//===- Optional.h - Simple variant for passing optional values --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file provides Optional, a template class modeled in the spirit of // OCaml's 'opt' variant. The idea is to strongly type whether or not // a value can be optional. // //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_OPTIONAL_H #define LLVM_ADT_OPTIONAL_H #include "llvm/ADT/Hashing.h" #include "llvm/ADT/None.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/type_traits.h" #include #include #include #include namespace llvm { class raw_ostream; namespace optional_detail { /// Storage for any type. // // The specialization condition intentionally uses // llvm::is_trivially_copy_constructible instead of // std::is_trivially_copy_constructible. GCC versions prior to 7.4 may // instantiate the copy constructor of `T` when // std::is_trivially_copy_constructible is instantiated. This causes // compilation to fail if we query the trivially copy constructible property of // a class which is not copy constructible. // // The current implementation of OptionalStorage insists that in order to use // the trivial specialization, the value_type must be trivially copy // constructible and trivially copy assignable due to =default implementations // of the copy/move constructor/assignment. It does not follow that this is // necessarily the case std::is_trivially_copyable is true (hence the expanded // specialization condition). // // The move constructible / assignable conditions emulate the remaining behavior // of std::is_trivially_copyable. template ::value && std::is_trivially_copy_assignable::value && (std::is_trivially_move_constructible::value || !std::is_move_constructible::value) && (std::is_trivially_move_assignable::value || !std::is_move_assignable::value))> class OptionalStorage { union { char empty; T value; }; bool hasVal; public: ~OptionalStorage() { reset(); } constexpr OptionalStorage() noexcept : empty(), hasVal(false) {} constexpr OptionalStorage(OptionalStorage const &other) : OptionalStorage() { if (other.hasValue()) { emplace(other.value); } } constexpr OptionalStorage(OptionalStorage &&other) : OptionalStorage() { if (other.hasValue()) { emplace(std::move(other.value)); } } template constexpr explicit OptionalStorage(in_place_t, Args &&... args) : value(std::forward(args)...), hasVal(true) {} void reset() noexcept { if (hasVal) { value.~T(); hasVal = false; } } constexpr bool hasValue() const noexcept { return hasVal; } T &getValue() LLVM_LVALUE_FUNCTION noexcept { assert(hasVal); return value; } constexpr T const &getValue() const LLVM_LVALUE_FUNCTION noexcept { assert(hasVal); return value; } #if LLVM_HAS_RVALUE_REFERENCE_THIS T &&getValue() && noexcept { assert(hasVal); return std::move(value); } #endif template void emplace(Args &&... args) { reset(); ::new ((void *)std::addressof(value)) T(std::forward(args)...); hasVal = true; } OptionalStorage &operator=(T const &y) { if (hasValue()) { value = y; } else { ::new ((void *)std::addressof(value)) T(y); hasVal = true; } return *this; } OptionalStorage &operator=(T &&y) { if (hasValue()) { value = std::move(y); } else { ::new ((void *)std::addressof(value)) T(std::move(y)); hasVal = true; } return *this; } OptionalStorage &operator=(OptionalStorage const &other) { if (other.hasValue()) { if (hasValue()) { value = other.value; } else { ::new ((void *)std::addressof(value)) T(other.value); hasVal = true; } } else { reset(); } return *this; } OptionalStorage &operator=(OptionalStorage &&other) { if (other.hasValue()) { if (hasValue()) { value = std::move(other.value); } else { ::new ((void *)std::addressof(value)) T(std::move(other.value)); hasVal = true; } } else { reset(); } return *this; } }; template class OptionalStorage { union { char empty; T value; }; bool hasVal = false; public: ~OptionalStorage() = default; constexpr OptionalStorage() noexcept : empty{} {} constexpr OptionalStorage(OptionalStorage const &other) = default; constexpr OptionalStorage(OptionalStorage &&other) = default; OptionalStorage &operator=(OptionalStorage const &other) = default; OptionalStorage &operator=(OptionalStorage &&other) = default; template constexpr explicit OptionalStorage(in_place_t, Args &&... args) : value(std::forward(args)...), hasVal(true) {} void reset() noexcept { if (hasVal) { value.~T(); hasVal = false; } } constexpr bool hasValue() const noexcept { return hasVal; } T &getValue() LLVM_LVALUE_FUNCTION noexcept { assert(hasVal); return value; } constexpr T const &getValue() const LLVM_LVALUE_FUNCTION noexcept { assert(hasVal); return value; } #if LLVM_HAS_RVALUE_REFERENCE_THIS T &&getValue() && noexcept { assert(hasVal); return std::move(value); } #endif template void emplace(Args &&... args) { reset(); ::new ((void *)std::addressof(value)) T(std::forward(args)...); hasVal = true; } OptionalStorage &operator=(T const &y) { if (hasValue()) { value = y; } else { ::new ((void *)std::addressof(value)) T(y); hasVal = true; } return *this; } OptionalStorage &operator=(T &&y) { if (hasValue()) { value = std::move(y); } else { ::new ((void *)std::addressof(value)) T(std::move(y)); hasVal = true; } return *this; } }; } // namespace optional_detail template class Optional { optional_detail::OptionalStorage Storage; public: using value_type = T; constexpr Optional() {} constexpr Optional(NoneType) {} constexpr Optional(const T &y) : Storage(in_place, y) {} constexpr Optional(const Optional &O) = default; constexpr Optional(T &&y) : Storage(in_place, std::move(y)) {} constexpr Optional(Optional &&O) = default; template constexpr Optional(in_place_t, ArgTypes &&...Args) : Storage(in_place, std::forward(Args)...) {} Optional &operator=(T &&y) { Storage = std::move(y); return *this; } Optional &operator=(Optional &&O) = default; /// Create a new object by constructing it in place with the given arguments. template void emplace(ArgTypes &&... Args) { Storage.emplace(std::forward(Args)...); } static constexpr Optional create(const T *y) { return y ? Optional(*y) : Optional(); } Optional &operator=(const T &y) { Storage = y; return *this; } Optional &operator=(const Optional &O) = default; void reset() { Storage.reset(); } constexpr const T *getPointer() const { return &Storage.getValue(); } T *getPointer() { return &Storage.getValue(); } constexpr const T &getValue() const LLVM_LVALUE_FUNCTION { return Storage.getValue(); } T &getValue() LLVM_LVALUE_FUNCTION { return Storage.getValue(); } constexpr explicit operator bool() const { return hasValue(); } constexpr bool hasValue() const { return Storage.hasValue(); } constexpr const T *operator->() const { return getPointer(); } T *operator->() { return getPointer(); } constexpr const T &operator*() const LLVM_LVALUE_FUNCTION { return getValue(); } T &operator*() LLVM_LVALUE_FUNCTION { return getValue(); } template constexpr T getValueOr(U &&value) const LLVM_LVALUE_FUNCTION { return hasValue() ? getValue() : std::forward(value); } /// Apply a function to the value if present; otherwise return None. template auto map(const Function &F) const LLVM_LVALUE_FUNCTION -> Optional { if (*this) return F(getValue()); return None; } #if LLVM_HAS_RVALUE_REFERENCE_THIS T &&getValue() && { return std::move(Storage.getValue()); } T &&operator*() && { return std::move(Storage.getValue()); } template T getValueOr(U &&value) && { return hasValue() ? std::move(getValue()) : std::forward(value); } /// Apply a function to the value if present; otherwise return None. template auto map(const Function &F) && -> Optional { if (*this) return F(std::move(*this).getValue()); return None; } #endif }; template llvm::hash_code hash_value(const Optional &O) { return O ? hash_combine(true, *O) : hash_value(false); } template constexpr bool operator==(const Optional &X, const Optional &Y) { if (X && Y) return *X == *Y; return X.hasValue() == Y.hasValue(); } template constexpr bool operator!=(const Optional &X, const Optional &Y) { return !(X == Y); } template constexpr bool operator<(const Optional &X, const Optional &Y) { if (X && Y) return *X < *Y; return X.hasValue() < Y.hasValue(); } template constexpr bool operator<=(const Optional &X, const Optional &Y) { return !(Y < X); } template constexpr bool operator>(const Optional &X, const Optional &Y) { return Y < X; } template constexpr bool operator>=(const Optional &X, const Optional &Y) { return !(X < Y); } template constexpr bool operator==(const Optional &X, NoneType) { return !X; } template constexpr bool operator==(NoneType, const Optional &X) { return X == None; } template constexpr bool operator!=(const Optional &X, NoneType) { return !(X == None); } template constexpr bool operator!=(NoneType, const Optional &X) { return X != None; } template constexpr bool operator<(const Optional &, NoneType) { return false; } template constexpr bool operator<(NoneType, const Optional &X) { return X.hasValue(); } template constexpr bool operator<=(const Optional &X, NoneType) { return !(None < X); } template constexpr bool operator<=(NoneType, const Optional &X) { return !(X < None); } template constexpr bool operator>(const Optional &X, NoneType) { return None < X; } template constexpr bool operator>(NoneType, const Optional &X) { return X < None; } template constexpr bool operator>=(const Optional &X, NoneType) { return None <= X; } template constexpr bool operator>=(NoneType, const Optional &X) { return X <= None; } template constexpr bool operator==(const Optional &X, const T &Y) { return X && *X == Y; } template constexpr bool operator==(const T &X, const Optional &Y) { return Y && X == *Y; } template constexpr bool operator!=(const Optional &X, const T &Y) { return !(X == Y); } template constexpr bool operator!=(const T &X, const Optional &Y) { return !(X == Y); } template constexpr bool operator<(const Optional &X, const T &Y) { return !X || *X < Y; } template constexpr bool operator<(const T &X, const Optional &Y) { return Y && X < *Y; } template constexpr bool operator<=(const Optional &X, const T &Y) { return !(Y < X); } template constexpr bool operator<=(const T &X, const Optional &Y) { return !(Y < X); } template constexpr bool operator>(const Optional &X, const T &Y) { return Y < X; } template constexpr bool operator>(const T &X, const Optional &Y) { return Y < X; } template constexpr bool operator>=(const Optional &X, const T &Y) { return !(X < Y); } template constexpr bool operator>=(const T &X, const Optional &Y) { return !(X < Y); } raw_ostream &operator<<(raw_ostream &OS, NoneType); template () << std::declval())> raw_ostream &operator<<(raw_ostream &OS, const Optional &O) { if (O) OS << *O; else OS << None; return OS; } } // end namespace llvm #endif // LLVM_ADT_OPTIONAL_H