//===-- IRForTarget.h ---------------------------------------------*- C++ //-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef liblldb_IRForTarget_h_ #define liblldb_IRForTarget_h_ #include "lldb/Core/ClangForward.h" #include "lldb/Symbol/TaggedASTType.h" #include "lldb/Utility/ConstString.h" #include "lldb/Utility/Status.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/StreamString.h" #include "lldb/lldb-public.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/Pass.h" #include #include namespace llvm { class BasicBlock; class CallInst; class Constant; class ConstantInt; class Function; class GlobalValue; class GlobalVariable; class Instruction; class Module; class StoreInst; class DataLayout; class Value; } namespace lldb_private { class ClangExpressionDeclMap; class IRExecutionUnit; class IRMemoryMap; } /// \class IRForTarget IRForTarget.h "lldb/Expression/IRForTarget.h" /// Transforms the IR for a function to run in the target /// /// Once an expression has been parsed and converted to IR, it can run in two /// contexts: interpreted by LLDB as a DWARF location expression, or compiled /// by the JIT and inserted into the target process for execution. /// /// IRForTarget makes the second possible, by applying a series of /// transformations to the IR which make it relocatable. These /// transformations are discussed in more detail next to their relevant /// functions. class IRForTarget : public llvm::ModulePass { public: enum class LookupResult { Success, Fail, Ignore }; /// Constructor /// /// \param[in] decl_map /// The list of externally-referenced variables for the expression, /// for use in looking up globals and allocating the argument /// struct. See the documentation for ClangExpressionDeclMap. /// /// \param[in] resolve_vars /// True if the external variable references (including persistent /// variables) should be resolved. If not, only external functions /// are resolved. /// /// \param[in] execution_policy /// Determines whether an IR interpreter can be used to statically /// evaluate the expression. /// /// \param[in] const_result /// This variable is populated with the statically-computed result /// of the function, if it has no side-effects and the result can /// be computed statically. /// /// \param[in] execution_unit /// The holder for raw data associated with the expression. /// /// \param[in] error_stream /// If non-NULL, a stream on which errors can be printed. /// /// \param[in] func_name /// The name of the function to prepare for execution in the target. IRForTarget(lldb_private::ClangExpressionDeclMap *decl_map, bool resolve_vars, lldb_private::IRExecutionUnit &execution_unit, lldb_private::Stream &error_stream, const char *func_name = "$__lldb_expr"); /// Destructor ~IRForTarget() override; /// Run this IR transformer on a single module /// /// Implementation of the llvm::ModulePass::runOnModule() function. /// /// \param[in] llvm_module /// The module to run on. This module is searched for the function /// $__lldb_expr, and that function is passed to the passes one by /// one. /// /// \param[in] interpreter_error /// An error. If the expression fails to be interpreted, this error /// is set to a reason why. /// /// \return /// True on success; false otherwise bool runOnModule(llvm::Module &llvm_module) override; /// Interface stub /// /// Implementation of the llvm::ModulePass::assignPassManager() function. void assignPassManager(llvm::PMStack &pass_mgr_stack, llvm::PassManagerType pass_mgr_type = llvm::PMT_ModulePassManager) override; /// Returns PMT_ModulePassManager /// /// Implementation of the llvm::ModulePass::getPotentialPassManagerType() /// function. llvm::PassManagerType getPotentialPassManagerType() const override; private: /// Ensures that the current function's linkage is set to external. /// Otherwise the JIT may not return an address for it. /// /// \param[in] llvm_function /// The function whose linkage is to be fixed. /// /// \return /// True on success; false otherwise. bool FixFunctionLinkage(llvm::Function &llvm_function); /// A module-level pass to replace all function pointers with their /// integer equivalents. /// The top-level pass implementation /// /// \param[in] llvm_module /// The module currently being processed. /// /// \param[in] llvm_function /// The function currently being processed. /// /// \return /// True on success; false otherwise. bool HasSideEffects(llvm::Function &llvm_function); /// A function-level pass to check whether the function has side /// effects. /// Get the address of a function, and a location to put the complete Value /// of the function if one is available. /// /// \param[in] function /// The function to find the location of. /// /// \param[out] ptr /// The location of the function in the target. /// /// \param[out] name /// The resolved name of the function (matters for intrinsics). /// /// \param[out] value_ptr /// A variable to put the function's completed Value* in, or NULL /// if the Value* shouldn't be stored anywhere. /// /// \return /// The pointer. LookupResult GetFunctionAddress(llvm::Function *function, uint64_t &ptr, lldb_private::ConstString &name, llvm::Constant **&value_ptr); /// A function-level pass to take the generated global value /// $__lldb_expr_result and make it into a persistent variable. Also see /// ASTResultSynthesizer. /// Find the NamedDecl corresponding to a Value. This interface is exposed /// for the IR interpreter. /// /// \param[in] module /// The module containing metadata to search /// /// \param[in] global /// The global entity to search for /// /// \return /// The corresponding variable declaration public: static clang::NamedDecl *DeclForGlobal(const llvm::GlobalValue *global_val, llvm::Module *module); private: clang::NamedDecl *DeclForGlobal(llvm::GlobalValue *global); /// Set the constant result variable m_const_result to the provided /// constant, assuming it can be evaluated. The result variable will be /// reset to NULL later if the expression has side effects. /// /// \param[in] initializer /// The constant initializer for the variable. /// /// \param[in] name /// The name of the result variable. /// /// \param[in] type /// The Clang type of the result variable. void MaybeSetConstantResult(llvm::Constant *initializer, lldb_private::ConstString name, lldb_private::TypeFromParser type); /// If the IR represents a cast of a variable, set m_const_result to the /// result of the cast. The result variable will be reset to /// NULL latger if the expression has side effects. /// /// \param[in] type /// The Clang type of the result variable. void MaybeSetCastResult(lldb_private::TypeFromParser type); /// The top-level pass implementation /// /// \param[in] llvm_function /// The function currently being processed. /// /// \return /// True on success; false otherwise bool CreateResultVariable(llvm::Function &llvm_function); /// A module-level pass to find Objective-C constant strings and /// transform them to calls to CFStringCreateWithBytes. /// Rewrite a single Objective-C constant string. /// /// \param[in] NSStr /// The constant NSString to be transformed /// /// \param[in] CStr /// The constant C string inside the NSString. This will be /// passed as the bytes argument to CFStringCreateWithBytes. /// /// \return /// True on success; false otherwise bool RewriteObjCConstString(llvm::GlobalVariable *NSStr, llvm::GlobalVariable *CStr); /// The top-level pass implementation /// /// \return /// True on success; false otherwise bool RewriteObjCConstStrings(); /// A basic block-level pass to find all Objective-C method calls and /// rewrite them to use sel_registerName instead of statically allocated /// selectors. The reason is that the selectors are created on the /// assumption that the Objective-C runtime will scan the appropriate /// section and prepare them. This doesn't happen when code is copied into /// the target, though, and there's no easy way to induce the runtime to /// scan them. So instead we get our selectors from sel_registerName. /// Replace a single selector reference /// /// \param[in] selector_load /// The load of the statically-allocated selector. /// /// \return /// True on success; false otherwise bool RewriteObjCSelector(llvm::Instruction *selector_load); /// The top-level pass implementation /// /// \param[in] basic_block /// The basic block currently being processed. /// /// \return /// True on success; false otherwise bool RewriteObjCSelectors(llvm::BasicBlock &basic_block); /// A basic block-level pass to find all Objective-C class references that /// use the old-style Objective-C runtime and rewrite them to use /// class_getClass instead of statically allocated class references. /// Replace a single old-style class reference /// /// \param[in] selector_load /// The load of the statically-allocated selector. /// /// \return /// True on success; false otherwise bool RewriteObjCClassReference(llvm::Instruction *class_load); /// The top-level pass implementation /// /// \param[in] basic_block /// The basic block currently being processed. /// /// \return /// True on success; false otherwise bool RewriteObjCClassReferences(llvm::BasicBlock &basic_block); /// A basic block-level pass to find all newly-declared persistent /// variables and register them with the ClangExprDeclMap. This allows them /// to be materialized and dematerialized like normal external variables. /// Before transformation, these persistent variables look like normal /// locals, so they have an allocation. This pass excises these allocations /// and makes references look like external references where they will be /// resolved -- like all other external references -- by ResolveExternals(). /// Handle a single allocation of a persistent variable /// /// \param[in] persistent_alloc /// The allocation of the persistent variable. /// /// \return /// True on success; false otherwise bool RewritePersistentAlloc(llvm::Instruction *persistent_alloc); /// The top-level pass implementation /// /// \param[in] basic_block /// The basic block currently being processed. bool RewritePersistentAllocs(llvm::BasicBlock &basic_block); /// A function-level pass to find all external variables and functions /// used in the IR. Each found external variable is added to the struct, /// and each external function is resolved in place, its call replaced with /// a call to a function pointer whose value is the address of the function /// in the target process. /// Handle a single externally-defined variable /// /// \param[in] value /// The variable. /// /// \return /// True on success; false otherwise bool MaybeHandleVariable(llvm::Value *value); /// Handle a single externally-defined symbol /// /// \param[in] symbol /// The symbol. /// /// \return /// True on success; false otherwise bool HandleSymbol(llvm::Value *symbol); /// Handle a single externally-defined Objective-C class /// /// \param[in] classlist_reference /// The reference, usually "01L_OBJC_CLASSLIST_REFERENCES_$_n" /// where n (if present) is an index. /// /// \return /// True on success; false otherwise bool HandleObjCClass(llvm::Value *classlist_reference); /// Handle all the arguments to a function call /// /// \param[in] C /// The call instruction. /// /// \return /// True on success; false otherwise bool MaybeHandleCallArguments(llvm::CallInst *call_inst); /// Resolve variable references in calls to external functions /// /// \param[in] basic_block /// The basic block currently being processed. /// /// \return /// True on success; false otherwise bool ResolveCalls(llvm::BasicBlock &basic_block); /// Remove calls to __cxa_atexit, which should never be generated by /// expressions. /// /// \param[in] call_inst /// The call instruction. /// /// \return /// True if the scan was successful; false if some operation /// failed bool RemoveCXAAtExit(llvm::BasicBlock &basic_block); /// The top-level pass implementation /// /// \param[in] basic_block /// The function currently being processed. /// /// \return /// True on success; false otherwise bool ResolveExternals(llvm::Function &llvm_function); /// A basic block-level pass to excise guard variables from the code. /// The result for the function is passed through Clang as a static /// variable. Static variables normally have guard variables to ensure that /// they are only initialized once. /// Rewrite a load to a guard variable to return constant 0. /// /// \param[in] guard_load /// The load instruction to zero out. void TurnGuardLoadIntoZero(llvm::Instruction *guard_load); /// The top-level pass implementation /// /// \param[in] basic_block /// The basic block currently being processed. /// /// \return /// True on success; false otherwise bool RemoveGuards(llvm::BasicBlock &basic_block); /// A function-level pass to make all external variable references /// point at the correct offsets from the void* passed into the function. /// ClangExpressionDeclMap::DoStructLayout() must be called beforehand, so /// that the offsets are valid. /// The top-level pass implementation /// /// \param[in] llvm_function /// The function currently being processed. /// /// \return /// True on success; false otherwise bool ReplaceVariables(llvm::Function &llvm_function); /// Flags bool m_resolve_vars; ///< True if external variable references and persistent ///variable references should be resolved lldb_private::ConstString m_func_name; ///< The name of the function to translate lldb_private::ConstString m_result_name; ///< The name of the result variable ($0, $1, ...) lldb_private::TypeFromParser m_result_type; ///< The type of the result variable. llvm::Module *m_module; ///< The module being processed, or NULL if that has ///not been determined yet. std::unique_ptr m_target_data; ///< The target data for the ///module being processed, or ///NULL if there is no ///module. lldb_private::ClangExpressionDeclMap *m_decl_map; ///< The DeclMap containing the Decls llvm::FunctionCallee m_CFStringCreateWithBytes; ///< The address of the function /// CFStringCreateWithBytes, cast to the /// appropriate function pointer type llvm::FunctionCallee m_sel_registerName; ///< The address of the function /// sel_registerName, cast to the /// appropriate function pointer type llvm::FunctionCallee m_objc_getClass; ///< The address of the function /// objc_getClass, cast to the /// appropriate function pointer type llvm::IntegerType *m_intptr_ty; ///< The type of an integer large enough to hold a pointer. lldb_private::Stream &m_error_stream; ///< The stream on which errors should be printed lldb_private::IRExecutionUnit & m_execution_unit; ///< The execution unit containing the IR being created. llvm::StoreInst *m_result_store; ///< If non-NULL, the store instruction that ///writes to the result variable. If /// m_has_side_effects is true, this is /// NULL. bool m_result_is_pointer; ///< True if the function's result in the AST is a ///pointer (see comments in /// ASTResultSynthesizer::SynthesizeBodyResult) llvm::GlobalVariable *m_reloc_placeholder; ///< A placeholder that will be ///replaced by a pointer to the ///final /// location of the static allocation. /// UnfoldConstant operates on a constant [Old] which has just been replaced /// with a value [New]. We assume that new_value has been properly placed /// early in the function, in front of the first instruction in the entry /// basic block [FirstEntryInstruction]. /// /// UnfoldConstant reads through the uses of Old and replaces Old in those /// uses with New. Where those uses are constants, the function generates /// new instructions to compute the result of the new, non-constant /// expression and places them before FirstEntryInstruction. These /// instructions replace the constant uses, so UnfoldConstant calls itself /// recursively for those. /// /// \param[in] llvm_function /// The function currently being processed. /// /// \return /// True on success; false otherwise class FunctionValueCache { public: typedef std::function Maker; FunctionValueCache(Maker const &maker); ~FunctionValueCache(); llvm::Value *GetValue(llvm::Function *function); private: Maker const m_maker; typedef std::map FunctionValueMap; FunctionValueMap m_values; }; FunctionValueCache m_entry_instruction_finder; static bool UnfoldConstant(llvm::Constant *old_constant, llvm::Function *llvm_function, FunctionValueCache &value_maker, FunctionValueCache &entry_instruction_finder, lldb_private::Stream &error_stream); /// Commit the allocation in m_data_allocator and use its final location to /// replace m_reloc_placeholder. /// /// \param[in] module /// The module that m_data_allocator resides in /// /// \return /// True on success; false otherwise bool CompleteDataAllocation(); }; #endif // liblldb_IRForTarget_h_