//===-- guarded_pool_allocator.cpp ------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "gwp_asan/guarded_pool_allocator.h" #include "gwp_asan/optional/segv_handler.h" #include "gwp_asan/options.h" #include "gwp_asan/random.h" #include "gwp_asan/utilities.h" // RHEL creates the PRIu64 format macro (for printing uint64_t's) only when this // macro is defined before including . #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS 1 #endif #include #include #include #include #include #include #include using AllocationMetadata = gwp_asan::AllocationMetadata; using Error = gwp_asan::Error; namespace gwp_asan { namespace { // Forward declare the pointer to the singleton version of this class. // Instantiated during initialisation, this allows the signal handler // to find this class in order to deduce the root cause of failures. Must not be // referenced by users outside this translation unit, in order to avoid // init-order-fiasco. GuardedPoolAllocator *SingletonPtr = nullptr; class ScopedBoolean { public: ScopedBoolean(bool &B) : Bool(B) { Bool = true; } ~ScopedBoolean() { Bool = false; } private: bool &Bool; }; } // anonymous namespace // Gets the singleton implementation of this class. Thread-compatible until // init() is called, thread-safe afterwards. GuardedPoolAllocator *GuardedPoolAllocator::getSingleton() { return SingletonPtr; } void GuardedPoolAllocator::init(const options::Options &Opts) { // Note: We return from the constructor here if GWP-ASan is not available. // This will stop heap-allocation of class members, as well as mmap() of the // guarded slots. if (!Opts.Enabled || Opts.SampleRate == 0 || Opts.MaxSimultaneousAllocations == 0) return; Check(Opts.SampleRate >= 0, "GWP-ASan Error: SampleRate is < 0."); Check(Opts.SampleRate <= INT32_MAX, "GWP-ASan Error: SampleRate is > 2^31."); Check(Opts.MaxSimultaneousAllocations >= 0, "GWP-ASan Error: MaxSimultaneousAllocations is < 0."); SingletonPtr = this; Backtrace = Opts.Backtrace; State.MaxSimultaneousAllocations = Opts.MaxSimultaneousAllocations; State.PageSize = getPlatformPageSize(); PerfectlyRightAlign = Opts.PerfectlyRightAlign; size_t PoolBytesRequired = State.PageSize * (1 + State.MaxSimultaneousAllocations) + State.MaxSimultaneousAllocations * State.maximumAllocationSize(); void *GuardedPoolMemory = mapMemory(PoolBytesRequired, kGwpAsanGuardPageName); size_t BytesRequired = State.MaxSimultaneousAllocations * sizeof(*Metadata); Metadata = reinterpret_cast( mapMemory(BytesRequired, kGwpAsanMetadataName)); markReadWrite(Metadata, BytesRequired, kGwpAsanMetadataName); // Allocate memory and set up the free pages queue. BytesRequired = State.MaxSimultaneousAllocations * sizeof(*FreeSlots); FreeSlots = reinterpret_cast( mapMemory(BytesRequired, kGwpAsanFreeSlotsName)); markReadWrite(FreeSlots, BytesRequired, kGwpAsanFreeSlotsName); // Multiply the sample rate by 2 to give a good, fast approximation for (1 / // SampleRate) chance of sampling. if (Opts.SampleRate != 1) AdjustedSampleRatePlusOne = static_cast(Opts.SampleRate) * 2 + 1; else AdjustedSampleRatePlusOne = 2; initPRNG(); ThreadLocals.NextSampleCounter = (getRandomUnsigned32() % (AdjustedSampleRatePlusOne - 1)) + 1; State.GuardedPagePool = reinterpret_cast(GuardedPoolMemory); State.GuardedPagePoolEnd = reinterpret_cast(GuardedPoolMemory) + PoolBytesRequired; if (Opts.InstallForkHandlers) installAtFork(); } void GuardedPoolAllocator::disable() { PoolMutex.lock(); } void GuardedPoolAllocator::enable() { PoolMutex.unlock(); } void GuardedPoolAllocator::iterate(void *Base, size_t Size, iterate_callback Cb, void *Arg) { uintptr_t Start = reinterpret_cast(Base); for (size_t i = 0; i < State.MaxSimultaneousAllocations; ++i) { const AllocationMetadata &Meta = Metadata[i]; if (Meta.Addr && !Meta.IsDeallocated && Meta.Addr >= Start && Meta.Addr < Start + Size) Cb(Meta.Addr, Meta.Size, Arg); } } void GuardedPoolAllocator::uninitTestOnly() { if (State.GuardedPagePool) { unmapMemory(reinterpret_cast(State.GuardedPagePool), State.GuardedPagePoolEnd - State.GuardedPagePool, kGwpAsanGuardPageName); State.GuardedPagePool = 0; State.GuardedPagePoolEnd = 0; } if (Metadata) { unmapMemory(Metadata, State.MaxSimultaneousAllocations * sizeof(*Metadata), kGwpAsanMetadataName); Metadata = nullptr; } if (FreeSlots) { unmapMemory(FreeSlots, State.MaxSimultaneousAllocations * sizeof(*FreeSlots), kGwpAsanFreeSlotsName); FreeSlots = nullptr; } } static uintptr_t getPageAddr(uintptr_t Ptr, uintptr_t PageSize) { return Ptr & ~(PageSize - 1); } void *GuardedPoolAllocator::allocate(size_t Size) { // GuardedPagePoolEnd == 0 when GWP-ASan is disabled. If we are disabled, fall // back to the supporting allocator. if (State.GuardedPagePoolEnd == 0) return nullptr; // Protect against recursivity. if (ThreadLocals.RecursiveGuard) return nullptr; ScopedBoolean SB(ThreadLocals.RecursiveGuard); if (Size == 0 || Size > State.maximumAllocationSize()) return nullptr; size_t Index; { ScopedLock L(PoolMutex); Index = reserveSlot(); } if (Index == kInvalidSlotID) return nullptr; uintptr_t Ptr = State.slotToAddr(Index); // Should we right-align this allocation? if (getRandomUnsigned32() % 2 == 0) { AlignmentStrategy Align = AlignmentStrategy::DEFAULT; if (PerfectlyRightAlign) Align = AlignmentStrategy::PERFECT; Ptr += State.maximumAllocationSize() - rightAlignedAllocationSize(Size, Align); } AllocationMetadata *Meta = addrToMetadata(Ptr); // If a slot is multiple pages in size, and the allocation takes up a single // page, we can improve overflow detection by leaving the unused pages as // unmapped. markReadWrite(reinterpret_cast(getPageAddr(Ptr, State.PageSize)), Size, kGwpAsanAliveSlotName); Meta->RecordAllocation(Ptr, Size); Meta->AllocationTrace.RecordBacktrace(Backtrace); return reinterpret_cast(Ptr); } void GuardedPoolAllocator::trapOnAddress(uintptr_t Address, Error E) { State.FailureType = E; State.FailureAddress = Address; // Raise a SEGV by touching first guard page. volatile char *p = reinterpret_cast(State.GuardedPagePool); *p = 0; __builtin_unreachable(); } void GuardedPoolAllocator::stop() { ThreadLocals.RecursiveGuard = true; PoolMutex.tryLock(); } void GuardedPoolAllocator::deallocate(void *Ptr) { assert(pointerIsMine(Ptr) && "Pointer is not mine!"); uintptr_t UPtr = reinterpret_cast(Ptr); size_t Slot = State.getNearestSlot(UPtr); uintptr_t SlotStart = State.slotToAddr(Slot); AllocationMetadata *Meta = addrToMetadata(UPtr); if (Meta->Addr != UPtr) { // If multiple errors occur at the same time, use the first one. ScopedLock L(PoolMutex); trapOnAddress(UPtr, Error::INVALID_FREE); } // Intentionally scope the mutex here, so that other threads can access the // pool during the expensive markInaccessible() call. { ScopedLock L(PoolMutex); if (Meta->IsDeallocated) { trapOnAddress(UPtr, Error::DOUBLE_FREE); } // Ensure that the deallocation is recorded before marking the page as // inaccessible. Otherwise, a racy use-after-free will have inconsistent // metadata. Meta->RecordDeallocation(); // Ensure that the unwinder is not called if the recursive flag is set, // otherwise non-reentrant unwinders may deadlock. if (!ThreadLocals.RecursiveGuard) { ScopedBoolean B(ThreadLocals.RecursiveGuard); Meta->DeallocationTrace.RecordBacktrace(Backtrace); } } markInaccessible(reinterpret_cast(SlotStart), State.maximumAllocationSize(), kGwpAsanGuardPageName); // And finally, lock again to release the slot back into the pool. ScopedLock L(PoolMutex); freeSlot(Slot); } size_t GuardedPoolAllocator::getSize(const void *Ptr) { assert(pointerIsMine(Ptr)); ScopedLock L(PoolMutex); AllocationMetadata *Meta = addrToMetadata(reinterpret_cast(Ptr)); assert(Meta->Addr == reinterpret_cast(Ptr)); return Meta->Size; } AllocationMetadata *GuardedPoolAllocator::addrToMetadata(uintptr_t Ptr) const { return &Metadata[State.getNearestSlot(Ptr)]; } size_t GuardedPoolAllocator::reserveSlot() { // Avoid potential reuse of a slot before we have made at least a single // allocation in each slot. Helps with our use-after-free detection. if (NumSampledAllocations < State.MaxSimultaneousAllocations) return NumSampledAllocations++; if (FreeSlotsLength == 0) return kInvalidSlotID; size_t ReservedIndex = getRandomUnsigned32() % FreeSlotsLength; size_t SlotIndex = FreeSlots[ReservedIndex]; FreeSlots[ReservedIndex] = FreeSlots[--FreeSlotsLength]; return SlotIndex; } void GuardedPoolAllocator::freeSlot(size_t SlotIndex) { assert(FreeSlotsLength < State.MaxSimultaneousAllocations); FreeSlots[FreeSlotsLength++] = SlotIndex; } GWP_ASAN_TLS_INITIAL_EXEC GuardedPoolAllocator::ThreadLocalPackedVariables GuardedPoolAllocator::ThreadLocals; } // namespace gwp_asan