//===- LinkerScript.cpp ---------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the parser/evaluator of the linker script. // //===----------------------------------------------------------------------===// #include "LinkerScript.h" #include "Config.h" #include "InputSection.h" #include "OutputSections.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "Writer.h" #include "lld/Common/Memory.h" #include "lld/Common/Strings.h" #include "lld/Common/Threads.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Endian.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::ELF; using namespace llvm::object; using namespace llvm::support::endian; namespace lld { namespace elf { LinkerScript *script; static uint64_t getOutputSectionVA(SectionBase *sec) { OutputSection *os = sec->getOutputSection(); assert(os && "input section has no output section assigned"); return os ? os->addr : 0; } uint64_t ExprValue::getValue() const { if (sec) return alignTo(sec->getOffset(val) + getOutputSectionVA(sec), alignment); return alignTo(val, alignment); } uint64_t ExprValue::getSecAddr() const { if (sec) return sec->getOffset(0) + getOutputSectionVA(sec); return 0; } uint64_t ExprValue::getSectionOffset() const { // If the alignment is trivial, we don't have to compute the full // value to know the offset. This allows this function to succeed in // cases where the output section is not yet known. if (alignment == 1 && !sec) return val; return getValue() - getSecAddr(); } OutputSection *LinkerScript::createOutputSection(StringRef name, StringRef location) { OutputSection *&secRef = nameToOutputSection[name]; OutputSection *sec; if (secRef && secRef->location.empty()) { // There was a forward reference. sec = secRef; } else { sec = make(name, SHT_PROGBITS, 0); if (!secRef) secRef = sec; } sec->location = location; return sec; } OutputSection *LinkerScript::getOrCreateOutputSection(StringRef name) { OutputSection *&cmdRef = nameToOutputSection[name]; if (!cmdRef) cmdRef = make(name, SHT_PROGBITS, 0); return cmdRef; } // Expands the memory region by the specified size. static void expandMemoryRegion(MemoryRegion *memRegion, uint64_t size, StringRef regionName, StringRef secName) { memRegion->curPos += size; uint64_t newSize = memRegion->curPos - memRegion->origin; if (newSize > memRegion->length) error("section '" + secName + "' will not fit in region '" + regionName + "': overflowed by " + Twine(newSize - memRegion->length) + " bytes"); } void LinkerScript::expandMemoryRegions(uint64_t size) { if (ctx->memRegion) expandMemoryRegion(ctx->memRegion, size, ctx->memRegion->name, ctx->outSec->name); // Only expand the LMARegion if it is different from memRegion. if (ctx->lmaRegion && ctx->memRegion != ctx->lmaRegion) expandMemoryRegion(ctx->lmaRegion, size, ctx->lmaRegion->name, ctx->outSec->name); } void LinkerScript::expandOutputSection(uint64_t size) { ctx->outSec->size += size; expandMemoryRegions(size); } void LinkerScript::setDot(Expr e, const Twine &loc, bool inSec) { uint64_t val = e().getValue(); if (val < dot && inSec) error(loc + ": unable to move location counter backward for: " + ctx->outSec->name); // Update to location counter means update to section size. if (inSec) expandOutputSection(val - dot); dot = val; } // Used for handling linker symbol assignments, for both finalizing // their values and doing early declarations. Returns true if symbol // should be defined from linker script. static bool shouldDefineSym(SymbolAssignment *cmd) { if (cmd->name == ".") return false; if (!cmd->provide) return true; // If a symbol was in PROVIDE(), we need to define it only // when it is a referenced undefined symbol. Symbol *b = symtab->find(cmd->name); if (b && !b->isDefined()) return true; return false; } // Called by processSymbolAssignments() to assign definitions to // linker-script-defined symbols. void LinkerScript::addSymbol(SymbolAssignment *cmd) { if (!shouldDefineSym(cmd)) return; // Define a symbol. ExprValue value = cmd->expression(); SectionBase *sec = value.isAbsolute() ? nullptr : value.sec; uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; // When this function is called, section addresses have not been // fixed yet. So, we may or may not know the value of the RHS // expression. // // For example, if an expression is `x = 42`, we know x is always 42. // However, if an expression is `x = .`, there's no way to know its // value at the moment. // // We want to set symbol values early if we can. This allows us to // use symbols as variables in linker scripts. Doing so allows us to // write expressions like this: `alignment = 16; . = ALIGN(., alignment)`. uint64_t symValue = value.sec ? 0 : value.getValue(); Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, symValue, 0, sec); Symbol *sym = symtab->insert(cmd->name); sym->mergeProperties(newSym); sym->replace(newSym); cmd->sym = cast(sym); } // This function is called from LinkerScript::declareSymbols. // It creates a placeholder symbol if needed. static void declareSymbol(SymbolAssignment *cmd) { if (!shouldDefineSym(cmd)) return; uint8_t visibility = cmd->hidden ? STV_HIDDEN : STV_DEFAULT; Defined newSym(nullptr, cmd->name, STB_GLOBAL, visibility, STT_NOTYPE, 0, 0, nullptr); // We can't calculate final value right now. Symbol *sym = symtab->insert(cmd->name); sym->mergeProperties(newSym); sym->replace(newSym); cmd->sym = cast(sym); cmd->provide = false; sym->scriptDefined = true; } using SymbolAssignmentMap = DenseMap>; // Collect section/value pairs of linker-script-defined symbols. This is used to // check whether symbol values converge. static SymbolAssignmentMap getSymbolAssignmentValues(const std::vector §ionCommands) { SymbolAssignmentMap ret; for (BaseCommand *base : sectionCommands) { if (auto *cmd = dyn_cast(base)) { if (cmd->sym) // sym is nullptr for dot. ret.try_emplace(cmd->sym, std::make_pair(cmd->sym->section, cmd->sym->value)); continue; } for (BaseCommand *sub_base : cast(base)->sectionCommands) if (auto *cmd = dyn_cast(sub_base)) if (cmd->sym) ret.try_emplace(cmd->sym, std::make_pair(cmd->sym->section, cmd->sym->value)); } return ret; } // Returns the lexicographical smallest (for determinism) Defined whose // section/value has changed. static const Defined * getChangedSymbolAssignment(const SymbolAssignmentMap &oldValues) { const Defined *changed = nullptr; for (auto &it : oldValues) { const Defined *sym = it.first; if (std::make_pair(sym->section, sym->value) != it.second && (!changed || sym->getName() < changed->getName())) changed = sym; } return changed; } // This method is used to handle INSERT AFTER statement. Here we rebuild // the list of script commands to mix sections inserted into. void LinkerScript::processInsertCommands() { std::vector v; auto insert = [&](std::vector &from) { v.insert(v.end(), from.begin(), from.end()); from.clear(); }; for (BaseCommand *base : sectionCommands) { if (auto *os = dyn_cast(base)) { insert(insertBeforeCommands[os->name]); v.push_back(base); insert(insertAfterCommands[os->name]); continue; } v.push_back(base); } for (auto &cmds : {insertBeforeCommands, insertAfterCommands}) for (const std::pair> &p : cmds) if (!p.second.empty()) error("unable to INSERT AFTER/BEFORE " + p.first + ": section not defined"); sectionCommands = std::move(v); } // Symbols defined in script should not be inlined by LTO. At the same time // we don't know their final values until late stages of link. Here we scan // over symbol assignment commands and create placeholder symbols if needed. void LinkerScript::declareSymbols() { assert(!ctx); for (BaseCommand *base : sectionCommands) { if (auto *cmd = dyn_cast(base)) { declareSymbol(cmd); continue; } // If the output section directive has constraints, // we can't say for sure if it is going to be included or not. // Skip such sections for now. Improve the checks if we ever // need symbols from that sections to be declared early. auto *sec = cast(base); if (sec->constraint != ConstraintKind::NoConstraint) continue; for (BaseCommand *base2 : sec->sectionCommands) if (auto *cmd = dyn_cast(base2)) declareSymbol(cmd); } } // This function is called from assignAddresses, while we are // fixing the output section addresses. This function is supposed // to set the final value for a given symbol assignment. void LinkerScript::assignSymbol(SymbolAssignment *cmd, bool inSec) { if (cmd->name == ".") { setDot(cmd->expression, cmd->location, inSec); return; } if (!cmd->sym) return; ExprValue v = cmd->expression(); if (v.isAbsolute()) { cmd->sym->section = nullptr; cmd->sym->value = v.getValue(); } else { cmd->sym->section = v.sec; cmd->sym->value = v.getSectionOffset(); } } static std::string getFilename(InputFile *file) { if (!file) return ""; if (file->archiveName.empty()) return file->getName(); return (file->archiveName + "(" + file->getName() + ")").str(); } bool LinkerScript::shouldKeep(InputSectionBase *s) { if (keptSections.empty()) return false; std::string filename = getFilename(s->file); for (InputSectionDescription *id : keptSections) if (id->filePat.match(filename)) for (SectionPattern &p : id->sectionPatterns) if (p.sectionPat.match(s->name)) return true; return false; } // A helper function for the SORT() command. static bool matchConstraints(ArrayRef sections, ConstraintKind kind) { if (kind == ConstraintKind::NoConstraint) return true; bool isRW = llvm::any_of( sections, [](InputSectionBase *sec) { return sec->flags & SHF_WRITE; }); return (isRW && kind == ConstraintKind::ReadWrite) || (!isRW && kind == ConstraintKind::ReadOnly); } static void sortSections(MutableArrayRef vec, SortSectionPolicy k) { auto alignmentComparator = [](InputSectionBase *a, InputSectionBase *b) { // ">" is not a mistake. Sections with larger alignments are placed // before sections with smaller alignments in order to reduce the // amount of padding necessary. This is compatible with GNU. return a->alignment > b->alignment; }; auto nameComparator = [](InputSectionBase *a, InputSectionBase *b) { return a->name < b->name; }; auto priorityComparator = [](InputSectionBase *a, InputSectionBase *b) { return getPriority(a->name) < getPriority(b->name); }; switch (k) { case SortSectionPolicy::Default: case SortSectionPolicy::None: return; case SortSectionPolicy::Alignment: return llvm::stable_sort(vec, alignmentComparator); case SortSectionPolicy::Name: return llvm::stable_sort(vec, nameComparator); case SortSectionPolicy::Priority: return llvm::stable_sort(vec, priorityComparator); } } // Sort sections as instructed by SORT-family commands and --sort-section // option. Because SORT-family commands can be nested at most two depth // (e.g. SORT_BY_NAME(SORT_BY_ALIGNMENT(.text.*))) and because the command // line option is respected even if a SORT command is given, the exact // behavior we have here is a bit complicated. Here are the rules. // // 1. If two SORT commands are given, --sort-section is ignored. // 2. If one SORT command is given, and if it is not SORT_NONE, // --sort-section is handled as an inner SORT command. // 3. If one SORT command is given, and if it is SORT_NONE, don't sort. // 4. If no SORT command is given, sort according to --sort-section. static void sortInputSections(MutableArrayRef vec, const SectionPattern &pat) { if (pat.sortOuter == SortSectionPolicy::None) return; if (pat.sortInner == SortSectionPolicy::Default) sortSections(vec, config->sortSection); else sortSections(vec, pat.sortInner); sortSections(vec, pat.sortOuter); } // Compute and remember which sections the InputSectionDescription matches. std::vector LinkerScript::computeInputSections(const InputSectionDescription *cmd) { std::vector ret; // Collects all sections that satisfy constraints of Cmd. for (const SectionPattern &pat : cmd->sectionPatterns) { size_t sizeBefore = ret.size(); for (InputSectionBase *sec : inputSections) { if (!sec->isLive() || sec->parent) continue; // For -emit-relocs we have to ignore entries like // .rela.dyn : { *(.rela.data) } // which are common because they are in the default bfd script. // We do not ignore SHT_REL[A] linker-synthesized sections here because // want to support scripts that do custom layout for them. if (isa(sec) && cast(sec)->getRelocatedSection()) continue; std::string filename = getFilename(sec->file); if (!cmd->filePat.match(filename) || pat.excludedFilePat.match(filename) || !pat.sectionPat.match(sec->name)) continue; ret.push_back(sec); } sortInputSections( MutableArrayRef(ret).slice(sizeBefore), pat); } return ret; } void LinkerScript::discard(InputSectionBase *s) { if (s == in.shStrTab || s == mainPart->relrDyn) error("discarding " + s->name + " section is not allowed"); // You can discard .hash and .gnu.hash sections by linker scripts. Since // they are synthesized sections, we need to handle them differently than // other regular sections. if (s == mainPart->gnuHashTab) mainPart->gnuHashTab = nullptr; if (s == mainPart->hashTab) mainPart->hashTab = nullptr; s->markDead(); s->parent = nullptr; for (InputSection *ds : s->dependentSections) discard(ds); } std::vector LinkerScript::createInputSectionList(OutputSection &outCmd) { std::vector ret; for (BaseCommand *base : outCmd.sectionCommands) { if (auto *cmd = dyn_cast(base)) { cmd->sectionBases = computeInputSections(cmd); for (InputSectionBase *s : cmd->sectionBases) s->parent = &outCmd; ret.insert(ret.end(), cmd->sectionBases.begin(), cmd->sectionBases.end()); } } return ret; } // Create output sections described by SECTIONS commands. void LinkerScript::processSectionCommands() { size_t i = 0; for (BaseCommand *base : sectionCommands) { if (auto *sec = dyn_cast(base)) { std::vector v = createInputSectionList(*sec); // The output section name `/DISCARD/' is special. // Any input section assigned to it is discarded. if (sec->name == "/DISCARD/") { for (InputSectionBase *s : v) discard(s); sec->sectionCommands.clear(); continue; } // This is for ONLY_IF_RO and ONLY_IF_RW. An output section directive // ".foo : ONLY_IF_R[OW] { ... }" is handled only if all member input // sections satisfy a given constraint. If not, a directive is handled // as if it wasn't present from the beginning. // // Because we'll iterate over SectionCommands many more times, the easy // way to "make it as if it wasn't present" is to make it empty. if (!matchConstraints(v, sec->constraint)) { for (InputSectionBase *s : v) s->parent = nullptr; sec->sectionCommands.clear(); continue; } // Handle subalign (e.g. ".foo : SUBALIGN(32) { ... }"). If subalign // is given, input sections are aligned to that value, whether the // given value is larger or smaller than the original section alignment. if (sec->subalignExpr) { uint32_t subalign = sec->subalignExpr().getValue(); for (InputSectionBase *s : v) s->alignment = subalign; } // Set the partition field the same way OutputSection::recordSection() // does. Partitions cannot be used with the SECTIONS command, so this is // always 1. sec->partition = 1; sec->sectionIndex = i++; } } } void LinkerScript::processSymbolAssignments() { // Dot outside an output section still represents a relative address, whose // sh_shndx should not be SHN_UNDEF or SHN_ABS. Create a dummy aether section // that fills the void outside a section. It has an index of one, which is // indistinguishable from any other regular section index. aether = make("", 0, SHF_ALLOC); aether->sectionIndex = 1; // ctx captures the local AddressState and makes it accessible deliberately. // This is needed as there are some cases where we cannot just thread the // current state through to a lambda function created by the script parser. AddressState state; ctx = &state; ctx->outSec = aether; for (BaseCommand *base : sectionCommands) { if (auto *cmd = dyn_cast(base)) addSymbol(cmd); else for (BaseCommand *sub_base : cast(base)->sectionCommands) if (auto *cmd = dyn_cast(sub_base)) addSymbol(cmd); } ctx = nullptr; } static OutputSection *findByName(ArrayRef vec, StringRef name) { for (BaseCommand *base : vec) if (auto *sec = dyn_cast(base)) if (sec->name == name) return sec; return nullptr; } static OutputSection *createSection(InputSectionBase *isec, StringRef outsecName) { OutputSection *sec = script->createOutputSection(outsecName, ""); sec->recordSection(isec); return sec; } static OutputSection * addInputSec(StringMap> &map, InputSectionBase *isec, StringRef outsecName) { // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r // option is given. A section with SHT_GROUP defines a "section group", and // its members have SHF_GROUP attribute. Usually these flags have already been // stripped by InputFiles.cpp as section groups are processed and uniquified. // However, for the -r option, we want to pass through all section groups // as-is because adding/removing members or merging them with other groups // change their semantics. if (isec->type == SHT_GROUP || (isec->flags & SHF_GROUP)) return createSection(isec, outsecName); // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have // relocation sections .rela.foo and .rela.bar for example. Most tools do // not allow multiple REL[A] sections for output section. Hence we // should combine these relocation sections into single output. // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any // other REL[A] sections created by linker itself. if (!isa(isec) && (isec->type == SHT_REL || isec->type == SHT_RELA)) { auto *sec = cast(isec); OutputSection *out = sec->getRelocatedSection()->getOutputSection(); if (out->relocationSection) { out->relocationSection->recordSection(sec); return nullptr; } out->relocationSection = createSection(isec, outsecName); return out->relocationSection; } // The ELF spec just says // ---------------------------------------------------------------- // In the first phase, input sections that match in name, type and // attribute flags should be concatenated into single sections. // ---------------------------------------------------------------- // // However, it is clear that at least some flags have to be ignored for // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be // ignored. We should not have two output .text sections just because one was // in a group and another was not for example. // // It also seems that wording was a late addition and didn't get the // necessary scrutiny. // // Merging sections with different flags is expected by some users. One // reason is that if one file has // // int *const bar __attribute__((section(".foo"))) = (int *)0; // // gcc with -fPIC will produce a read only .foo section. But if another // file has // // int zed; // int *const bar __attribute__((section(".foo"))) = (int *)&zed; // // gcc with -fPIC will produce a read write section. // // Last but not least, when using linker script the merge rules are forced by // the script. Unfortunately, linker scripts are name based. This means that // expressions like *(.foo*) can refer to multiple input sections with // different flags. We cannot put them in different output sections or we // would produce wrong results for // // start = .; *(.foo.*) end = .; *(.bar) // // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to // another. The problem is that there is no way to layout those output // sections such that the .foo sections are the only thing between the start // and end symbols. // // Given the above issues, we instead merge sections by name and error on // incompatible types and flags. TinyPtrVector &v = map[outsecName]; for (OutputSection *sec : v) { if (sec->partition != isec->partition) continue; if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) { // Merging two SHF_LINK_ORDER sections with different sh_link fields will // change their semantics, so we only merge them in -r links if they will // end up being linked to the same output section. The casts are fine // because everything in the map was created by the orphan placement code. auto *firstIsec = cast( cast(sec->sectionCommands[0]) ->sectionBases[0]); if (firstIsec->getLinkOrderDep()->getOutputSection() != isec->getLinkOrderDep()->getOutputSection()) continue; } sec->recordSection(isec); return nullptr; } OutputSection *sec = createSection(isec, outsecName); v.push_back(sec); return sec; } // Add sections that didn't match any sections command. void LinkerScript::addOrphanSections() { StringMap> map; std::vector v; std::function add; add = [&](InputSectionBase *s) { if (s->isLive() && !s->parent) { StringRef name = getOutputSectionName(s); if (config->orphanHandling == OrphanHandlingPolicy::Error) error(toString(s) + " is being placed in '" + name + "'"); else if (config->orphanHandling == OrphanHandlingPolicy::Warn) warn(toString(s) + " is being placed in '" + name + "'"); if (OutputSection *sec = findByName(sectionCommands, name)) { sec->recordSection(s); } else { if (OutputSection *os = addInputSec(map, s, name)) v.push_back(os); assert(isa(s) || s->getOutputSection()->sectionIndex == UINT32_MAX); } } if (config->relocatable) for (InputSectionBase *depSec : s->dependentSections) if (depSec->flags & SHF_LINK_ORDER) add(depSec); }; // For futher --emit-reloc handling code we need target output section // to be created before we create relocation output section, so we want // to create target sections first. We do not want priority handling // for synthetic sections because them are special. for (InputSectionBase *isec : inputSections) { // In -r links, SHF_LINK_ORDER sections are added while adding their parent // sections because we need to know the parent's output section before we // can select an output section for the SHF_LINK_ORDER section. if (config->relocatable && (isec->flags & SHF_LINK_ORDER)) continue; if (auto *sec = dyn_cast(isec)) if (InputSectionBase *rel = sec->getRelocatedSection()) if (auto *relIS = dyn_cast_or_null(rel->parent)) add(relIS); add(isec); } // If no SECTIONS command was given, we should insert sections commands // before others, so that we can handle scripts which refers them, // for example: "foo = ABSOLUTE(ADDR(.text)));". // When SECTIONS command is present we just add all orphans to the end. if (hasSectionsCommand) sectionCommands.insert(sectionCommands.end(), v.begin(), v.end()); else sectionCommands.insert(sectionCommands.begin(), v.begin(), v.end()); } uint64_t LinkerScript::advance(uint64_t size, unsigned alignment) { bool isTbss = (ctx->outSec->flags & SHF_TLS) && ctx->outSec->type == SHT_NOBITS; uint64_t start = isTbss ? dot + ctx->threadBssOffset : dot; start = alignTo(start, alignment); uint64_t end = start + size; if (isTbss) ctx->threadBssOffset = end - dot; else dot = end; return end; } void LinkerScript::output(InputSection *s) { assert(ctx->outSec == s->getParent()); uint64_t before = advance(0, 1); uint64_t pos = advance(s->getSize(), s->alignment); s->outSecOff = pos - s->getSize() - ctx->outSec->addr; // Update output section size after adding each section. This is so that // SIZEOF works correctly in the case below: // .foo { *(.aaa) a = SIZEOF(.foo); *(.bbb) } expandOutputSection(pos - before); } void LinkerScript::switchTo(OutputSection *sec) { ctx->outSec = sec; uint64_t before = advance(0, 1); ctx->outSec->addr = advance(0, ctx->outSec->alignment); expandMemoryRegions(ctx->outSec->addr - before); } // This function searches for a memory region to place the given output // section in. If found, a pointer to the appropriate memory region is // returned. Otherwise, a nullptr is returned. MemoryRegion *LinkerScript::findMemoryRegion(OutputSection *sec) { // If a memory region name was specified in the output section command, // then try to find that region first. if (!sec->memoryRegionName.empty()) { if (MemoryRegion *m = memoryRegions.lookup(sec->memoryRegionName)) return m; error("memory region '" + sec->memoryRegionName + "' not declared"); return nullptr; } // If at least one memory region is defined, all sections must // belong to some memory region. Otherwise, we don't need to do // anything for memory regions. if (memoryRegions.empty()) return nullptr; // See if a region can be found by matching section flags. for (auto &pair : memoryRegions) { MemoryRegion *m = pair.second; if ((m->flags & sec->flags) && (m->negFlags & sec->flags) == 0) return m; } // Otherwise, no suitable region was found. if (sec->flags & SHF_ALLOC) error("no memory region specified for section '" + sec->name + "'"); return nullptr; } static OutputSection *findFirstSection(PhdrEntry *load) { for (OutputSection *sec : outputSections) if (sec->ptLoad == load) return sec; return nullptr; } // This function assigns offsets to input sections and an output section // for a single sections command (e.g. ".text { *(.text); }"). void LinkerScript::assignOffsets(OutputSection *sec) { if (!(sec->flags & SHF_ALLOC)) dot = 0; ctx->memRegion = sec->memRegion; ctx->lmaRegion = sec->lmaRegion; if (ctx->memRegion) dot = ctx->memRegion->curPos; if ((sec->flags & SHF_ALLOC) && sec->addrExpr) setDot(sec->addrExpr, sec->location, false); // If the address of the section has been moved forward by an explicit // expression so that it now starts past the current curPos of the enclosing // region, we need to expand the current region to account for the space // between the previous section, if any, and the start of this section. if (ctx->memRegion && ctx->memRegion->curPos < dot) expandMemoryRegion(ctx->memRegion, dot - ctx->memRegion->curPos, ctx->memRegion->name, sec->name); switchTo(sec); if (sec->lmaExpr) ctx->lmaOffset = sec->lmaExpr().getValue() - dot; if (MemoryRegion *mr = sec->lmaRegion) ctx->lmaOffset = mr->curPos - dot; // If neither AT nor AT> is specified for an allocatable section, the linker // will set the LMA such that the difference between VMA and LMA for the // section is the same as the preceding output section in the same region // https://sourceware.org/binutils/docs-2.20/ld/Output-Section-LMA.html // This, however, should only be done by the first "non-header" section // in the segment. if (PhdrEntry *l = ctx->outSec->ptLoad) if (sec == findFirstSection(l)) l->lmaOffset = ctx->lmaOffset; // We can call this method multiple times during the creation of // thunks and want to start over calculation each time. sec->size = 0; // We visited SectionsCommands from processSectionCommands to // layout sections. Now, we visit SectionsCommands again to fix // section offsets. for (BaseCommand *base : sec->sectionCommands) { // This handles the assignments to symbol or to the dot. if (auto *cmd = dyn_cast(base)) { cmd->addr = dot; assignSymbol(cmd, true); cmd->size = dot - cmd->addr; continue; } // Handle BYTE(), SHORT(), LONG(), or QUAD(). if (auto *cmd = dyn_cast(base)) { cmd->offset = dot - ctx->outSec->addr; dot += cmd->size; expandOutputSection(cmd->size); continue; } // Handle a single input section description command. // It calculates and assigns the offsets for each section and also // updates the output section size. for (InputSection *sec : cast(base)->sections) output(sec); } } static bool isDiscardable(OutputSection &sec) { if (sec.name == "/DISCARD/") return true; // We do not remove empty sections that are explicitly // assigned to any segment. if (!sec.phdrs.empty()) return false; // We do not want to remove OutputSections with expressions that reference // symbols even if the OutputSection is empty. We want to ensure that the // expressions can be evaluated and report an error if they cannot. if (sec.expressionsUseSymbols) return false; // OutputSections may be referenced by name in ADDR and LOADADDR expressions, // as an empty Section can has a valid VMA and LMA we keep the OutputSection // to maintain the integrity of the other Expression. if (sec.usedInExpression) return false; for (BaseCommand *base : sec.sectionCommands) { if (auto cmd = dyn_cast(base)) // Don't create empty output sections just for unreferenced PROVIDE // symbols. if (cmd->name != "." && !cmd->sym) continue; if (!isa(*base)) return false; } return true; } void LinkerScript::adjustSectionsBeforeSorting() { // If the output section contains only symbol assignments, create a // corresponding output section. The issue is what to do with linker script // like ".foo : { symbol = 42; }". One option would be to convert it to // "symbol = 42;". That is, move the symbol out of the empty section // description. That seems to be what bfd does for this simple case. The // problem is that this is not completely general. bfd will give up and // create a dummy section too if there is a ". = . + 1" inside the section // for example. // Given that we want to create the section, we have to worry what impact // it will have on the link. For example, if we just create a section with // 0 for flags, it would change which PT_LOADs are created. // We could remember that particular section is dummy and ignore it in // other parts of the linker, but unfortunately there are quite a few places // that would need to change: // * The program header creation. // * The orphan section placement. // * The address assignment. // The other option is to pick flags that minimize the impact the section // will have on the rest of the linker. That is why we copy the flags from // the previous sections. Only a few flags are needed to keep the impact low. uint64_t flags = SHF_ALLOC; for (BaseCommand *&cmd : sectionCommands) { auto *sec = dyn_cast(cmd); if (!sec) continue; // Handle align (e.g. ".foo : ALIGN(16) { ... }"). if (sec->alignExpr) sec->alignment = std::max(sec->alignment, sec->alignExpr().getValue()); // The input section might have been removed (if it was an empty synthetic // section), but we at least know the flags. if (sec->hasInputSections) flags = sec->flags; // We do not want to keep any special flags for output section // in case it is empty. bool isEmpty = getInputSections(sec).empty(); if (isEmpty) sec->flags = flags & ((sec->nonAlloc ? 0 : (uint64_t)SHF_ALLOC) | SHF_WRITE | SHF_EXECINSTR); if (isEmpty && isDiscardable(*sec)) { sec->markDead(); cmd = nullptr; } } // It is common practice to use very generic linker scripts. So for any // given run some of the output sections in the script will be empty. // We could create corresponding empty output sections, but that would // clutter the output. // We instead remove trivially empty sections. The bfd linker seems even // more aggressive at removing them. llvm::erase_if(sectionCommands, [&](BaseCommand *base) { return !base; }); } void LinkerScript::adjustSectionsAfterSorting() { // Try and find an appropriate memory region to assign offsets in. for (BaseCommand *base : sectionCommands) { if (auto *sec = dyn_cast(base)) { if (!sec->lmaRegionName.empty()) { if (MemoryRegion *m = memoryRegions.lookup(sec->lmaRegionName)) sec->lmaRegion = m; else error("memory region '" + sec->lmaRegionName + "' not declared"); } sec->memRegion = findMemoryRegion(sec); } } // If output section command doesn't specify any segments, // and we haven't previously assigned any section to segment, // then we simply assign section to the very first load segment. // Below is an example of such linker script: // PHDRS { seg PT_LOAD; } // SECTIONS { .aaa : { *(.aaa) } } std::vector defPhdrs; auto firstPtLoad = llvm::find_if(phdrsCommands, [](const PhdrsCommand &cmd) { return cmd.type == PT_LOAD; }); if (firstPtLoad != phdrsCommands.end()) defPhdrs.push_back(firstPtLoad->name); // Walk the commands and propagate the program headers to commands that don't // explicitly specify them. for (BaseCommand *base : sectionCommands) { auto *sec = dyn_cast(base); if (!sec) continue; if (sec->phdrs.empty()) { // To match the bfd linker script behaviour, only propagate program // headers to sections that are allocated. if (sec->flags & SHF_ALLOC) sec->phdrs = defPhdrs; } else { defPhdrs = sec->phdrs; } } } static uint64_t computeBase(uint64_t min, bool allocateHeaders) { // If there is no SECTIONS or if the linkerscript is explicit about program // headers, do our best to allocate them. if (!script->hasSectionsCommand || allocateHeaders) return 0; // Otherwise only allocate program headers if that would not add a page. return alignDown(min, config->maxPageSize); } // When the SECTIONS command is used, try to find an address for the file and // program headers output sections, which can be added to the first PT_LOAD // segment when program headers are created. // // We check if the headers fit below the first allocated section. If there isn't // enough space for these sections, we'll remove them from the PT_LOAD segment, // and we'll also remove the PT_PHDR segment. void LinkerScript::allocateHeaders(std::vector &phdrs) { uint64_t min = std::numeric_limits::max(); for (OutputSection *sec : outputSections) if (sec->flags & SHF_ALLOC) min = std::min(min, sec->addr); auto it = llvm::find_if( phdrs, [](const PhdrEntry *e) { return e->p_type == PT_LOAD; }); if (it == phdrs.end()) return; PhdrEntry *firstPTLoad = *it; bool hasExplicitHeaders = llvm::any_of(phdrsCommands, [](const PhdrsCommand &cmd) { return cmd.hasPhdrs || cmd.hasFilehdr; }); bool paged = !config->omagic && !config->nmagic; uint64_t headerSize = getHeaderSize(); if ((paged || hasExplicitHeaders) && headerSize <= min - computeBase(min, hasExplicitHeaders)) { min = alignDown(min - headerSize, config->maxPageSize); Out::elfHeader->addr = min; Out::programHeaders->addr = min + Out::elfHeader->size; return; } // Error if we were explicitly asked to allocate headers. if (hasExplicitHeaders) error("could not allocate headers"); Out::elfHeader->ptLoad = nullptr; Out::programHeaders->ptLoad = nullptr; firstPTLoad->firstSec = findFirstSection(firstPTLoad); llvm::erase_if(phdrs, [](const PhdrEntry *e) { return e->p_type == PT_PHDR; }); } LinkerScript::AddressState::AddressState() { for (auto &mri : script->memoryRegions) { MemoryRegion *mr = mri.second; mr->curPos = mr->origin; } } // Here we assign addresses as instructed by linker script SECTIONS // sub-commands. Doing that allows us to use final VA values, so here // we also handle rest commands like symbol assignments and ASSERTs. // Returns a symbol that has changed its section or value, or nullptr if no // symbol has changed. const Defined *LinkerScript::assignAddresses() { if (script->hasSectionsCommand) { // With a linker script, assignment of addresses to headers is covered by // allocateHeaders(). dot = config->imageBase.getValueOr(0); } else { // Assign addresses to headers right now. dot = target->getImageBase(); Out::elfHeader->addr = dot; Out::programHeaders->addr = dot + Out::elfHeader->size; dot += getHeaderSize(); } auto deleter = std::make_unique(); ctx = deleter.get(); errorOnMissingSection = true; switchTo(aether); SymbolAssignmentMap oldValues = getSymbolAssignmentValues(sectionCommands); for (BaseCommand *base : sectionCommands) { if (auto *cmd = dyn_cast(base)) { cmd->addr = dot; assignSymbol(cmd, false); cmd->size = dot - cmd->addr; continue; } assignOffsets(cast(base)); } ctx = nullptr; return getChangedSymbolAssignment(oldValues); } // Creates program headers as instructed by PHDRS linker script command. std::vector LinkerScript::createPhdrs() { std::vector ret; // Process PHDRS and FILEHDR keywords because they are not // real output sections and cannot be added in the following loop. for (const PhdrsCommand &cmd : phdrsCommands) { PhdrEntry *phdr = make(cmd.type, cmd.flags ? *cmd.flags : PF_R); if (cmd.hasFilehdr) phdr->add(Out::elfHeader); if (cmd.hasPhdrs) phdr->add(Out::programHeaders); if (cmd.lmaExpr) { phdr->p_paddr = cmd.lmaExpr().getValue(); phdr->hasLMA = true; } ret.push_back(phdr); } // Add output sections to program headers. for (OutputSection *sec : outputSections) { // Assign headers specified by linker script for (size_t id : getPhdrIndices(sec)) { ret[id]->add(sec); if (!phdrsCommands[id].flags.hasValue()) ret[id]->p_flags |= sec->getPhdrFlags(); } } return ret; } // Returns true if we should emit an .interp section. // // We usually do. But if PHDRS commands are given, and // no PT_INTERP is there, there's no place to emit an // .interp, so we don't do that in that case. bool LinkerScript::needsInterpSection() { if (phdrsCommands.empty()) return true; for (PhdrsCommand &cmd : phdrsCommands) if (cmd.type == PT_INTERP) return true; return false; } ExprValue LinkerScript::getSymbolValue(StringRef name, const Twine &loc) { if (name == ".") { if (ctx) return {ctx->outSec, false, dot - ctx->outSec->addr, loc}; error(loc + ": unable to get location counter value"); return 0; } if (Symbol *sym = symtab->find(name)) { if (auto *ds = dyn_cast(sym)) return {ds->section, false, ds->value, loc}; if (isa(sym)) if (!errorOnMissingSection) return {nullptr, false, 0, loc}; } error(loc + ": symbol not found: " + name); return 0; } // Returns the index of the segment named Name. static Optional getPhdrIndex(ArrayRef vec, StringRef name) { for (size_t i = 0; i < vec.size(); ++i) if (vec[i].name == name) return i; return None; } // Returns indices of ELF headers containing specific section. Each index is a // zero based number of ELF header listed within PHDRS {} script block. std::vector LinkerScript::getPhdrIndices(OutputSection *cmd) { std::vector ret; for (StringRef s : cmd->phdrs) { if (Optional idx = getPhdrIndex(phdrsCommands, s)) ret.push_back(*idx); else if (s != "NONE") error(cmd->location + ": section header '" + s + "' is not listed in PHDRS"); } return ret; } } // namespace elf } // namespace lld