//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines classes mirroring those in llvm/Analysis/Dominators.h, // but for target-specific code rather than target-independent IR. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H #define LLVM_CODEGEN_MACHINEDOMINATORS_H #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/Support/GenericDomTree.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include #include #include namespace llvm { template <> inline void DominatorTreeBase::addRoot( MachineBasicBlock *MBB) { this->Roots.push_back(MBB); } extern template class DomTreeNodeBase; extern template class DominatorTreeBase; // DomTree extern template class DominatorTreeBase; // PostDomTree using MachineDomTreeNode = DomTreeNodeBase; //===------------------------------------- /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to /// compute a normal dominator tree. /// class MachineDominatorTree : public MachineFunctionPass { using DomTreeT = DomTreeBase; /// Helper structure used to hold all the basic blocks /// involved in the split of a critical edge. struct CriticalEdge { MachineBasicBlock *FromBB; MachineBasicBlock *ToBB; MachineBasicBlock *NewBB; }; /// Pile up all the critical edges to be split. /// The splitting of a critical edge is local and thus, it is possible /// to apply several of those changes at the same time. mutable SmallVector CriticalEdgesToSplit; /// Remember all the basic blocks that are inserted during /// edge splitting. /// Invariant: NewBBs == all the basic blocks contained in the NewBB /// field of all the elements of CriticalEdgesToSplit. /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs /// such as BB == elt.NewBB. mutable SmallSet NewBBs; /// The DominatorTreeBase that is used to compute a normal dominator tree. std::unique_ptr DT; /// Apply all the recorded critical edges to the DT. /// This updates the underlying DT information in a way that uses /// the fast query path of DT as much as possible. /// /// \post CriticalEdgesToSplit.empty(). void applySplitCriticalEdges() const; public: static char ID; // Pass ID, replacement for typeid MachineDominatorTree(); explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) { calculate(MF); } DomTreeT &getBase() { if (!DT) DT.reset(new DomTreeT()); applySplitCriticalEdges(); return *DT; } void getAnalysisUsage(AnalysisUsage &AU) const override; /// getRoots - Return the root blocks of the current CFG. This may include /// multiple blocks if we are computing post dominators. For forward /// dominators, this will always be a single block (the entry node). /// const SmallVectorImpl &getRoots() const { applySplitCriticalEdges(); return DT->getRoots(); } MachineBasicBlock *getRoot() const { applySplitCriticalEdges(); return DT->getRoot(); } MachineDomTreeNode *getRootNode() const { applySplitCriticalEdges(); return DT->getRootNode(); } bool runOnMachineFunction(MachineFunction &F) override; void calculate(MachineFunction &F); bool dominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const { applySplitCriticalEdges(); return DT->dominates(A, B); } bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { applySplitCriticalEdges(); return DT->dominates(A, B); } // dominates - Return true if A dominates B. This performs the // special checks necessary if A and B are in the same basic block. bool dominates(const MachineInstr *A, const MachineInstr *B) const { applySplitCriticalEdges(); const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent(); if (BBA != BBB) return DT->dominates(BBA, BBB); // Loop through the basic block until we find A or B. MachineBasicBlock::const_iterator I = BBA->begin(); for (; &*I != A && &*I != B; ++I) /*empty*/ ; return &*I == A; } bool properlyDominates(const MachineDomTreeNode *A, const MachineDomTreeNode *B) const { applySplitCriticalEdges(); return DT->properlyDominates(A, B); } bool properlyDominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const { applySplitCriticalEdges(); return DT->properlyDominates(A, B); } /// findNearestCommonDominator - Find nearest common dominator basic block /// for basic block A and B. If there is no such block then return NULL. MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A, MachineBasicBlock *B) { applySplitCriticalEdges(); return DT->findNearestCommonDominator(A, B); } MachineDomTreeNode *operator[](MachineBasicBlock *BB) const { applySplitCriticalEdges(); return DT->getNode(BB); } /// getNode - return the (Post)DominatorTree node for the specified basic /// block. This is the same as using operator[] on this class. /// MachineDomTreeNode *getNode(MachineBasicBlock *BB) const { applySplitCriticalEdges(); return DT->getNode(BB); } /// addNewBlock - Add a new node to the dominator tree information. This /// creates a new node as a child of DomBB dominator node,linking it into /// the children list of the immediate dominator. MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB, MachineBasicBlock *DomBB) { applySplitCriticalEdges(); return DT->addNewBlock(BB, DomBB); } /// changeImmediateDominator - This method is used to update the dominator /// tree information when a node's immediate dominator changes. /// void changeImmediateDominator(MachineBasicBlock *N, MachineBasicBlock *NewIDom) { applySplitCriticalEdges(); DT->changeImmediateDominator(N, NewIDom); } void changeImmediateDominator(MachineDomTreeNode *N, MachineDomTreeNode *NewIDom) { applySplitCriticalEdges(); DT->changeImmediateDominator(N, NewIDom); } /// eraseNode - Removes a node from the dominator tree. Block must not /// dominate any other blocks. Removes node from its immediate dominator's /// children list. Deletes dominator node associated with basic block BB. void eraseNode(MachineBasicBlock *BB) { applySplitCriticalEdges(); DT->eraseNode(BB); } /// splitBlock - BB is split and now it has one successor. Update dominator /// tree to reflect this change. void splitBlock(MachineBasicBlock* NewBB) { applySplitCriticalEdges(); DT->splitBlock(NewBB); } /// isReachableFromEntry - Return true if A is dominated by the entry /// block of the function containing it. bool isReachableFromEntry(const MachineBasicBlock *A) { applySplitCriticalEdges(); return DT->isReachableFromEntry(A); } void releaseMemory() override; void verifyAnalysis() const override; void print(raw_ostream &OS, const Module*) const override; /// Record that the critical edge (FromBB, ToBB) has been /// split with NewBB. /// This is best to use this method instead of directly update the /// underlying information, because this helps mitigating the /// number of time the DT information is invalidated. /// /// \note Do not use this method with regular edges. /// /// \note To benefit from the compile time improvement incurred by this /// method, the users of this method have to limit the queries to the DT /// interface between two edges splitting. In other words, they have to /// pack the splitting of critical edges as much as possible. void recordSplitCriticalEdge(MachineBasicBlock *FromBB, MachineBasicBlock *ToBB, MachineBasicBlock *NewBB) { bool Inserted = NewBBs.insert(NewBB).second; (void)Inserted; assert(Inserted && "A basic block inserted via edge splitting cannot appear twice"); CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB}); } }; //===------------------------------------- /// DominatorTree GraphTraits specialization so the DominatorTree can be /// iterable by generic graph iterators. /// template struct MachineDomTreeGraphTraitsBase { using NodeRef = Node *; using ChildIteratorType = ChildIterator; static NodeRef getEntryNode(NodeRef N) { return N; } static ChildIteratorType child_begin(NodeRef N) { return N->begin(); } static ChildIteratorType child_end(NodeRef N) { return N->end(); } }; template struct GraphTraits; template <> struct GraphTraits : public MachineDomTreeGraphTraitsBase {}; template <> struct GraphTraits : public MachineDomTreeGraphTraitsBase { }; template <> struct GraphTraits : public GraphTraits { static NodeRef getEntryNode(MachineDominatorTree *DT) { return DT->getRootNode(); } }; } // end namespace llvm #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H