//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the set of low-level target independent types which various // values in the code generator are. This allows the target specific behavior // of instructions to be described to target independent passes. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_VALUETYPES_H #define LLVM_CODEGEN_VALUETYPES_H #include "llvm/Support/Compiler.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/TypeSize.h" #include "llvm/Support/WithColor.h" #include #include #include namespace llvm { class LLVMContext; class Type; /// Extended Value Type. Capable of holding value types which are not native /// for any processor (such as the i12345 type), as well as the types an MVT /// can represent. struct EVT { private: MVT V = MVT::INVALID_SIMPLE_VALUE_TYPE; Type *LLVMTy = nullptr; public: constexpr EVT() = default; constexpr EVT(MVT::SimpleValueType SVT) : V(SVT) {} constexpr EVT(MVT S) : V(S) {} bool operator==(EVT VT) const { return !(*this != VT); } bool operator!=(EVT VT) const { if (V.SimpleTy != VT.V.SimpleTy) return true; if (V.SimpleTy == MVT::INVALID_SIMPLE_VALUE_TYPE) return LLVMTy != VT.LLVMTy; return false; } /// Returns the EVT that represents a floating-point type with the given /// number of bits. There are two floating-point types with 128 bits - this /// returns f128 rather than ppcf128. static EVT getFloatingPointVT(unsigned BitWidth) { return MVT::getFloatingPointVT(BitWidth); } /// Returns the EVT that represents an integer with the given number of /// bits. static EVT getIntegerVT(LLVMContext &Context, unsigned BitWidth) { MVT M = MVT::getIntegerVT(BitWidth); if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE) return M; return getExtendedIntegerVT(Context, BitWidth); } /// Returns the EVT that represents a vector NumElements in length, where /// each element is of type VT. static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable = false) { MVT M = MVT::getVectorVT(VT.V, NumElements, IsScalable); if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE) return M; return getExtendedVectorVT(Context, VT, NumElements, IsScalable); } /// Returns the EVT that represents a vector EC.Min elements in length, /// where each element is of type VT. static EVT getVectorVT(LLVMContext &Context, EVT VT, ElementCount EC) { MVT M = MVT::getVectorVT(VT.V, EC); if (M.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE) return M; return getExtendedVectorVT(Context, VT, EC); } /// Return a vector with the same number of elements as this vector, but /// with the element type converted to an integer type with the same /// bitwidth. EVT changeVectorElementTypeToInteger() const { if (!isSimple()) return changeExtendedVectorElementTypeToInteger(); MVT EltTy = getSimpleVT().getVectorElementType(); unsigned BitWidth = EltTy.getSizeInBits(); MVT IntTy = MVT::getIntegerVT(BitWidth); MVT VecTy = MVT::getVectorVT(IntTy, getVectorElementCount()); assert(VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE && "Simple vector VT not representable by simple integer vector VT!"); return VecTy; } /// Return a VT for a vector type whose attributes match ourselves /// with the exception of the element type that is chosen by the caller. EVT changeVectorElementType(EVT EltVT) const { if (!isSimple()) return changeExtendedVectorElementType(EltVT); MVT VecTy = MVT::getVectorVT(EltVT.V, getVectorElementCount()); assert(VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE && "Simple vector VT not representable by simple integer vector VT!"); return VecTy; } /// Return the type converted to an equivalently sized integer or vector /// with integer element type. Similar to changeVectorElementTypeToInteger, /// but also handles scalars. EVT changeTypeToInteger() { if (isVector()) return changeVectorElementTypeToInteger(); if (isSimple()) return MVT::getIntegerVT(getSizeInBits()); return changeExtendedTypeToInteger(); } /// Test if the given EVT is simple (as opposed to being extended). bool isSimple() const { return V.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE; } /// Test if the given EVT is extended (as opposed to being simple). bool isExtended() const { return !isSimple(); } /// Return true if this is a FP or a vector FP type. bool isFloatingPoint() const { return isSimple() ? V.isFloatingPoint() : isExtendedFloatingPoint(); } /// Return true if this is an integer or a vector integer type. bool isInteger() const { return isSimple() ? V.isInteger() : isExtendedInteger(); } /// Return true if this is an integer, but not a vector. bool isScalarInteger() const { return isSimple() ? V.isScalarInteger() : isExtendedScalarInteger(); } /// Return true if this is a vector value type. bool isVector() const { return isSimple() ? V.isVector() : isExtendedVector(); } /// Return true if this is a vector type where the runtime /// length is machine dependent bool isScalableVector() const { return isSimple() ? V.isScalableVector() : isExtendedScalableVector(); } bool isFixedLengthVector() const { return isSimple() ? V.isFixedLengthVector() : isExtendedFixedLengthVector(); } /// Return true if this is a 16-bit vector type. bool is16BitVector() const { return isSimple() ? V.is16BitVector() : isExtended16BitVector(); } /// Return true if this is a 32-bit vector type. bool is32BitVector() const { return isSimple() ? V.is32BitVector() : isExtended32BitVector(); } /// Return true if this is a 64-bit vector type. bool is64BitVector() const { return isSimple() ? V.is64BitVector() : isExtended64BitVector(); } /// Return true if this is a 128-bit vector type. bool is128BitVector() const { return isSimple() ? V.is128BitVector() : isExtended128BitVector(); } /// Return true if this is a 256-bit vector type. bool is256BitVector() const { return isSimple() ? V.is256BitVector() : isExtended256BitVector(); } /// Return true if this is a 512-bit vector type. bool is512BitVector() const { return isSimple() ? V.is512BitVector() : isExtended512BitVector(); } /// Return true if this is a 1024-bit vector type. bool is1024BitVector() const { return isSimple() ? V.is1024BitVector() : isExtended1024BitVector(); } /// Return true if this is a 2048-bit vector type. bool is2048BitVector() const { return isSimple() ? V.is2048BitVector() : isExtended2048BitVector(); } /// Return true if this is an overloaded type for TableGen. bool isOverloaded() const { return (V==MVT::iAny || V==MVT::fAny || V==MVT::vAny || V==MVT::iPTRAny); } /// Return true if the bit size is a multiple of 8. bool isByteSized() const { return getSizeInBits().isByteSized(); } /// Return true if the size is a power-of-two number of bytes. bool isRound() const { if (isScalableVector()) return false; unsigned BitSize = getSizeInBits(); return BitSize >= 8 && !(BitSize & (BitSize - 1)); } /// Return true if this has the same number of bits as VT. bool bitsEq(EVT VT) const { if (EVT::operator==(VT)) return true; return getSizeInBits() == VT.getSizeInBits(); } /// Return true if this has more bits than VT. bool bitsGT(EVT VT) const { if (EVT::operator==(VT)) return false; return getSizeInBits() > VT.getSizeInBits(); } /// Return true if this has no less bits than VT. bool bitsGE(EVT VT) const { if (EVT::operator==(VT)) return true; return getSizeInBits() >= VT.getSizeInBits(); } /// Return true if this has less bits than VT. bool bitsLT(EVT VT) const { if (EVT::operator==(VT)) return false; return getSizeInBits() < VT.getSizeInBits(); } /// Return true if this has no more bits than VT. bool bitsLE(EVT VT) const { if (EVT::operator==(VT)) return true; return getSizeInBits() <= VT.getSizeInBits(); } /// Return the SimpleValueType held in the specified simple EVT. MVT getSimpleVT() const { assert(isSimple() && "Expected a SimpleValueType!"); return V; } /// If this is a vector type, return the element type, otherwise return /// this. EVT getScalarType() const { return isVector() ? getVectorElementType() : *this; } /// Given a vector type, return the type of each element. EVT getVectorElementType() const { assert(isVector() && "Invalid vector type!"); if (isSimple()) return V.getVectorElementType(); return getExtendedVectorElementType(); } /// Given a vector type, return the number of elements it contains. unsigned getVectorNumElements() const { #ifdef STRICT_FIXED_SIZE_VECTORS assert(isFixedLengthVector() && "Invalid vector type!"); #else assert(isVector() && "Invalid vector type!"); if (isScalableVector()) WithColor::warning() << "Possible incorrect use of EVT::getVectorNumElements() for " "scalable vector. Scalable flag may be dropped, use" "EVT::getVectorElementCount() instead\n"; #endif if (isSimple()) return V.getVectorNumElements(); return getExtendedVectorNumElements(); } // Given a (possibly scalable) vector type, return the ElementCount ElementCount getVectorElementCount() const { assert((isVector()) && "Invalid vector type!"); if (isSimple()) return V.getVectorElementCount(); return getExtendedVectorElementCount(); } /// Given a vector type, return the minimum number of elements it contains. unsigned getVectorMinNumElements() const { return getVectorElementCount().Min; } /// Return the size of the specified value type in bits. /// /// If the value type is a scalable vector type, the scalable property will /// be set and the runtime size will be a positive integer multiple of the /// base size. TypeSize getSizeInBits() const { if (isSimple()) return V.getSizeInBits(); return getExtendedSizeInBits(); } TypeSize getScalarSizeInBits() const { return getScalarType().getSizeInBits(); } /// Return the number of bytes overwritten by a store of the specified value /// type. /// /// If the value type is a scalable vector type, the scalable property will /// be set and the runtime size will be a positive integer multiple of the /// base size. TypeSize getStoreSize() const { TypeSize BaseSize = getSizeInBits(); return {(BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable()}; } /// Return the number of bits overwritten by a store of the specified value /// type. /// /// If the value type is a scalable vector type, the scalable property will /// be set and the runtime size will be a positive integer multiple of the /// base size. TypeSize getStoreSizeInBits() const { return getStoreSize() * 8; } /// Rounds the bit-width of the given integer EVT up to the nearest power of /// two (and at least to eight), and returns the integer EVT with that /// number of bits. EVT getRoundIntegerType(LLVMContext &Context) const { assert(isInteger() && !isVector() && "Invalid integer type!"); unsigned BitWidth = getSizeInBits(); if (BitWidth <= 8) return EVT(MVT::i8); return getIntegerVT(Context, 1 << Log2_32_Ceil(BitWidth)); } /// Finds the smallest simple value type that is greater than or equal to /// half the width of this EVT. If no simple value type can be found, an /// extended integer value type of half the size (rounded up) is returned. EVT getHalfSizedIntegerVT(LLVMContext &Context) const { assert(isInteger() && !isVector() && "Invalid integer type!"); unsigned EVTSize = getSizeInBits(); for (unsigned IntVT = MVT::FIRST_INTEGER_VALUETYPE; IntVT <= MVT::LAST_INTEGER_VALUETYPE; ++IntVT) { EVT HalfVT = EVT((MVT::SimpleValueType)IntVT); if (HalfVT.getSizeInBits() * 2 >= EVTSize) return HalfVT; } return getIntegerVT(Context, (EVTSize + 1) / 2); } /// Return a VT for an integer vector type with the size of the /// elements doubled. The typed returned may be an extended type. EVT widenIntegerVectorElementType(LLVMContext &Context) const { EVT EltVT = getVectorElementType(); EltVT = EVT::getIntegerVT(Context, 2 * EltVT.getSizeInBits()); return EVT::getVectorVT(Context, EltVT, getVectorElementCount()); } // Return a VT for a vector type with the same element type but // half the number of elements. The type returned may be an // extended type. EVT getHalfNumVectorElementsVT(LLVMContext &Context) const { EVT EltVT = getVectorElementType(); auto EltCnt = getVectorElementCount(); assert(!(EltCnt.Min & 1) && "Splitting vector, but not in half!"); return EVT::getVectorVT(Context, EltVT, EltCnt / 2); } /// Returns true if the given vector is a power of 2. bool isPow2VectorType() const { unsigned NElts = getVectorMinNumElements(); return !(NElts & (NElts - 1)); } /// Widens the length of the given vector EVT up to the nearest power of 2 /// and returns that type. EVT getPow2VectorType(LLVMContext &Context) const { if (!isPow2VectorType()) { ElementCount NElts = getVectorElementCount(); NElts.Min = 1 << Log2_32_Ceil(NElts.Min); return EVT::getVectorVT(Context, getVectorElementType(), NElts); } else { return *this; } } /// This function returns value type as a string, e.g. "i32". std::string getEVTString() const; /// This method returns an LLVM type corresponding to the specified EVT. /// For integer types, this returns an unsigned type. Note that this will /// abort for types that cannot be represented. Type *getTypeForEVT(LLVMContext &Context) const; /// Return the value type corresponding to the specified type. /// This returns all pointers as iPTR. If HandleUnknown is true, unknown /// types are returned as Other, otherwise they are invalid. static EVT getEVT(Type *Ty, bool HandleUnknown = false); intptr_t getRawBits() const { if (isSimple()) return V.SimpleTy; else return (intptr_t)(LLVMTy); } /// A meaningless but well-behaved order, useful for constructing /// containers. struct compareRawBits { bool operator()(EVT L, EVT R) const { if (L.V.SimpleTy == R.V.SimpleTy) return L.LLVMTy < R.LLVMTy; else return L.V.SimpleTy < R.V.SimpleTy; } }; private: // Methods for handling the Extended-type case in functions above. // These are all out-of-line to prevent users of this header file // from having a dependency on Type.h. EVT changeExtendedTypeToInteger() const; EVT changeExtendedVectorElementType(EVT EltVT) const; EVT changeExtendedVectorElementTypeToInteger() const; static EVT getExtendedIntegerVT(LLVMContext &C, unsigned BitWidth); static EVT getExtendedVectorVT(LLVMContext &C, EVT VT, unsigned NumElements, bool IsScalable); static EVT getExtendedVectorVT(LLVMContext &Context, EVT VT, ElementCount EC); bool isExtendedFloatingPoint() const LLVM_READONLY; bool isExtendedInteger() const LLVM_READONLY; bool isExtendedScalarInteger() const LLVM_READONLY; bool isExtendedVector() const LLVM_READONLY; bool isExtended16BitVector() const LLVM_READONLY; bool isExtended32BitVector() const LLVM_READONLY; bool isExtended64BitVector() const LLVM_READONLY; bool isExtended128BitVector() const LLVM_READONLY; bool isExtended256BitVector() const LLVM_READONLY; bool isExtended512BitVector() const LLVM_READONLY; bool isExtended1024BitVector() const LLVM_READONLY; bool isExtended2048BitVector() const LLVM_READONLY; bool isExtendedFixedLengthVector() const LLVM_READONLY; bool isExtendedScalableVector() const LLVM_READONLY; EVT getExtendedVectorElementType() const; unsigned getExtendedVectorNumElements() const LLVM_READONLY; ElementCount getExtendedVectorElementCount() const LLVM_READONLY; TypeSize getExtendedSizeInBits() const LLVM_READONLY; }; } // end namespace llvm #endif // LLVM_CODEGEN_VALUETYPES_H