//===- TargetTransformInfoImpl.h --------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file provides helpers for the implementation of /// a TargetTransformInfo-conforming class. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H #define LLVM_ANALYSIS_TARGETTRANSFORMINFOIMPL_H #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" namespace llvm { /// Base class for use as a mix-in that aids implementing /// a TargetTransformInfo-compatible class. class TargetTransformInfoImplBase { protected: typedef TargetTransformInfo TTI; const DataLayout &DL; explicit TargetTransformInfoImplBase(const DataLayout &DL) : DL(DL) {} public: // Provide value semantics. MSVC requires that we spell all of these out. TargetTransformInfoImplBase(const TargetTransformInfoImplBase &Arg) : DL(Arg.DL) {} TargetTransformInfoImplBase(TargetTransformInfoImplBase &&Arg) : DL(Arg.DL) {} const DataLayout &getDataLayout() const { return DL; } int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) { // In the basic model, we just assume that all-constant GEPs will be folded // into their uses via addressing modes. for (unsigned Idx = 0, Size = Operands.size(); Idx != Size; ++Idx) if (!isa(Operands[Idx])) return TTI::TCC_Basic; return TTI::TCC_Free; } unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { (void)PSI; (void)BFI; JTSize = 0; return SI.getNumCases(); } unsigned getInliningThresholdMultiplier() { return 1; } int getInlinerVectorBonusPercent() { return 150; } unsigned getMemcpyCost(const Instruction *I) { return TTI::TCC_Expensive; } bool hasBranchDivergence() { return false; } bool useGPUDivergenceAnalysis() { return false; } bool isSourceOfDivergence(const Value *V) { return false; } bool isAlwaysUniform(const Value *V) { return false; } unsigned getFlatAddressSpace() { return -1; } bool collectFlatAddressOperands(SmallVectorImpl &OpIndexes, Intrinsic::ID IID) const { return false; } bool isNoopAddrSpaceCast(unsigned, unsigned) const { return false; } Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, Value *NewV) const { return nullptr; } bool isLoweredToCall(const Function *F) { assert(F && "A concrete function must be provided to this routine."); // FIXME: These should almost certainly not be handled here, and instead // handled with the help of TLI or the target itself. This was largely // ported from existing analysis heuristics here so that such refactorings // can take place in the future. if (F->isIntrinsic()) return false; if (F->hasLocalLinkage() || !F->hasName()) return true; StringRef Name = F->getName(); // These will all likely lower to a single selection DAG node. if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" || Name == "fabs" || Name == "fabsf" || Name == "fabsl" || Name == "sin" || Name == "fmin" || Name == "fminf" || Name == "fminl" || Name == "fmax" || Name == "fmaxf" || Name == "fmaxl" || Name == "sinf" || Name == "sinl" || Name == "cos" || Name == "cosf" || Name == "cosl" || Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") return false; // These are all likely to be optimized into something smaller. if (Name == "pow" || Name == "powf" || Name == "powl" || Name == "exp2" || Name == "exp2l" || Name == "exp2f" || Name == "floor" || Name == "floorf" || Name == "ceil" || Name == "round" || Name == "ffs" || Name == "ffsl" || Name == "abs" || Name == "labs" || Name == "llabs") return false; return true; } bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) { return false; } bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC, TargetLibraryInfo *TLI, DominatorTree *DT, const LoopAccessInfo *LAI) const { return false; } bool emitGetActiveLaneMask() const { return false; } void getUnrollingPreferences(Loop *, ScalarEvolution &, TTI::UnrollingPreferences &) {} void getPeelingPreferences(Loop *, ScalarEvolution &, TTI::PeelingPreferences &) {} bool isLegalAddImmediate(int64_t Imm) { return false; } bool isLegalICmpImmediate(int64_t Imm) { return false; } bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace, Instruction *I = nullptr) { // Guess that only reg and reg+reg addressing is allowed. This heuristic is // taken from the implementation of LSR. return !BaseGV && BaseOffset == 0 && (Scale == 0 || Scale == 1); } bool isLSRCostLess(TTI::LSRCost &C1, TTI::LSRCost &C2) { return std::tie(C1.NumRegs, C1.AddRecCost, C1.NumIVMuls, C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) < std::tie(C2.NumRegs, C2.AddRecCost, C2.NumIVMuls, C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost); } bool isProfitableLSRChainElement(Instruction *I) { return false; } bool canMacroFuseCmp() { return false; } bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, TargetLibraryInfo *LibInfo) { return false; } bool shouldFavorPostInc() const { return false; } bool shouldFavorBackedgeIndex(const Loop *L) const { return false; } bool isLegalMaskedStore(Type *DataType, Align Alignment) { return false; } bool isLegalMaskedLoad(Type *DataType, Align Alignment) { return false; } bool isLegalNTStore(Type *DataType, Align Alignment) { // By default, assume nontemporal memory stores are available for stores // that are aligned and have a size that is a power of 2. unsigned DataSize = DL.getTypeStoreSize(DataType); return Alignment >= DataSize && isPowerOf2_32(DataSize); } bool isLegalNTLoad(Type *DataType, Align Alignment) { // By default, assume nontemporal memory loads are available for loads that // are aligned and have a size that is a power of 2. unsigned DataSize = DL.getTypeStoreSize(DataType); return Alignment >= DataSize && isPowerOf2_32(DataSize); } bool isLegalMaskedScatter(Type *DataType, Align Alignment) { return false; } bool isLegalMaskedGather(Type *DataType, Align Alignment) { return false; } bool isLegalMaskedCompressStore(Type *DataType) { return false; } bool isLegalMaskedExpandLoad(Type *DataType) { return false; } bool hasDivRemOp(Type *DataType, bool IsSigned) { return false; } bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) { return false; } bool prefersVectorizedAddressing() { return true; } int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, int64_t Scale, unsigned AddrSpace) { // Guess that all legal addressing mode are free. if (isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, AddrSpace)) return 0; return -1; } bool LSRWithInstrQueries() { return false; } bool isTruncateFree(Type *Ty1, Type *Ty2) { return false; } bool isProfitableToHoist(Instruction *I) { return true; } bool useAA() { return false; } bool isTypeLegal(Type *Ty) { return false; } bool shouldBuildLookupTables() { return true; } bool shouldBuildLookupTablesForConstant(Constant *C) { return true; } bool useColdCCForColdCall(Function &F) { return false; } unsigned getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) { return 0; } unsigned getOperandsScalarizationOverhead(ArrayRef Args, unsigned VF) { return 0; } bool supportsEfficientVectorElementLoadStore() { return false; } bool enableAggressiveInterleaving(bool LoopHasReductions) { return false; } TTI::MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const { return {}; } bool enableInterleavedAccessVectorization() { return false; } bool enableMaskedInterleavedAccessVectorization() { return false; } bool isFPVectorizationPotentiallyUnsafe() { return false; } bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, unsigned AddressSpace, unsigned Alignment, bool *Fast) { return false; } TTI::PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) { return TTI::PSK_Software; } bool haveFastSqrt(Type *Ty) { return false; } bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { return true; } unsigned getFPOpCost(Type *Ty) { return TargetTransformInfo::TCC_Basic; } int getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty) { return 0; } unsigned getIntImmCost(const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) { return TTI::TCC_Basic; } unsigned getIntImmCostInst(unsigned Opcode, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) { return TTI::TCC_Free; } unsigned getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, Type *Ty, TTI::TargetCostKind CostKind) { return TTI::TCC_Free; } unsigned getNumberOfRegisters(unsigned ClassID) const { return 8; } unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const { return Vector ? 1 : 0; }; const char *getRegisterClassName(unsigned ClassID) const { switch (ClassID) { default: return "Generic::Unknown Register Class"; case 0: return "Generic::ScalarRC"; case 1: return "Generic::VectorRC"; } } unsigned getRegisterBitWidth(bool Vector) const { return 32; } unsigned getMinVectorRegisterBitWidth() { return 128; } bool shouldMaximizeVectorBandwidth(bool OptSize) const { return false; } unsigned getMinimumVF(unsigned ElemWidth) const { return 0; } bool shouldConsiderAddressTypePromotion(const Instruction &I, bool &AllowPromotionWithoutCommonHeader) { AllowPromotionWithoutCommonHeader = false; return false; } unsigned getCacheLineSize() const { return 0; } llvm::Optional getCacheSize(TargetTransformInfo::CacheLevel Level) const { switch (Level) { case TargetTransformInfo::CacheLevel::L1D: LLVM_FALLTHROUGH; case TargetTransformInfo::CacheLevel::L2D: return llvm::Optional(); } llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); } llvm::Optional getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const { switch (Level) { case TargetTransformInfo::CacheLevel::L1D: LLVM_FALLTHROUGH; case TargetTransformInfo::CacheLevel::L2D: return llvm::Optional(); } llvm_unreachable("Unknown TargetTransformInfo::CacheLevel"); } unsigned getPrefetchDistance() const { return 0; } unsigned getMinPrefetchStride(unsigned NumMemAccesses, unsigned NumStridedMemAccesses, unsigned NumPrefetches, bool HasCall) const { return 1; } unsigned getMaxPrefetchIterationsAhead() const { return UINT_MAX; } bool enableWritePrefetching() const { return false; } unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo, TTI::OperandValueProperties Opd2PropInfo, ArrayRef Args, const Instruction *CxtI = nullptr) { // FIXME: A number of transformation tests seem to require these values // which seems a little odd for how arbitary there are. switch (Opcode) { default: break; case Instruction::FDiv: case Instruction::FRem: case Instruction::SDiv: case Instruction::SRem: case Instruction::UDiv: case Instruction::URem: // FIXME: Unlikely to be true for CodeSize. return TTI::TCC_Expensive; } return 1; } unsigned getShuffleCost(TTI::ShuffleKind Kind, VectorType *Ty, int Index, VectorType *SubTp) { return 1; } unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, TTI::TargetCostKind CostKind, const Instruction *I) { switch (Opcode) { default: break; case Instruction::IntToPtr: { unsigned SrcSize = Src->getScalarSizeInBits(); if (DL.isLegalInteger(SrcSize) && SrcSize <= DL.getPointerTypeSizeInBits(Dst)) return 0; break; } case Instruction::PtrToInt: { unsigned DstSize = Dst->getScalarSizeInBits(); if (DL.isLegalInteger(DstSize) && DstSize >= DL.getPointerTypeSizeInBits(Src)) return 0; break; } case Instruction::BitCast: if (Dst == Src || (Dst->isPointerTy() && Src->isPointerTy())) // Identity and pointer-to-pointer casts are free. return 0; break; case Instruction::Trunc: // trunc to a native type is free (assuming the target has compare and // shift-right of the same width). if (DL.isLegalInteger(DL.getTypeSizeInBits(Dst))) return 0; break; } return 1; } unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, unsigned Index) { return 1; } unsigned getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) { // A phi would be free, unless we're costing the throughput because it // will require a register. if (Opcode == Instruction::PHI && CostKind != TTI::TCK_RecipThroughput) return 0; return 1; } unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, TTI::TargetCostKind CostKind, const Instruction *I) const { return 1; } unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { return 1; } unsigned getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, const Instruction *I) const { return 1; } unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind) { return 1; } unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I = nullptr) { return 1; } unsigned getInterleavedMemoryOpCost( unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef Indices, Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) { return 1; } unsigned getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) { switch (ICA.getID()) { default: break; case Intrinsic::annotation: case Intrinsic::assume: case Intrinsic::sideeffect: case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::dbg_label: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::launder_invariant_group: case Intrinsic::strip_invariant_group: case Intrinsic::is_constant: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::objectsize: case Intrinsic::ptr_annotation: case Intrinsic::var_annotation: case Intrinsic::experimental_gc_result: case Intrinsic::experimental_gc_relocate: case Intrinsic::coro_alloc: case Intrinsic::coro_begin: case Intrinsic::coro_free: case Intrinsic::coro_end: case Intrinsic::coro_frame: case Intrinsic::coro_size: case Intrinsic::coro_suspend: case Intrinsic::coro_param: case Intrinsic::coro_subfn_addr: // These intrinsics don't actually represent code after lowering. return 0; } return 1; } unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef Tys, TTI::TargetCostKind CostKind) { return 1; } unsigned getNumberOfParts(Type *Tp) { return 0; } unsigned getAddressComputationCost(Type *Tp, ScalarEvolution *, const SCEV *) { return 0; } unsigned getArithmeticReductionCost(unsigned, VectorType *, bool, TTI::TargetCostKind) { return 1; } unsigned getMinMaxReductionCost(VectorType *, VectorType *, bool, bool, TTI::TargetCostKind) { return 1; } unsigned getCostOfKeepingLiveOverCall(ArrayRef Tys) { return 0; } bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) { return false; } unsigned getAtomicMemIntrinsicMaxElementSize() const { // Note for overrides: You must ensure for all element unordered-atomic // memory intrinsics that all power-of-2 element sizes up to, and // including, the return value of this method have a corresponding // runtime lib call. These runtime lib call definitions can be found // in RuntimeLibcalls.h return 0; } Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, Type *ExpectedType) { return nullptr; } Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { return Type::getInt8Ty(Context); } void getMemcpyLoopResidualLoweringType( SmallVectorImpl &OpsOut, LLVMContext &Context, unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const { for (unsigned i = 0; i != RemainingBytes; ++i) OpsOut.push_back(Type::getInt8Ty(Context)); } bool areInlineCompatible(const Function *Caller, const Function *Callee) const { return (Caller->getFnAttribute("target-cpu") == Callee->getFnAttribute("target-cpu")) && (Caller->getFnAttribute("target-features") == Callee->getFnAttribute("target-features")); } bool areFunctionArgsABICompatible(const Function *Caller, const Function *Callee, SmallPtrSetImpl &Args) const { return (Caller->getFnAttribute("target-cpu") == Callee->getFnAttribute("target-cpu")) && (Caller->getFnAttribute("target-features") == Callee->getFnAttribute("target-features")); } bool isIndexedLoadLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const { return false; } bool isIndexedStoreLegal(TTI::MemIndexedMode Mode, Type *Ty, const DataLayout &DL) const { return false; } unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { return 128; } bool isLegalToVectorizeLoad(LoadInst *LI) const { return true; } bool isLegalToVectorizeStore(StoreInst *SI) const { return true; } bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { return true; } bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const { return true; } unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { return VF; } unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, unsigned ChainSizeInBytes, VectorType *VecTy) const { return VF; } bool useReductionIntrinsic(unsigned Opcode, Type *Ty, TTI::ReductionFlags Flags) const { return false; } bool shouldExpandReduction(const IntrinsicInst *II) const { return true; } unsigned getGISelRematGlobalCost() const { return 1; } bool hasActiveVectorLength() const { return false; } protected: // Obtain the minimum required size to hold the value (without the sign) // In case of a vector it returns the min required size for one element. unsigned minRequiredElementSize(const Value *Val, bool &isSigned) { if (isa(Val) || isa(Val)) { const auto *VectorValue = cast(Val); // In case of a vector need to pick the max between the min // required size for each element auto *VT = cast(Val->getType()); // Assume unsigned elements isSigned = false; // The max required size is the size of the vector element type unsigned MaxRequiredSize = VT->getElementType()->getPrimitiveSizeInBits().getFixedSize(); unsigned MinRequiredSize = 0; for (unsigned i = 0, e = VT->getNumElements(); i < e; ++i) { if (auto *IntElement = dyn_cast(VectorValue->getAggregateElement(i))) { bool signedElement = IntElement->getValue().isNegative(); // Get the element min required size. unsigned ElementMinRequiredSize = IntElement->getValue().getMinSignedBits() - 1; // In case one element is signed then all the vector is signed. isSigned |= signedElement; // Save the max required bit size between all the elements. MinRequiredSize = std::max(MinRequiredSize, ElementMinRequiredSize); } else { // not an int constant element return MaxRequiredSize; } } return MinRequiredSize; } if (const auto *CI = dyn_cast(Val)) { isSigned = CI->getValue().isNegative(); return CI->getValue().getMinSignedBits() - 1; } if (const auto *Cast = dyn_cast(Val)) { isSigned = true; return Cast->getSrcTy()->getScalarSizeInBits() - 1; } if (const auto *Cast = dyn_cast(Val)) { isSigned = false; return Cast->getSrcTy()->getScalarSizeInBits(); } isSigned = false; return Val->getType()->getScalarSizeInBits(); } bool isStridedAccess(const SCEV *Ptr) { return Ptr && isa(Ptr); } const SCEVConstant *getConstantStrideStep(ScalarEvolution *SE, const SCEV *Ptr) { if (!isStridedAccess(Ptr)) return nullptr; const SCEVAddRecExpr *AddRec = cast(Ptr); return dyn_cast(AddRec->getStepRecurrence(*SE)); } bool isConstantStridedAccessLessThan(ScalarEvolution *SE, const SCEV *Ptr, int64_t MergeDistance) { const SCEVConstant *Step = getConstantStrideStep(SE, Ptr); if (!Step) return false; APInt StrideVal = Step->getAPInt(); if (StrideVal.getBitWidth() > 64) return false; // FIXME: Need to take absolute value for negative stride case. return StrideVal.getSExtValue() < MergeDistance; } }; /// CRTP base class for use as a mix-in that aids implementing /// a TargetTransformInfo-compatible class. template class TargetTransformInfoImplCRTPBase : public TargetTransformInfoImplBase { private: typedef TargetTransformInfoImplBase BaseT; protected: explicit TargetTransformInfoImplCRTPBase(const DataLayout &DL) : BaseT(DL) {} public: using BaseT::getGEPCost; int getGEPCost(Type *PointeeType, const Value *Ptr, ArrayRef Operands, TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) { assert(PointeeType && Ptr && "can't get GEPCost of nullptr"); // TODO: will remove this when pointers have an opaque type. assert(Ptr->getType()->getScalarType()->getPointerElementType() == PointeeType && "explicit pointee type doesn't match operand's pointee type"); auto *BaseGV = dyn_cast(Ptr->stripPointerCasts()); bool HasBaseReg = (BaseGV == nullptr); auto PtrSizeBits = DL.getPointerTypeSizeInBits(Ptr->getType()); APInt BaseOffset(PtrSizeBits, 0); int64_t Scale = 0; auto GTI = gep_type_begin(PointeeType, Operands); Type *TargetType = nullptr; // Handle the case where the GEP instruction has a single operand, // the basis, therefore TargetType is a nullptr. if (Operands.empty()) return !BaseGV ? TTI::TCC_Free : TTI::TCC_Basic; for (auto I = Operands.begin(); I != Operands.end(); ++I, ++GTI) { TargetType = GTI.getIndexedType(); // We assume that the cost of Scalar GEP with constant index and the // cost of Vector GEP with splat constant index are the same. const ConstantInt *ConstIdx = dyn_cast(*I); if (!ConstIdx) if (auto Splat = getSplatValue(*I)) ConstIdx = dyn_cast(Splat); if (StructType *STy = GTI.getStructTypeOrNull()) { // For structures the index is always splat or scalar constant assert(ConstIdx && "Unexpected GEP index"); uint64_t Field = ConstIdx->getZExtValue(); BaseOffset += DL.getStructLayout(STy)->getElementOffset(Field); } else { int64_t ElementSize = DL.getTypeAllocSize(GTI.getIndexedType()); if (ConstIdx) { BaseOffset += ConstIdx->getValue().sextOrTrunc(PtrSizeBits) * ElementSize; } else { // Needs scale register. if (Scale != 0) // No addressing mode takes two scale registers. return TTI::TCC_Basic; Scale = ElementSize; } } } if (static_cast(this)->isLegalAddressingMode( TargetType, const_cast(BaseGV), BaseOffset.sextOrTrunc(64).getSExtValue(), HasBaseReg, Scale, Ptr->getType()->getPointerAddressSpace())) return TTI::TCC_Free; return TTI::TCC_Basic; } int getUserCost(const User *U, ArrayRef Operands, TTI::TargetCostKind CostKind) { auto *TargetTTI = static_cast(this); // FIXME: We shouldn't have to special-case intrinsics here. if (CostKind == TTI::TCK_RecipThroughput) { if (const IntrinsicInst *II = dyn_cast(U)) { IntrinsicCostAttributes CostAttrs(*II); return TargetTTI->getIntrinsicInstrCost(CostAttrs, CostKind); } } // FIXME: Unlikely to be true for anything but CodeSize. if (const auto *CB = dyn_cast(U)) { const Function *F = CB->getCalledFunction(); if (F) { FunctionType *FTy = F->getFunctionType(); if (Intrinsic::ID IID = F->getIntrinsicID()) { IntrinsicCostAttributes Attrs(IID, *CB); return TargetTTI->getIntrinsicInstrCost(Attrs, CostKind); } if (!TargetTTI->isLoweredToCall(F)) return TTI::TCC_Basic; // Give a basic cost if it will be lowered return TTI::TCC_Basic * (FTy->getNumParams() + 1); } return TTI::TCC_Basic * (CB->arg_size() + 1); } Type *Ty = U->getType(); Type *OpTy = U->getNumOperands() == 1 ? U->getOperand(0)->getType() : nullptr; unsigned Opcode = Operator::getOpcode(U); auto *I = dyn_cast(U); switch (Opcode) { default: break; case Instruction::Br: case Instruction::Ret: case Instruction::PHI: return TargetTTI->getCFInstrCost(Opcode, CostKind); case Instruction::ExtractValue: case Instruction::Freeze: return TTI::TCC_Free; case Instruction::Alloca: if (cast(U)->isStaticAlloca()) return TTI::TCC_Free; break; case Instruction::GetElementPtr: { const GEPOperator *GEP = cast(U); return TargetTTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), Operands.drop_front()); } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: case Instruction::FNeg: { TTI::OperandValueProperties Op1VP = TTI::OP_None; TTI::OperandValueProperties Op2VP = TTI::OP_None; TTI::OperandValueKind Op1VK = TTI::getOperandInfo(U->getOperand(0), Op1VP); TTI::OperandValueKind Op2VK = Opcode != Instruction::FNeg ? TTI::getOperandInfo(U->getOperand(1), Op2VP) : TTI::OK_AnyValue; SmallVector Operands(U->operand_values()); return TargetTTI->getArithmeticInstrCost(Opcode, Ty, CostKind, Op1VK, Op2VK, Op1VP, Op2VP, Operands, I); } case Instruction::IntToPtr: case Instruction::PtrToInt: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: case Instruction::FPExt: case Instruction::SExt: case Instruction::ZExt: case Instruction::AddrSpaceCast: return TargetTTI->getCastInstrCost(Opcode, Ty, OpTy, CostKind, I); case Instruction::Store: { auto *SI = cast(U); Type *ValTy = U->getOperand(0)->getType(); return TargetTTI->getMemoryOpCost(Opcode, ValTy, SI->getAlign(), SI->getPointerAddressSpace(), CostKind, I); } case Instruction::Load: { auto *LI = cast(U); return TargetTTI->getMemoryOpCost(Opcode, U->getType(), LI->getAlign(), LI->getPointerAddressSpace(), CostKind, I); } case Instruction::Select: { Type *CondTy = U->getOperand(0)->getType(); return TargetTTI->getCmpSelInstrCost(Opcode, U->getType(), CondTy, CostKind, I); } case Instruction::ICmp: case Instruction::FCmp: { Type *ValTy = U->getOperand(0)->getType(); return TargetTTI->getCmpSelInstrCost(Opcode, ValTy, U->getType(), CostKind, I); } case Instruction::InsertElement: { auto *IE = dyn_cast(U); if (!IE) return TTI::TCC_Basic; // FIXME auto *CI = dyn_cast(IE->getOperand(2)); unsigned Idx = CI ? CI->getZExtValue() : -1; return TargetTTI->getVectorInstrCost(Opcode, Ty, Idx); } case Instruction::ShuffleVector: { auto *Shuffle = dyn_cast(U); if (!Shuffle) return TTI::TCC_Basic; // FIXME auto *VecTy = cast(U->getType()); auto *VecSrcTy = cast(U->getOperand(0)->getType()); // TODO: Identify and add costs for insert subvector, etc. int SubIndex; if (Shuffle->isExtractSubvectorMask(SubIndex)) return TargetTTI->getShuffleCost(TTI::SK_ExtractSubvector, VecSrcTy, SubIndex, VecTy); else if (Shuffle->changesLength()) return CostKind == TTI::TCK_RecipThroughput ? -1 : 1; else if (Shuffle->isIdentity()) return 0; else if (Shuffle->isReverse()) return TargetTTI->getShuffleCost(TTI::SK_Reverse, VecTy, 0, nullptr); else if (Shuffle->isSelect()) return TargetTTI->getShuffleCost(TTI::SK_Select, VecTy, 0, nullptr); else if (Shuffle->isTranspose()) return TargetTTI->getShuffleCost(TTI::SK_Transpose, VecTy, 0, nullptr); else if (Shuffle->isZeroEltSplat()) return TargetTTI->getShuffleCost(TTI::SK_Broadcast, VecTy, 0, nullptr); else if (Shuffle->isSingleSource()) return TargetTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, VecTy, 0, nullptr); return TargetTTI->getShuffleCost(TTI::SK_PermuteTwoSrc, VecTy, 0, nullptr); } case Instruction::ExtractElement: { unsigned Idx = -1; auto *EEI = dyn_cast(U); if (!EEI) return TTI::TCC_Basic; // FIXME auto *CI = dyn_cast(EEI->getOperand(1)); if (CI) Idx = CI->getZExtValue(); // Try to match a reduction sequence (series of shufflevector and // vector adds followed by a extractelement). unsigned ReduxOpCode; VectorType *ReduxType; switch (TTI::matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) { case TTI::RK_Arithmetic: return TargetTTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, /*IsPairwiseForm=*/false, CostKind); case TTI::RK_MinMax: return TargetTTI->getMinMaxReductionCost( ReduxType, cast(CmpInst::makeCmpResultType(ReduxType)), /*IsPairwiseForm=*/false, /*IsUnsigned=*/false, CostKind); case TTI::RK_UnsignedMinMax: return TargetTTI->getMinMaxReductionCost( ReduxType, cast(CmpInst::makeCmpResultType(ReduxType)), /*IsPairwiseForm=*/false, /*IsUnsigned=*/true, CostKind); case TTI::RK_None: break; } switch (TTI::matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) { case TTI::RK_Arithmetic: return TargetTTI->getArithmeticReductionCost(ReduxOpCode, ReduxType, /*IsPairwiseForm=*/true, CostKind); case TTI::RK_MinMax: return TargetTTI->getMinMaxReductionCost( ReduxType, cast(CmpInst::makeCmpResultType(ReduxType)), /*IsPairwiseForm=*/true, /*IsUnsigned=*/false, CostKind); case TTI::RK_UnsignedMinMax: return TargetTTI->getMinMaxReductionCost( ReduxType, cast(CmpInst::makeCmpResultType(ReduxType)), /*IsPairwiseForm=*/true, /*IsUnsigned=*/true, CostKind); case TTI::RK_None: break; } return TargetTTI->getVectorInstrCost(Opcode, U->getOperand(0)->getType(), Idx); } } // By default, just classify everything as 'basic'. return TTI::TCC_Basic; } int getInstructionLatency(const Instruction *I) { SmallVector Operands(I->value_op_begin(), I->value_op_end()); if (getUserCost(I, Operands, TTI::TCK_Latency) == TTI::TCC_Free) return 0; if (isa(I)) return 4; Type *DstTy = I->getType(); // Usually an intrinsic is a simple instruction. // A real function call is much slower. if (auto *CI = dyn_cast(I)) { const Function *F = CI->getCalledFunction(); if (!F || static_cast(this)->isLoweredToCall(F)) return 40; // Some intrinsics return a value and a flag, we use the value type // to decide its latency. if (StructType *StructTy = dyn_cast(DstTy)) DstTy = StructTy->getElementType(0); // Fall through to simple instructions. } if (VectorType *VectorTy = dyn_cast(DstTy)) DstTy = VectorTy->getElementType(); if (DstTy->isFloatingPointTy()) return 3; return 1; } }; } // namespace llvm #endif