW_EH_PE_udata8: result = *((const uint64_t *)p); p += sizeof(uint64_t); break; case DW_EH_PE_sdata2: result = *((const int16_t *)p); p += sizeof(int16_t); break; case DW_EH_PE_sdata4: result = *((const int32_t *)p); p += sizeof(int32_t); break; case DW_EH_PE_sdata8: result = *((const int64_t *)p); p += sizeof(int64_t); break; case DW_EH_PE_sleb128: default: // not supported compilerrt_abort(); break; } // then add relative offset switch (encoding & 0x70) { case DW_EH_PE_absptr: // do nothing break; case DW_EH_PE_pcrel: result += (uintptr_t)(*data); break; case DW_EH_PE_textrel: case DW_EH_PE_datarel: case DW_EH_PE_funcrel: case DW_EH_PE_aligned: default: // not supported compilerrt_abort(); break; } // then apply indirection if (encoding & DW_EH_PE_indirect) { result = *((const uintptr_t *)result); } *data = p; return result; } #if defined(__arm__) && !defined(__USING_SJLJ_EXCEPTIONS__) && \ !defined(__ARM_DWARF_EH__) && !defined(__SEH__) #define USING_ARM_EHABI 1 _Unwind_Reason_Code __gnu_unwind_frame(struct _Unwind_Exception *, struct _Unwind_Context *); #endif static inline _Unwind_Reason_Code continueUnwind(struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context) { #if USING_ARM_EHABI // On ARM EHABI the personality routine is responsible for actually // unwinding a single stack frame before returning (ARM EHABI Sec. 6.1). if (__gnu_unwind_frame(exceptionObject, context) != _URC_OK) return _URC_FAILURE; #endif return _URC_CONTINUE_UNWIND; } // The C compiler makes references to __gcc_personality_v0 in // the dwarf unwind information for translation units that use // __attribute__((cleanup(xx))) on local variables. // This personality routine is called by the system unwinder // on each frame as the stack is unwound during a C++ exception // throw through a C function compiled with -fexceptions. #if __USING_SJLJ_EXCEPTIONS__ // the setjump-longjump based exceptions personality routine has a // different name COMPILER_RT_ABI _Unwind_Reason_Code __gcc_personality_sj0( int version, _Unwind_Action actions, uint64_t exceptionClass, struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context) #elif USING_ARM_EHABI // The ARM EHABI personality routine has a different signature. COMPILER_RT_ABI _Unwind_Reason_Code __gcc_personality_v0( _Unwind_State state, struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context) #elif defined(__SEH__) static _Unwind_Reason_Code __gcc_personality_imp( int version, _Unwind_Action actions, uint64_t exceptionClass, struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context) #else COMPILER_RT_ABI _Unwind_Reason_Code __gcc_personality_v0( int version, _Unwind_Action actions, uint64_t exceptionClass, struct _Unwind_Exception *exceptionObject, struct _Unwind_Context *context) #endif { // Since C does not have catch clauses, there is nothing to do during // phase 1 (the search phase). #if USING_ARM_EHABI // After resuming from a cleanup we should also continue on to the next // frame straight away. if ((state & _US_ACTION_MASK) != _US_UNWIND_FRAME_STARTING) #else if (actions & _UA_SEARCH_PHASE) #endif return continueUnwind(exceptionObject, context); // There is nothing to do if there is no LSDA for this frame. const uint8_t *lsda = (uint8_t *)_Unwind_GetLanguageSpecificData(context); if (lsda == (uint8_t *)0) return continueUnwind(exceptionObject, context); uintptr_t pc = (uintptr_t)_Unwind_GetIP(context) - 1; uintptr_t funcStart = (uintptr_t)_Unwind_GetRegionStart(context); uintptr_t pcOffset = pc - funcStart; // Parse LSDA header. uint8_t lpStartEncoding = *lsda++; if (lpStartEncoding != DW_EH_PE_omit) { readEncodedPointer(&lsda, lpStartEncoding); } uint8_t ttypeEncoding = *lsda++; if (ttypeEncoding != DW_EH_PE_omit) { readULEB128(&lsda); } // Walk call-site table looking for range that includes current PC. uint8_t callSiteEncoding = *lsda++; size_t callSiteTableLength = readULEB128(&lsda); const uint8_t *callSiteTableStart = lsda; const uint8_t *callSiteTableEnd = callSiteTableStart + callSiteTableLength; const uint8_t *p = callSiteTableStart; while (p < callSiteTableEnd) { uintptr_t start = readEncodedPointer(&p, callSiteEncoding); size_t length = readEncodedPointer(&p, callSiteEncoding); size_t landingPad = readEncodedPointer(&p, callSiteEncoding); readULEB128(&p); // action value not used for C code if (landingPad == 0) continue; // no landing pad for this entry if ((start <= pcOffset) && (pcOffset < (start + length))) { // Found landing pad for the PC. // Set Instruction Pointer to so we re-enter function // at landing pad. The landing pad is created by the compiler // to take two parameters in registers. _Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (uintptr_t)exceptionObject); _Unwind_SetGR(context, __builtin_eh_return_data_regno(1), 0); _Unwind_SetIP(context, (funcStart + landingPad)); return _URC_INSTALL_CONTEXT; } } // No landing pad found, continue unwinding. return continueUnwind(exceptionObject, context); } #if defined(__SEH__) && !defined(__USING_SJLJ_EXCEPTIONS__) COMPILER_RT_ABI EXCEPTION_DISPOSITION __gcc_personality_seh0(PEXCEPTION_RECORD ms_exc, void *this_frame, PCONTEXT ms_orig_context, PDISPATCHER_CONTEXT ms_disp) { return _GCC_specific_handler(ms_exc, this_frame, ms_orig_context, ms_disp, __gcc_personality_imp); } #endif