// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef _LIBCPP_CHARCONV #define _LIBCPP_CHARCONV /* charconv synopsis namespace std { // floating-point format for primitive numerical conversion enum class chars_format { scientific = unspecified, fixed = unspecified, hex = unspecified, general = fixed | scientific }; // 23.20.2, primitive numerical output conversion struct to_chars_result { char* ptr; errc ec; friend bool operator==(const to_chars_result&, const to_chars_result&) = default; // since C++20 }; to_chars_result to_chars(char* first, char* last, see below value, int base = 10); to_chars_result to_chars(char* first, char* last, bool value, int base = 10) = delete; to_chars_result to_chars(char* first, char* last, float value); to_chars_result to_chars(char* first, char* last, double value); to_chars_result to_chars(char* first, char* last, long double value); to_chars_result to_chars(char* first, char* last, float value, chars_format fmt); to_chars_result to_chars(char* first, char* last, double value, chars_format fmt); to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt); to_chars_result to_chars(char* first, char* last, float value, chars_format fmt, int precision); to_chars_result to_chars(char* first, char* last, double value, chars_format fmt, int precision); to_chars_result to_chars(char* first, char* last, long double value, chars_format fmt, int precision); // 23.20.3, primitive numerical input conversion struct from_chars_result { const char* ptr; errc ec; friend bool operator==(const from_chars_result&, const from_chars_result&) = default; // since C++20 }; from_chars_result from_chars(const char* first, const char* last, see below& value, int base = 10); from_chars_result from_chars(const char* first, const char* last, float& value, chars_format fmt = chars_format::general); from_chars_result from_chars(const char* first, const char* last, double& value, chars_format fmt = chars_format::general); from_chars_result from_chars(const char* first, const char* last, long double& value, chars_format fmt = chars_format::general); } // namespace std */ #include <__assert> // all public C++ headers provide the assertion handler #include <__availability> #include <__bits> #include <__charconv/chars_format.h> #include <__charconv/from_chars_result.h> #include <__charconv/tables.h> #include <__charconv/to_chars_base_10.h> #include <__charconv/to_chars_result.h> #include <__config> #include <__debug> #include <__errc> #include <__utility/unreachable.h> #include // for log2f #include #include #include #include #include #ifndef _LIBCPP_REMOVE_TRANSITIVE_INCLUDES # include #endif #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD #ifndef _LIBCPP_CXX03_LANG to_chars_result to_chars(char*, char*, bool, int = 10) = delete; from_chars_result from_chars(const char*, const char*, bool, int = 10) = delete; namespace __itoa { template struct _LIBCPP_HIDDEN __traits_base; template struct _LIBCPP_HIDDEN __traits_base<_Tp, __enable_if_t> { using type = uint32_t; /// The width estimation using a log10 algorithm. /// /// The algorithm is based on /// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 /// Instead of using IntegerLogBase2 it uses __libcpp_clz. Since that /// function requires its input to have at least one bit set the value of /// zero is set to one. This means the first element of the lookup table is /// zero. static _LIBCPP_HIDE_FROM_ABI int __width(_Tp __v) { auto __t = (32 - std::__libcpp_clz(static_cast(__v | 1))) * 1233 >> 12; return __t - (__v < __table<>::__pow10_32[__t]) + 1; } static _LIBCPP_HIDE_FROM_ABI char* __convert(char* __p, _Tp __v) { return __itoa::__base_10_u32(__p, __v); } static _LIBCPP_HIDE_FROM_ABI decltype(__table<>::__pow10_32)& __pow() { return __table<>::__pow10_32; } }; template struct _LIBCPP_HIDDEN __traits_base<_Tp, __enable_if_t> { using type = uint64_t; /// The width estimation using a log10 algorithm. /// /// The algorithm is based on /// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 /// Instead of using IntegerLogBase2 it uses __libcpp_clz. Since that /// function requires its input to have at least one bit set the value of /// zero is set to one. This means the first element of the lookup table is /// zero. static _LIBCPP_HIDE_FROM_ABI int __width(_Tp __v) { auto __t = (64 - std::__libcpp_clz(static_cast(__v | 1))) * 1233 >> 12; return __t - (__v < __table<>::__pow10_64[__t]) + 1; } static _LIBCPP_HIDE_FROM_ABI char* __convert(char* __p, _Tp __v) { return __itoa::__base_10_u64(__p, __v); } static _LIBCPP_HIDE_FROM_ABI decltype(__table<>::__pow10_64)& __pow() { return __table<>::__pow10_64; } }; # ifndef _LIBCPP_HAS_NO_INT128 template struct _LIBCPP_HIDDEN __traits_base<_Tp, __enable_if_t > { using type = __uint128_t; /// The width estimation using a log10 algorithm. /// /// The algorithm is based on /// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 /// Instead of using IntegerLogBase2 it uses __libcpp_clz. Since that /// function requires its input to have at least one bit set the value of /// zero is set to one. This means the first element of the lookup table is /// zero. static _LIBCPP_HIDE_FROM_ABI int __width(_Tp __v) { _LIBCPP_ASSERT(__v > numeric_limits::max(), "The optimizations for this algorithm fail when this isn't true."); // There's always a bit set in the upper 64-bits. auto __t = (128 - std::__libcpp_clz(static_cast(__v >> 64))) * 1233 >> 12; _LIBCPP_ASSERT(__t >= __table<>::__pow10_128_offset, "Index out of bounds"); // __t is adjusted since the lookup table misses the lower entries. return __t - (__v < __table<>::__pow10_128[__t - __table<>::__pow10_128_offset]) + 1; } static _LIBCPP_HIDE_FROM_ABI char* __convert(char* __p, _Tp __v) { return __itoa::__base_10_u128(__p, __v); } // TODO FMT This pow function should get an index. // By moving this to its own header it can be reused by the pow function in to_chars_base_10. static _LIBCPP_HIDE_FROM_ABI decltype(__table<>::__pow10_128)& __pow() { return __table<>::__pow10_128; } }; #endif template inline _LIBCPP_HIDE_FROM_ABI bool __mul_overflowed(unsigned char __a, _Tp __b, unsigned char& __r) { auto __c = __a * __b; __r = __c; return __c > numeric_limits::max(); } template inline _LIBCPP_HIDE_FROM_ABI bool __mul_overflowed(unsigned short __a, _Tp __b, unsigned short& __r) { auto __c = __a * __b; __r = __c; return __c > numeric_limits::max(); } template inline _LIBCPP_HIDE_FROM_ABI bool __mul_overflowed(_Tp __a, _Tp __b, _Tp& __r) { static_assert(is_unsigned<_Tp>::value, ""); #if !defined(_LIBCPP_COMPILER_MSVC) return __builtin_mul_overflow(__a, __b, &__r); #else bool __did = __b && (numeric_limits<_Tp>::max() / __b) < __a; __r = __a * __b; return __did; #endif } template inline _LIBCPP_HIDE_FROM_ABI bool __mul_overflowed(_Tp __a, _Up __b, _Tp& __r) { return __mul_overflowed(__a, static_cast<_Tp>(__b), __r); } template struct _LIBCPP_HIDDEN __traits : __traits_base<_Tp> { static constexpr int digits = numeric_limits<_Tp>::digits10 + 1; using __traits_base<_Tp>::__pow; using typename __traits_base<_Tp>::type; // precondition: at least one non-zero character available static _LIBCPP_HIDE_FROM_ABI char const* __read(char const* __p, char const* __ep, type& __a, type& __b) { type __cprod[digits]; int __j = digits - 1; int __i = digits; do { if (!('0' <= *__p && *__p <= '9')) break; __cprod[--__i] = *__p++ - '0'; } while (__p != __ep && __i != 0); __a = __inner_product(__cprod + __i + 1, __cprod + __j, __pow() + 1, __cprod[__i]); if (__mul_overflowed(__cprod[__j], __pow()[__j - __i], __b)) --__p; return __p; } template static _LIBCPP_HIDE_FROM_ABI _Up __inner_product(_It1 __first1, _It1 __last1, _It2 __first2, _Up __init) { for (; __first1 < __last1; ++__first1, ++__first2) __init = __init + *__first1 * *__first2; return __init; } }; } // namespace __itoa template inline _LIBCPP_HIDE_FROM_ABI _Tp __complement(_Tp __x) { static_assert(is_unsigned<_Tp>::value, "cast to unsigned first"); return _Tp(~__x + 1); } template inline _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_itoa(char* __first, char* __last, _Tp __value, true_type) { auto __x = __to_unsigned_like(__value); if (__value < 0 && __first != __last) { *__first++ = '-'; __x = __complement(__x); } return __to_chars_itoa(__first, __last, __x, false_type()); } template inline _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_itoa(char* __first, char* __last, _Tp __value, false_type) { using __tx = __itoa::__traits<_Tp>; auto __diff = __last - __first; if (__tx::digits <= __diff || __tx::__width(__value) <= __diff) return {__tx::__convert(__first, __value), errc(0)}; else return {__last, errc::value_too_large}; } # ifndef _LIBCPP_HAS_NO_INT128 template <> inline _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_itoa(char* __first, char* __last, __uint128_t __value, false_type) { // When the value fits in 64-bits use the 64-bit code path. This reduces // the number of expensive calculations on 128-bit values. // // NOTE the 128-bit code path requires this optimization. if(__value <= numeric_limits::max()) return __to_chars_itoa(__first, __last, static_cast(__value), false_type()); using __tx = __itoa::__traits<__uint128_t>; auto __diff = __last - __first; if (__tx::digits <= __diff || __tx::__width(__value) <= __diff) return {__tx::__convert(__first, __value), errc(0)}; else return {__last, errc::value_too_large}; } #endif template inline _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_integral(char* __first, char* __last, _Tp __value, int __base, true_type) { auto __x = __to_unsigned_like(__value); if (__value < 0 && __first != __last) { *__first++ = '-'; __x = __complement(__x); } return __to_chars_integral(__first, __last, __x, __base, false_type()); } namespace __itoa { template struct _LIBCPP_HIDDEN __integral; template <> struct _LIBCPP_HIDDEN __integral<2> { template _LIBCPP_HIDE_FROM_ABI static constexpr int __width(_Tp __value) noexcept { // If value == 0 still need one digit. If the value != this has no // effect since the code scans for the most significant bit set. (Note // that __libcpp_clz doesn't work for 0.) return numeric_limits<_Tp>::digits - std::__libcpp_clz(__value | 1); } template _LIBCPP_HIDE_FROM_ABI static to_chars_result __to_chars(char* __first, char* __last, _Tp __value) { ptrdiff_t __cap = __last - __first; int __n = __width(__value); if (__n > __cap) return {__last, errc::value_too_large}; __last = __first + __n; char* __p = __last; const unsigned __divisor = 16; while (__value > __divisor) { unsigned __c = __value % __divisor; __value /= __divisor; __p -= 4; std::memcpy(__p, &__table<>::__base_2_lut[4 * __c], 4); } do { unsigned __c = __value % 2; __value /= 2; *--__p = "01"[__c]; } while (__value != 0); return {__last, errc(0)}; } }; template <> struct _LIBCPP_HIDDEN __integral<8> { template _LIBCPP_HIDE_FROM_ABI static constexpr int __width(_Tp __value) noexcept { // If value == 0 still need one digit. If the value != this has no // effect since the code scans for the most significat bit set. (Note // that __libcpp_clz doesn't work for 0.) return ((numeric_limits<_Tp>::digits - std::__libcpp_clz(__value | 1)) + 2) / 3; } template _LIBCPP_HIDE_FROM_ABI static to_chars_result __to_chars(char* __first, char* __last, _Tp __value) { ptrdiff_t __cap = __last - __first; int __n = __width(__value); if (__n > __cap) return {__last, errc::value_too_large}; __last = __first + __n; char* __p = __last; unsigned __divisor = 64; while (__value > __divisor) { unsigned __c = __value % __divisor; __value /= __divisor; __p -= 2; std::memcpy(__p, &__table<>::__base_8_lut[2 * __c], 2); } do { unsigned __c = __value % 8; __value /= 8; *--__p = "01234567"[__c]; } while (__value != 0); return {__last, errc(0)}; } }; template <> struct _LIBCPP_HIDDEN __integral<16> { template _LIBCPP_HIDE_FROM_ABI static constexpr int __width(_Tp __value) noexcept { // If value == 0 still need one digit. If the value != this has no // effect since the code scans for the most significat bit set. (Note // that __libcpp_clz doesn't work for 0.) return (numeric_limits<_Tp>::digits - std::__libcpp_clz(__value | 1) + 3) / 4; } template _LIBCPP_HIDE_FROM_ABI static to_chars_result __to_chars(char* __first, char* __last, _Tp __value) { ptrdiff_t __cap = __last - __first; int __n = __width(__value); if (__n > __cap) return {__last, errc::value_too_large}; __last = __first + __n; char* __p = __last; unsigned __divisor = 256; while (__value > __divisor) { unsigned __c = __value % __divisor; __value /= __divisor; __p -= 2; std::memcpy(__p, &__table<>::__base_16_lut[2 * __c], 2); } if (__first != __last) do { unsigned __c = __value % 16; __value /= 16; *--__p = "0123456789abcdef"[__c]; } while (__value != 0); return {__last, errc(0)}; } }; } // namespace __itoa template = sizeof(unsigned)), int>::type = 0> _LIBCPP_HIDE_FROM_ABI int __to_chars_integral_width(_Tp __value) { return __itoa::__integral<_Base>::__width(__value); } template ::type = 0> _LIBCPP_HIDE_FROM_ABI int __to_chars_integral_width(_Tp __value) { return std::__to_chars_integral_width<_Base>(static_cast(__value)); } template = sizeof(unsigned)), int>::type = 0> _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_integral(char* __first, char* __last, _Tp __value) { return __itoa::__integral<_Base>::__to_chars(__first, __last, __value); } template ::type = 0> _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_integral(char* __first, char* __last, _Tp __value) { return std::__to_chars_integral<_Base>(__first, __last, static_cast(__value)); } template _LIBCPP_HIDE_FROM_ABI int __to_chars_integral_width(_Tp __value, unsigned __base) { _LIBCPP_ASSERT(__value >= 0, "The function requires a non-negative value."); unsigned __base_2 = __base * __base; unsigned __base_3 = __base_2 * __base; unsigned __base_4 = __base_2 * __base_2; int __r = 0; while (true) { if (__value < __base) return __r + 1; if (__value < __base_2) return __r + 2; if (__value < __base_3) return __r + 3; if (__value < __base_4) return __r + 4; __value /= __base_4; __r += 4; } __libcpp_unreachable(); } template inline _LIBCPP_HIDE_FROM_ABI to_chars_result __to_chars_integral(char* __first, char* __last, _Tp __value, int __base, false_type) { if (__base == 10) [[likely]] return __to_chars_itoa(__first, __last, __value, false_type()); switch (__base) { case 2: return __to_chars_integral<2>(__first, __last, __value); case 8: return __to_chars_integral<8>(__first, __last, __value); case 16: return __to_chars_integral<16>(__first, __last, __value); } ptrdiff_t __cap = __last - __first; int __n = __to_chars_integral_width(__value, __base); if (__n > __cap) return {__last, errc::value_too_large}; __last = __first + __n; char* __p = __last; do { unsigned __c = __value % __base; __value /= __base; *--__p = "0123456789abcdefghijklmnopqrstuvwxyz"[__c]; } while (__value != 0); return {__last, errc(0)}; } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI to_chars_result to_chars(char* __first, char* __last, _Tp __value) { using _Type = __make_32_64_or_128_bit_t<_Tp>; static_assert(!is_same<_Type, void>::value, "unsupported integral type used in to_chars"); return std::__to_chars_itoa(__first, __last, static_cast<_Type>(__value), is_signed<_Tp>()); } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI to_chars_result to_chars(char* __first, char* __last, _Tp __value, int __base) { _LIBCPP_ASSERT(2 <= __base && __base <= 36, "base not in [2, 36]"); using _Type = __make_32_64_or_128_bit_t<_Tp>; return std::__to_chars_integral(__first, __last, static_cast<_Type>(__value), __base, is_signed<_Tp>()); } template inline _LIBCPP_HIDE_FROM_ABI from_chars_result __sign_combinator(_It __first, _It __last, _Tp& __value, _Fn __f, _Ts... __args) { using __tl = numeric_limits<_Tp>; decltype(__to_unsigned_like(__value)) __x; bool __neg = (__first != __last && *__first == '-'); auto __r = __f(__neg ? __first + 1 : __first, __last, __x, __args...); switch (__r.ec) { case errc::invalid_argument: return {__first, __r.ec}; case errc::result_out_of_range: return __r; default: break; } if (__neg) { if (__x <= __complement(__to_unsigned_like(__tl::min()))) { __x = __complement(__x); std::memcpy(&__value, &__x, sizeof(__x)); return __r; } } else { if (__x <= __to_unsigned_like(__tl::max())) { __value = __x; return __r; } } return {__r.ptr, errc::result_out_of_range}; } template inline _LIBCPP_HIDE_FROM_ABI bool __in_pattern(_Tp __c) { return '0' <= __c && __c <= '9'; } struct _LIBCPP_HIDDEN __in_pattern_result { bool __ok; int __val; explicit _LIBCPP_HIDE_FROM_ABI operator bool() const { return __ok; } }; template inline _LIBCPP_HIDE_FROM_ABI __in_pattern_result __in_pattern(_Tp __c, int __base) { if (__base <= 10) return {'0' <= __c && __c < '0' + __base, __c - '0'}; else if (__in_pattern(__c)) return {true, __c - '0'}; else if ('a' <= __c && __c < 'a' + __base - 10) return {true, __c - 'a' + 10}; else return {'A' <= __c && __c < 'A' + __base - 10, __c - 'A' + 10}; } template inline _LIBCPP_HIDE_FROM_ABI from_chars_result __subject_seq_combinator(_It __first, _It __last, _Tp& __value, _Fn __f, _Ts... __args) { auto __find_non_zero = [](_It __firstit, _It __lastit) { for (; __firstit != __lastit; ++__firstit) if (*__firstit != '0') break; return __firstit; }; auto __p = __find_non_zero(__first, __last); if (__p == __last || !__in_pattern(*__p, __args...)) { if (__p == __first) return {__first, errc::invalid_argument}; else { __value = 0; return {__p, {}}; } } auto __r = __f(__p, __last, __value, __args...); if (__r.ec == errc::result_out_of_range) { for (; __r.ptr != __last; ++__r.ptr) { if (!__in_pattern(*__r.ptr, __args...)) break; } } return __r; } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI from_chars_result __from_chars_atoi(const char* __first, const char* __last, _Tp& __value) { using __tx = __itoa::__traits<_Tp>; using __output_type = typename __tx::type; return __subject_seq_combinator( __first, __last, __value, [](const char* __f, const char* __l, _Tp& __val) -> from_chars_result { __output_type __a, __b; auto __p = __tx::__read(__f, __l, __a, __b); if (__p == __l || !__in_pattern(*__p)) { __output_type __m = numeric_limits<_Tp>::max(); if (__m >= __a && __m - __a >= __b) { __val = __a + __b; return {__p, {}}; } } return {__p, errc::result_out_of_range}; }); } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI from_chars_result __from_chars_atoi(const char* __first, const char* __last, _Tp& __value) { using __t = decltype(__to_unsigned_like(__value)); return __sign_combinator(__first, __last, __value, __from_chars_atoi<__t>); } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI from_chars_result __from_chars_integral(const char* __first, const char* __last, _Tp& __value, int __base) { if (__base == 10) return __from_chars_atoi(__first, __last, __value); return __subject_seq_combinator( __first, __last, __value, [](const char* __p, const char* __lastp, _Tp& __val, int __b) -> from_chars_result { using __tl = numeric_limits<_Tp>; auto __digits = __tl::digits / log2f(float(__b)); _Tp __x = __in_pattern(*__p++, __b).__val, __y = 0; for (int __i = 1; __p != __lastp; ++__i, ++__p) { if (auto __c = __in_pattern(*__p, __b)) { if (__i < __digits - 1) __x = __x * __b + __c.__val; else { if (!__itoa::__mul_overflowed(__x, __b, __x)) ++__p; __y = __c.__val; break; } } else break; } if (__p == __lastp || !__in_pattern(*__p, __b)) { if (__tl::max() - __x >= __y) { __val = __x + __y; return {__p, {}}; } } return {__p, errc::result_out_of_range}; }, __base); } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI from_chars_result __from_chars_integral(const char* __first, const char* __last, _Tp& __value, int __base) { using __t = decltype(__to_unsigned_like(__value)); return __sign_combinator(__first, __last, __value, __from_chars_integral<__t>, __base); } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI from_chars_result from_chars(const char* __first, const char* __last, _Tp& __value) { return __from_chars_atoi(__first, __last, __value); } template ::value, int>::type = 0> inline _LIBCPP_HIDE_FROM_ABI from_chars_result from_chars(const char* __first, const char* __last, _Tp& __value, int __base) { _LIBCPP_ASSERT(2 <= __base && __base <= 36, "base not in [2, 36]"); return __from_chars_integral(__first, __last, __value, __base); } // Floating-point implementation starts here. // Unlike the other parts of charconv this is only available in C++17 and newer. #if _LIBCPP_STD_VER > 14 _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, float __value); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, double __value); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, long double __value); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, float __value, chars_format __fmt); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, double __value, chars_format __fmt); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, long double __value, chars_format __fmt); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, float __value, chars_format __fmt, int __precision); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, double __value, chars_format __fmt, int __precision); _LIBCPP_AVAILABILITY_TO_CHARS_FLOATING_POINT _LIBCPP_FUNC_VIS to_chars_result to_chars(char* __first, char* __last, long double __value, chars_format __fmt, int __precision); # endif // _LIBCPP_STD_VER > 14 #endif // _LIBCPP_CXX03_LANG _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP_CHARCONV