//===-- combined.h ----------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef SCUDO_COMBINED_H_ #define SCUDO_COMBINED_H_ #include "chunk.h" #include "common.h" #include "flags.h" #include "flags_parser.h" #include "local_cache.h" #include "memtag.h" #include "quarantine.h" #include "report.h" #include "secondary.h" #include "stack_depot.h" #include "string_utils.h" #include "tsd.h" #include "scudo/interface.h" #ifdef GWP_ASAN_HOOKS #include "gwp_asan/guarded_pool_allocator.h" #include "gwp_asan/optional/backtrace.h" #include "gwp_asan/optional/segv_handler.h" #endif // GWP_ASAN_HOOKS extern "C" inline void EmptyCallback() {} #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE // This function is not part of the NDK so it does not appear in any public // header files. We only declare/use it when targeting the platform. extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf, size_t num_entries); #endif namespace scudo { enum class Option { ReleaseInterval }; template class Allocator { public: using PrimaryT = typename Params::Primary; using CacheT = typename PrimaryT::CacheT; typedef Allocator ThisT; typedef typename Params::template TSDRegistryT TSDRegistryT; void callPostInitCallback() { static pthread_once_t OnceControl = PTHREAD_ONCE_INIT; pthread_once(&OnceControl, PostInitCallback); } struct QuarantineCallback { explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache) : Allocator(Instance), Cache(LocalCache) {} // Chunk recycling function, returns a quarantined chunk to the backend, // first making sure it hasn't been tampered with. void recycle(void *Ptr) { Chunk::UnpackedHeader Header; Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); if (UNLIKELY(Header.State != Chunk::State::Quarantined)) reportInvalidChunkState(AllocatorAction::Recycling, Ptr); Chunk::UnpackedHeader NewHeader = Header; NewHeader.State = Chunk::State::Available; Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header); void *BlockBegin = Allocator::getBlockBegin(Ptr, &NewHeader); const uptr ClassId = NewHeader.ClassId; if (LIKELY(ClassId)) Cache.deallocate(ClassId, BlockBegin); else Allocator.Secondary.deallocate(BlockBegin); } // We take a shortcut when allocating a quarantine batch by working with the // appropriate class ID instead of using Size. The compiler should optimize // the class ID computation and work with the associated cache directly. void *allocate(UNUSED uptr Size) { const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( sizeof(QuarantineBatch) + Chunk::getHeaderSize()); void *Ptr = Cache.allocate(QuarantineClassId); // Quarantine batch allocation failure is fatal. if (UNLIKELY(!Ptr)) reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId)); Ptr = reinterpret_cast(reinterpret_cast(Ptr) + Chunk::getHeaderSize()); Chunk::UnpackedHeader Header = {}; Header.ClassId = QuarantineClassId & Chunk::ClassIdMask; Header.SizeOrUnusedBytes = sizeof(QuarantineBatch); Header.State = Chunk::State::Allocated; Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); return Ptr; } void deallocate(void *Ptr) { const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( sizeof(QuarantineBatch) + Chunk::getHeaderSize()); Chunk::UnpackedHeader Header; Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); DCHECK_EQ(Header.ClassId, QuarantineClassId); DCHECK_EQ(Header.Offset, 0); DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch)); Chunk::UnpackedHeader NewHeader = Header; NewHeader.State = Chunk::State::Available; Chunk::compareExchangeHeader(Allocator.Cookie, Ptr, &NewHeader, &Header); Cache.deallocate(QuarantineClassId, reinterpret_cast(reinterpret_cast(Ptr) - Chunk::getHeaderSize())); } private: ThisT &Allocator; CacheT &Cache; }; typedef GlobalQuarantine QuarantineT; typedef typename QuarantineT::CacheT QuarantineCacheT; void initLinkerInitialized() { performSanityChecks(); // Check if hardware CRC32 is supported in the binary and by the platform, // if so, opt for the CRC32 hardware version of the checksum. if (&computeHardwareCRC32 && hasHardwareCRC32()) HashAlgorithm = Checksum::HardwareCRC32; if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie)))) Cookie = static_cast(getMonotonicTime() ^ (reinterpret_cast(this) >> 4)); initFlags(); reportUnrecognizedFlags(); // Store some flags locally. Options.MayReturnNull = getFlags()->may_return_null; Options.FillContents = getFlags()->zero_contents ? ZeroFill : (getFlags()->pattern_fill_contents ? PatternOrZeroFill : NoFill); Options.DeallocTypeMismatch = getFlags()->dealloc_type_mismatch; Options.DeleteSizeMismatch = getFlags()->delete_size_mismatch; Options.TrackAllocationStacks = false; Options.QuarantineMaxChunkSize = static_cast(getFlags()->quarantine_max_chunk_size); Stats.initLinkerInitialized(); const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms; Primary.initLinkerInitialized(ReleaseToOsIntervalMs); Secondary.initLinkerInitialized(&Stats, ReleaseToOsIntervalMs); Quarantine.init( static_cast(getFlags()->quarantine_size_kb << 10), static_cast(getFlags()->thread_local_quarantine_size_kb << 10)); } // Initialize the embedded GWP-ASan instance. Requires the main allocator to // be functional, best called from PostInitCallback. void initGwpAsan() { #ifdef GWP_ASAN_HOOKS gwp_asan::options::Options Opt; Opt.Enabled = getFlags()->GWP_ASAN_Enabled; // Bear in mind - Scudo has its own alignment guarantees that are strictly // enforced. Scudo exposes the same allocation function for everything from // malloc() to posix_memalign, so in general this flag goes unused, as Scudo // will always ask GWP-ASan for an aligned amount of bytes. Opt.PerfectlyRightAlign = getFlags()->GWP_ASAN_PerfectlyRightAlign; Opt.MaxSimultaneousAllocations = getFlags()->GWP_ASAN_MaxSimultaneousAllocations; Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate; Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers; // Embedded GWP-ASan is locked through the Scudo atfork handler (via // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork // handler. Opt.InstallForkHandlers = false; Opt.Backtrace = gwp_asan::options::getBacktraceFunction(); GuardedAlloc.init(Opt); if (Opt.InstallSignalHandlers) gwp_asan::crash_handler::installSignalHandlers( &GuardedAlloc, Printf, gwp_asan::options::getPrintBacktraceFunction(), Opt.Backtrace); #endif // GWP_ASAN_HOOKS } void reset() { memset(this, 0, sizeof(*this)); } void unmapTestOnly() { TSDRegistry.unmapTestOnly(); Primary.unmapTestOnly(); #ifdef GWP_ASAN_HOOKS if (getFlags()->GWP_ASAN_InstallSignalHandlers) gwp_asan::crash_handler::uninstallSignalHandlers(); GuardedAlloc.uninitTestOnly(); #endif // GWP_ASAN_HOOKS } TSDRegistryT *getTSDRegistry() { return &TSDRegistry; } // The Cache must be provided zero-initialized. void initCache(CacheT *Cache) { Cache->initLinkerInitialized(&Stats, &Primary); } // Release the resources used by a TSD, which involves: // - draining the local quarantine cache to the global quarantine; // - releasing the cached pointers back to the Primary; // - unlinking the local stats from the global ones (destroying the cache does // the last two items). void commitBack(TSD *TSD) { Quarantine.drain(&TSD->QuarantineCache, QuarantineCallback(*this, TSD->Cache)); TSD->Cache.destroy(&Stats); } ALWAYS_INLINE void *untagPointerMaybe(void *Ptr) { if (Primary.SupportsMemoryTagging) return reinterpret_cast( untagPointer(reinterpret_cast(Ptr))); return Ptr; } NOINLINE u32 collectStackTrace() { #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE // Discard collectStackTrace() frame and allocator function frame. constexpr uptr DiscardFrames = 2; uptr Stack[MaxTraceSize + DiscardFrames]; uptr Size = android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames); Size = Min(Size, MaxTraceSize + DiscardFrames); return Depot.insert(Stack + Min(DiscardFrames, Size), Stack + Size); #else return 0; #endif } NOINLINE void *allocate(uptr Size, Chunk::Origin Origin, uptr Alignment = MinAlignment, bool ZeroContents = false) { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.shouldSample())) { if (void *Ptr = GuardedAlloc.allocate(roundUpTo(Size, Alignment))) return Ptr; } #endif // GWP_ASAN_HOOKS FillContentsMode FillContents = ZeroContents ? ZeroFill : Options.FillContents; if (UNLIKELY(Alignment > MaxAlignment)) { if (Options.MayReturnNull) return nullptr; reportAlignmentTooBig(Alignment, MaxAlignment); } if (Alignment < MinAlignment) Alignment = MinAlignment; // If the requested size happens to be 0 (more common than you might think), // allocate MinAlignment bytes on top of the header. Then add the extra // bytes required to fulfill the alignment requirements: we allocate enough // to be sure that there will be an address in the block that will satisfy // the alignment. const uptr NeededSize = roundUpTo(Size, MinAlignment) + ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize()); // Takes care of extravagantly large sizes as well as integer overflows. static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, ""); if (UNLIKELY(Size >= MaxAllowedMallocSize)) { if (Options.MayReturnNull) return nullptr; reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize); } DCHECK_LE(Size, NeededSize); void *Block = nullptr; uptr ClassId = 0; uptr SecondaryBlockEnd; if (LIKELY(PrimaryT::canAllocate(NeededSize))) { ClassId = SizeClassMap::getClassIdBySize(NeededSize); DCHECK_NE(ClassId, 0U); bool UnlockRequired; auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); Block = TSD->Cache.allocate(ClassId); // If the allocation failed, the most likely reason with a 32-bit primary // is the region being full. In that event, retry in each successively // larger class until it fits. If it fails to fit in the largest class, // fallback to the Secondary. if (UNLIKELY(!Block)) { while (ClassId < SizeClassMap::LargestClassId) { Block = TSD->Cache.allocate(++ClassId); if (LIKELY(Block)) { break; } } if (UNLIKELY(!Block)) { ClassId = 0; } } if (UnlockRequired) TSD->unlock(); } if (UNLIKELY(ClassId == 0)) Block = Secondary.allocate(NeededSize, Alignment, &SecondaryBlockEnd, FillContents); if (UNLIKELY(!Block)) { if (Options.MayReturnNull) return nullptr; reportOutOfMemory(NeededSize); } const uptr BlockUptr = reinterpret_cast(Block); const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize(); const uptr UserPtr = roundUpTo(UnalignedUserPtr, Alignment); void *Ptr = reinterpret_cast(UserPtr); void *TaggedPtr = Ptr; if (ClassId) { // We only need to zero or tag the contents for Primary backed // allocations. We only set tags for primary allocations in order to avoid // faulting potentially large numbers of pages for large secondary // allocations. We assume that guard pages are enough to protect these // allocations. // // FIXME: When the kernel provides a way to set the background tag of a // mapping, we should be able to tag secondary allocations as well. // // When memory tagging is enabled, zeroing the contents is done as part of // setting the tag. if (UNLIKELY(useMemoryTagging())) { uptr PrevUserPtr; Chunk::UnpackedHeader Header; const uptr BlockEnd = BlockUptr + PrimaryT::getSizeByClassId(ClassId); // If possible, try to reuse the UAF tag that was set by deallocate(). // For simplicity, only reuse tags if we have the same start address as // the previous allocation. This handles the majority of cases since // most allocations will not be more aligned than the minimum alignment. // // We need to handle situations involving reclaimed chunks, and retag // the reclaimed portions if necessary. In the case where the chunk is // fully reclaimed, the chunk's header will be zero, which will trigger // the code path for new mappings and invalid chunks that prepares the // chunk from scratch. There are three possibilities for partial // reclaiming: // // (1) Header was reclaimed, data was partially reclaimed. // (2) Header was not reclaimed, all data was reclaimed (e.g. because // data started on a page boundary). // (3) Header was not reclaimed, data was partially reclaimed. // // Case (1) will be handled in the same way as for full reclaiming, // since the header will be zero. // // We can detect case (2) by loading the tag from the start // of the chunk. If it is zero, it means that either all data was // reclaimed (since we never use zero as the chunk tag), or that the // previous allocation was of size zero. Either way, we need to prepare // a new chunk from scratch. // // We can detect case (3) by moving to the next page (if covered by the // chunk) and loading the tag of its first granule. If it is zero, it // means that all following pages may need to be retagged. On the other // hand, if it is nonzero, we can assume that all following pages are // still tagged, according to the logic that if any of the pages // following the next page were reclaimed, the next page would have been // reclaimed as well. uptr TaggedUserPtr; if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) && PrevUserPtr == UserPtr && (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) { uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes; const uptr NextPage = roundUpTo(TaggedUserPtr, getPageSizeCached()); if (NextPage < PrevEnd && loadTag(NextPage) != NextPage) PrevEnd = NextPage; TaggedPtr = reinterpret_cast(TaggedUserPtr); resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, BlockEnd); if (Size) { // Clear any stack metadata that may have previously been stored in // the chunk data. memset(TaggedPtr, 0, archMemoryTagGranuleSize()); } } else { TaggedPtr = prepareTaggedChunk(Ptr, Size, BlockEnd); } storeAllocationStackMaybe(Ptr); } else if (UNLIKELY(FillContents != NoFill)) { // This condition is not necessarily unlikely, but since memset is // costly, we might as well mark it as such. memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte, PrimaryT::getSizeByClassId(ClassId)); } } Chunk::UnpackedHeader Header = {}; if (UNLIKELY(UnalignedUserPtr != UserPtr)) { const uptr Offset = UserPtr - UnalignedUserPtr; DCHECK_GE(Offset, 2 * sizeof(u32)); // The BlockMarker has no security purpose, but is specifically meant for // the chunk iteration function that can be used in debugging situations. // It is the only situation where we have to locate the start of a chunk // based on its block address. reinterpret_cast(Block)[0] = BlockMarker; reinterpret_cast(Block)[1] = static_cast(Offset); Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; } Header.ClassId = ClassId & Chunk::ClassIdMask; Header.State = Chunk::State::Allocated; Header.Origin = Origin & Chunk::OriginMask; Header.SizeOrUnusedBytes = (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) & Chunk::SizeOrUnusedBytesMask; Chunk::storeHeader(Cookie, Ptr, &Header); if (&__scudo_allocate_hook) __scudo_allocate_hook(TaggedPtr, Size); return TaggedPtr; } NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0, UNUSED uptr Alignment = MinAlignment) { // For a deallocation, we only ensure minimal initialization, meaning thread // local data will be left uninitialized for now (when using ELF TLS). The // fallback cache will be used instead. This is a workaround for a situation // where the only heap operation performed in a thread would be a free past // the TLS destructors, ending up in initialized thread specific data never // being destroyed properly. Any other heap operation will do a full init. initThreadMaybe(/*MinimalInit=*/true); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { GuardedAlloc.deallocate(Ptr); return; } #endif // GWP_ASAN_HOOKS if (&__scudo_deallocate_hook) __scudo_deallocate_hook(Ptr); if (UNLIKELY(!Ptr)) return; if (UNLIKELY(!isAligned(reinterpret_cast(Ptr), MinAlignment))) reportMisalignedPointer(AllocatorAction::Deallocating, Ptr); Ptr = untagPointerMaybe(Ptr); Chunk::UnpackedHeader Header; Chunk::loadHeader(Cookie, Ptr, &Header); if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); if (Options.DeallocTypeMismatch) { if (Header.Origin != Origin) { // With the exception of memalign'd chunks, that can be still be free'd. if (UNLIKELY(Header.Origin != Chunk::Origin::Memalign || Origin != Chunk::Origin::Malloc)) reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr, Header.Origin, Origin); } } const uptr Size = getSize(Ptr, &Header); if (DeleteSize && Options.DeleteSizeMismatch) { if (UNLIKELY(DeleteSize != Size)) reportDeleteSizeMismatch(Ptr, DeleteSize, Size); } quarantineOrDeallocateChunk(Ptr, &Header, Size); } void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) { initThreadMaybe(); if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) { if (Options.MayReturnNull) return nullptr; reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize); } void *OldTaggedPtr = OldPtr; OldPtr = untagPointerMaybe(OldPtr); // The following cases are handled by the C wrappers. DCHECK_NE(OldPtr, nullptr); DCHECK_NE(NewSize, 0); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { uptr OldSize = GuardedAlloc.getSize(OldPtr); void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); if (NewPtr) memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); GuardedAlloc.deallocate(OldPtr); return NewPtr; } #endif // GWP_ASAN_HOOKS if (UNLIKELY(!isAligned(reinterpret_cast(OldPtr), MinAlignment))) reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr); Chunk::UnpackedHeader OldHeader; Chunk::loadHeader(Cookie, OldPtr, &OldHeader); if (UNLIKELY(OldHeader.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr); // Pointer has to be allocated with a malloc-type function. Some // applications think that it is OK to realloc a memalign'ed pointer, which // will trigger this check. It really isn't. if (Options.DeallocTypeMismatch) { if (UNLIKELY(OldHeader.Origin != Chunk::Origin::Malloc)) reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr, OldHeader.Origin, Chunk::Origin::Malloc); } void *BlockBegin = getBlockBegin(OldPtr, &OldHeader); uptr BlockEnd; uptr OldSize; const uptr ClassId = OldHeader.ClassId; if (LIKELY(ClassId)) { BlockEnd = reinterpret_cast(BlockBegin) + SizeClassMap::getSizeByClassId(ClassId); OldSize = OldHeader.SizeOrUnusedBytes; } else { BlockEnd = SecondaryT::getBlockEnd(BlockBegin); OldSize = BlockEnd - (reinterpret_cast(OldPtr) + OldHeader.SizeOrUnusedBytes); } // If the new chunk still fits in the previously allocated block (with a // reasonable delta), we just keep the old block, and update the chunk // header to reflect the size change. if (reinterpret_cast(OldPtr) + NewSize <= BlockEnd) { if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) { Chunk::UnpackedHeader NewHeader = OldHeader; NewHeader.SizeOrUnusedBytes = (ClassId ? NewSize : BlockEnd - (reinterpret_cast(OldPtr) + NewSize)) & Chunk::SizeOrUnusedBytesMask; Chunk::compareExchangeHeader(Cookie, OldPtr, &NewHeader, &OldHeader); if (UNLIKELY(ClassId && useMemoryTagging())) { resizeTaggedChunk(reinterpret_cast(OldTaggedPtr) + OldSize, reinterpret_cast(OldTaggedPtr) + NewSize, BlockEnd); storeAllocationStackMaybe(OldPtr); } return OldTaggedPtr; } } // Otherwise we allocate a new one, and deallocate the old one. Some // allocators will allocate an even larger chunk (by a fixed factor) to // allow for potential further in-place realloc. The gains of such a trick // are currently unclear. void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); if (NewPtr) { const uptr OldSize = getSize(OldPtr, &OldHeader); memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize)); quarantineOrDeallocateChunk(OldPtr, &OldHeader, OldSize); } return NewPtr; } // TODO(kostyak): disable() is currently best-effort. There are some small // windows of time when an allocation could still succeed after // this function finishes. We will revisit that later. void disable() { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS GuardedAlloc.disable(); #endif TSDRegistry.disable(); Stats.disable(); Quarantine.disable(); Primary.disable(); Secondary.disable(); } void enable() { initThreadMaybe(); Secondary.enable(); Primary.enable(); Quarantine.enable(); Stats.enable(); TSDRegistry.enable(); #ifdef GWP_ASAN_HOOKS GuardedAlloc.enable(); #endif } // The function returns the amount of bytes required to store the statistics, // which might be larger than the amount of bytes provided. Note that the // statistics buffer is not necessarily constant between calls to this // function. This can be called with a null buffer or zero size for buffer // sizing purposes. uptr getStats(char *Buffer, uptr Size) { ScopedString Str(1024); disable(); const uptr Length = getStats(&Str) + 1; enable(); if (Length < Size) Size = Length; if (Buffer && Size) { memcpy(Buffer, Str.data(), Size); Buffer[Size - 1] = '\0'; } return Length; } void printStats() { ScopedString Str(1024); disable(); getStats(&Str); enable(); Str.output(); } void releaseToOS() { initThreadMaybe(); Primary.releaseToOS(); Secondary.releaseToOS(); } // Iterate over all chunks and call a callback for all busy chunks located // within the provided memory range. Said callback must not use this allocator // or a deadlock can ensue. This fits Android's malloc_iterate() needs. void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback, void *Arg) { initThreadMaybe(); const uptr From = Base; const uptr To = Base + Size; auto Lambda = [this, From, To, Callback, Arg](uptr Block) { if (Block < From || Block >= To) return; uptr Chunk; Chunk::UnpackedHeader Header; if (getChunkFromBlock(Block, &Chunk, &Header) && Header.State == Chunk::State::Allocated) { uptr TaggedChunk = Chunk; if (useMemoryTagging()) TaggedChunk = loadTag(Chunk); Callback(TaggedChunk, getSize(reinterpret_cast(Chunk), &Header), Arg); } }; Primary.iterateOverBlocks(Lambda); Secondary.iterateOverBlocks(Lambda); #ifdef GWP_ASAN_HOOKS GuardedAlloc.iterate(reinterpret_cast(Base), Size, Callback, Arg); #endif } bool canReturnNull() { initThreadMaybe(); return Options.MayReturnNull; } bool setOption(Option O, sptr Value) { if (O == Option::ReleaseInterval) { Primary.setReleaseToOsIntervalMs(static_cast(Value)); Secondary.setReleaseToOsIntervalMs(static_cast(Value)); return true; } return false; } // Return the usable size for a given chunk. Technically we lie, as we just // report the actual size of a chunk. This is done to counteract code actively // writing past the end of a chunk (like sqlite3) when the usable size allows // for it, which then forces realloc to copy the usable size of a chunk as // opposed to its actual size. uptr getUsableSize(const void *Ptr) { initThreadMaybe(); if (UNLIKELY(!Ptr)) return 0; #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) return GuardedAlloc.getSize(Ptr); #endif // GWP_ASAN_HOOKS Ptr = untagPointerMaybe(const_cast(Ptr)); Chunk::UnpackedHeader Header; Chunk::loadHeader(Cookie, Ptr, &Header); // Getting the usable size of a chunk only makes sense if it's allocated. if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Sizing, const_cast(Ptr)); return getSize(Ptr, &Header); } void getStats(StatCounters S) { initThreadMaybe(); Stats.get(S); } // Returns true if the pointer provided was allocated by the current // allocator instance, which is compliant with tcmalloc's ownership concept. // A corrupted chunk will not be reported as owned, which is WAI. bool isOwned(const void *Ptr) { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS if (GuardedAlloc.pointerIsMine(Ptr)) return true; #endif // GWP_ASAN_HOOKS if (!Ptr || !isAligned(reinterpret_cast(Ptr), MinAlignment)) return false; Ptr = untagPointerMaybe(const_cast(Ptr)); Chunk::UnpackedHeader Header; return Chunk::isValid(Cookie, Ptr, &Header) && Header.State == Chunk::State::Allocated; } bool useMemoryTagging() { return Primary.useMemoryTagging(); } void disableMemoryTagging() { Primary.disableMemoryTagging(); } void setTrackAllocationStacks(bool Track) { initThreadMaybe(); Options.TrackAllocationStacks = Track; } void setFillContents(FillContentsMode FillContents) { initThreadMaybe(); Options.FillContents = FillContents; } const char *getStackDepotAddress() const { return reinterpret_cast(&Depot); } const char *getRegionInfoArrayAddress() const { return Primary.getRegionInfoArrayAddress(); } static uptr getRegionInfoArraySize() { return PrimaryT::getRegionInfoArraySize(); } static void getErrorInfo(struct scudo_error_info *ErrorInfo, uintptr_t FaultAddr, const char *DepotPtr, const char *RegionInfoPtr, const char *Memory, const char *MemoryTags, uintptr_t MemoryAddr, size_t MemorySize) { *ErrorInfo = {}; if (!PrimaryT::SupportsMemoryTagging || MemoryAddr + MemorySize < MemoryAddr) return; uptr UntaggedFaultAddr = untagPointer(FaultAddr); u8 FaultAddrTag = extractTag(FaultAddr); BlockInfo Info = PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr); auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool { if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr || Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize) return false; *Data = &Memory[Addr - MemoryAddr]; *Tag = static_cast( MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]); return true; }; auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr, Chunk::UnpackedHeader *Header, const u32 **Data, u8 *Tag) { const char *BlockBegin; u8 BlockBeginTag; if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag)) return false; uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin); *ChunkAddr = Addr + ChunkOffset; const char *ChunkBegin; if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag)) return false; *Header = *reinterpret_cast( ChunkBegin - Chunk::getHeaderSize()); *Data = reinterpret_cast(ChunkBegin); return true; }; auto *Depot = reinterpret_cast(DepotPtr); auto MaybeCollectTrace = [&](uintptr_t(&Trace)[MaxTraceSize], u32 Hash) { uptr RingPos, Size; if (!Depot->find(Hash, &RingPos, &Size)) return; for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I) Trace[I] = (*Depot)[RingPos + I]; }; size_t NextErrorReport = 0; // First, check for UAF. { uptr ChunkAddr; Chunk::UnpackedHeader Header; const u32 *Data; uint8_t Tag; if (ReadBlock(Info.BlockBegin, &ChunkAddr, &Header, &Data, &Tag) && Header.State != Chunk::State::Allocated && Data[MemTagPrevTagIndex] == FaultAddrTag) { auto *R = &ErrorInfo->reports[NextErrorReport++]; R->error_type = USE_AFTER_FREE; R->allocation_address = ChunkAddr; R->allocation_size = Header.SizeOrUnusedBytes; MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]); R->allocation_tid = Data[MemTagAllocationTidIndex]; MaybeCollectTrace(R->deallocation_trace, Data[MemTagDeallocationTraceIndex]); R->deallocation_tid = Data[MemTagDeallocationTidIndex]; } } auto CheckOOB = [&](uptr BlockAddr) { if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd) return false; uptr ChunkAddr; Chunk::UnpackedHeader Header; const u32 *Data; uint8_t Tag; if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) || Header.State != Chunk::State::Allocated || Tag != FaultAddrTag) return false; auto *R = &ErrorInfo->reports[NextErrorReport++]; R->error_type = UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW; R->allocation_address = ChunkAddr; R->allocation_size = Header.SizeOrUnusedBytes; MaybeCollectTrace(R->allocation_trace, Data[MemTagAllocationTraceIndex]); R->allocation_tid = Data[MemTagAllocationTidIndex]; return NextErrorReport == sizeof(ErrorInfo->reports) / sizeof(ErrorInfo->reports[0]); }; if (CheckOOB(Info.BlockBegin)) return; // Check for OOB in the 30 surrounding blocks. Beyond that we are likely to // hit false positives. for (int I = 1; I != 16; ++I) if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) || CheckOOB(Info.BlockBegin - I * Info.BlockSize)) return; } private: using SecondaryT = typename Params::Secondary; typedef typename PrimaryT::SizeClassMap SizeClassMap; static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG; static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable. static const uptr MinAlignment = 1UL << MinAlignmentLog; static const uptr MaxAlignment = 1UL << MaxAlignmentLog; static const uptr MaxAllowedMallocSize = FIRST_32_SECOND_64(1UL << 31, 1ULL << 40); static_assert(MinAlignment >= sizeof(Chunk::PackedHeader), "Minimal alignment must at least cover a chunk header."); static_assert(!PrimaryT::SupportsMemoryTagging || MinAlignment >= archMemoryTagGranuleSize(), ""); static const u32 BlockMarker = 0x44554353U; // These are indexes into an "array" of 32-bit values that store information // inline with a chunk that is relevant to diagnosing memory tag faults, where // 0 corresponds to the address of the user memory. This means that negative // indexes may be used to store information about allocations, while positive // indexes may only be used to store information about deallocations, because // the user memory is in use until it has been deallocated. The smallest index // that may be used is -2, which corresponds to 8 bytes before the user // memory, because the chunk header size is 8 bytes and in allocators that // support memory tagging the minimum alignment is at least the tag granule // size (16 on aarch64), and the largest index that may be used is 3 because // we are only guaranteed to have at least a granule's worth of space in the // user memory. static const sptr MemTagAllocationTraceIndex = -2; static const sptr MemTagAllocationTidIndex = -1; static const sptr MemTagDeallocationTraceIndex = 0; static const sptr MemTagDeallocationTidIndex = 1; static const sptr MemTagPrevTagIndex = 2; static const uptr MaxTraceSize = 64; GlobalStats Stats; TSDRegistryT TSDRegistry; PrimaryT Primary; SecondaryT Secondary; QuarantineT Quarantine; u32 Cookie; struct { u8 MayReturnNull : 1; // may_return_null FillContentsMode FillContents : 2; // zero_contents, pattern_fill_contents u8 DeallocTypeMismatch : 1; // dealloc_type_mismatch u8 DeleteSizeMismatch : 1; // delete_size_mismatch u8 TrackAllocationStacks : 1; u32 QuarantineMaxChunkSize; // quarantine_max_chunk_size } Options; #ifdef GWP_ASAN_HOOKS gwp_asan::GuardedPoolAllocator GuardedAlloc; #endif // GWP_ASAN_HOOKS StackDepot Depot; // The following might get optimized out by the compiler. NOINLINE void performSanityChecks() { // Verify that the header offset field can hold the maximum offset. In the // case of the Secondary allocator, it takes care of alignment and the // offset will always be small. In the case of the Primary, the worst case // scenario happens in the last size class, when the backend allocation // would already be aligned on the requested alignment, which would happen // to be the maximum alignment that would fit in that size class. As a // result, the maximum offset will be at most the maximum alignment for the // last size class minus the header size, in multiples of MinAlignment. Chunk::UnpackedHeader Header = {}; const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex( SizeClassMap::MaxSize - MinAlignment); const uptr MaxOffset = (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; Header.Offset = MaxOffset & Chunk::OffsetMask; if (UNLIKELY(Header.Offset != MaxOffset)) reportSanityCheckError("offset"); // Verify that we can fit the maximum size or amount of unused bytes in the // header. Given that the Secondary fits the allocation to a page, the worst // case scenario happens in the Primary. It will depend on the second to // last and last class sizes, as well as the dynamic base for the Primary. // The following is an over-approximation that works for our needs. const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1; Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)) reportSanityCheckError("size (or unused bytes)"); const uptr LargestClassId = SizeClassMap::LargestClassId; Header.ClassId = LargestClassId; if (UNLIKELY(Header.ClassId != LargestClassId)) reportSanityCheckError("class ID"); } static inline void *getBlockBegin(const void *Ptr, Chunk::UnpackedHeader *Header) { return reinterpret_cast( reinterpret_cast(Ptr) - Chunk::getHeaderSize() - (static_cast(Header->Offset) << MinAlignmentLog)); } // Return the size of a chunk as requested during its allocation. inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) { const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; if (LIKELY(Header->ClassId)) return SizeOrUnusedBytes; return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) - reinterpret_cast(Ptr) - SizeOrUnusedBytes; } ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) { TSDRegistry.initThreadMaybe(this, MinimalInit); } void quarantineOrDeallocateChunk(void *Ptr, Chunk::UnpackedHeader *Header, uptr Size) { Chunk::UnpackedHeader NewHeader = *Header; if (UNLIKELY(NewHeader.ClassId && useMemoryTagging())) { u8 PrevTag = extractTag(loadTag(reinterpret_cast(Ptr))); uptr TaggedBegin, TaggedEnd; // Exclude the previous tag so that immediate use after free is detected // 100% of the time. setRandomTag(Ptr, Size, 1UL << PrevTag, &TaggedBegin, &TaggedEnd); storeDeallocationStackMaybe(Ptr, PrevTag); } // If the quarantine is disabled, the actual size of a chunk is 0 or larger // than the maximum allowed, we return a chunk directly to the backend. // Logical Or can be short-circuited, which introduces unnecessary // conditional jumps, so use bitwise Or and let the compiler be clever. const bool BypassQuarantine = !Quarantine.getCacheSize() | !Size | (Size > Options.QuarantineMaxChunkSize); if (BypassQuarantine) { NewHeader.State = Chunk::State::Available; Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header); void *BlockBegin = getBlockBegin(Ptr, &NewHeader); const uptr ClassId = NewHeader.ClassId; if (LIKELY(ClassId)) { bool UnlockRequired; auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); TSD->Cache.deallocate(ClassId, BlockBegin); if (UnlockRequired) TSD->unlock(); } else { Secondary.deallocate(BlockBegin); } } else { NewHeader.State = Chunk::State::Quarantined; Chunk::compareExchangeHeader(Cookie, Ptr, &NewHeader, Header); bool UnlockRequired; auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); Quarantine.put(&TSD->QuarantineCache, QuarantineCallback(*this, TSD->Cache), Ptr, Size); if (UnlockRequired) TSD->unlock(); } } bool getChunkFromBlock(uptr Block, uptr *Chunk, Chunk::UnpackedHeader *Header) { *Chunk = Block + getChunkOffsetFromBlock(reinterpret_cast(Block)); return Chunk::isValid(Cookie, reinterpret_cast(*Chunk), Header); } static uptr getChunkOffsetFromBlock(const char *Block) { u32 Offset = 0; if (reinterpret_cast(Block)[0] == BlockMarker) Offset = reinterpret_cast(Block)[1]; return Offset + Chunk::getHeaderSize(); } void storeAllocationStackMaybe(void *Ptr) { if (!UNLIKELY(Options.TrackAllocationStacks)) return; auto *Ptr32 = reinterpret_cast(Ptr); Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(); Ptr32[MemTagAllocationTidIndex] = getThreadID(); } void storeDeallocationStackMaybe(void *Ptr, uint8_t PrevTag) { if (!UNLIKELY(Options.TrackAllocationStacks)) return; // Disable tag checks here so that we don't need to worry about zero sized // allocations. ScopedDisableMemoryTagChecks x; auto *Ptr32 = reinterpret_cast(Ptr); Ptr32[MemTagDeallocationTraceIndex] = collectStackTrace(); Ptr32[MemTagDeallocationTidIndex] = getThreadID(); Ptr32[MemTagPrevTagIndex] = PrevTag; } uptr getStats(ScopedString *Str) { Primary.getStats(Str); Secondary.getStats(Str); Quarantine.getStats(Str); return Str->length(); } }; } // namespace scudo #endif // SCUDO_COMBINED_H_