//===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements class that drive and introspect deterministic finite- // state automata (DFAs) as generated by TableGen's -gen-automata backend. // // For a description of how to define an automaton, see // include/llvm/TableGen/Automaton.td. // // One important detail is that these deterministic automata are created from // (potentially) nondeterministic definitions. Therefore a unique sequence of // input symbols will produce one path through the DFA but multiple paths // through the original NFA. An automaton by default only returns "accepted" or // "not accepted", but frequently we want to analyze what NFA path was taken. // Finding a path through the NFA states that results in a DFA state can help // answer *what* the solution to a problem was, not just that there exists a // solution. // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_AUTOMATON_H #define LLVM_SUPPORT_AUTOMATON_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Allocator.h" #include #include #include #include #include namespace llvm { using NfaPath = SmallVector; /// Forward define the pair type used by the automata transition info tables. /// /// Experimental results with large tables have shown a significant (multiple /// orders of magnitude) parsing speedup by using a custom struct here with a /// trivial constructor rather than std::pair. struct NfaStatePair { uint64_t FromDfaState, ToDfaState; bool operator<(const NfaStatePair &Other) const { return std::make_tuple(FromDfaState, ToDfaState) < std::make_tuple(Other.FromDfaState, Other.ToDfaState); } }; namespace internal { /// The internal class that maintains all possible paths through an NFA based /// on a path through the DFA. class NfaTranscriber { private: /// Cached transition table. This is a table of NfaStatePairs that contains /// zero-terminated sequences pointed to by DFA transitions. ArrayRef TransitionInfo; /// A simple linked-list of traversed states that can have a shared tail. The /// traversed path is stored in reverse order with the latest state as the /// head. struct PathSegment { uint64_t State; PathSegment *Tail; }; /// We allocate segment objects frequently. Allocate them upfront and dispose /// at the end of a traversal rather than hammering the system allocator. SpecificBumpPtrAllocator Allocator; /// Heads of each tracked path. These are not ordered. std::deque Heads; /// The returned paths. This is populated during getPaths. SmallVector Paths; /// Create a new segment and return it. PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { PathSegment *P = Allocator.Allocate(); *P = {State, Tail}; return P; } /// Pairs defines a sequence of possible NFA transitions for a single DFA /// transition. void transition(ArrayRef Pairs) { // Iterate over all existing heads. We will mutate the Heads deque during // iteration. unsigned NumHeads = Heads.size(); for (unsigned I = 0; I < NumHeads; ++I) { PathSegment *Head = Heads[I]; // The sequence of pairs is sorted. Select the set of pairs that // transition from the current head state. auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); // For every transition from the current head state, add a new path // segment. for (; PI != PE; ++PI) if (PI->FromDfaState == Head->State) Heads.push_back(makePathSegment(PI->ToDfaState, Head)); } // Now we've iterated over all the initial heads and added new ones, // dispose of the original heads. Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); } public: NfaTranscriber(ArrayRef TransitionInfo) : TransitionInfo(TransitionInfo) { reset(); } ArrayRef getTransitionInfo() const { return TransitionInfo; } void reset() { Paths.clear(); Heads.clear(); Allocator.DestroyAll(); // The initial NFA state is 0. Heads.push_back(makePathSegment(0ULL, nullptr)); } void transition(unsigned TransitionInfoIdx) { unsigned EndIdx = TransitionInfoIdx; while (TransitionInfo[EndIdx].ToDfaState != 0) ++EndIdx; ArrayRef Pairs(&TransitionInfo[TransitionInfoIdx], EndIdx - TransitionInfoIdx); transition(Pairs); } ArrayRef getPaths() { Paths.clear(); for (auto *Head : Heads) { NfaPath P; while (Head->State != 0) { P.push_back(Head->State); Head = Head->Tail; } std::reverse(P.begin(), P.end()); Paths.push_back(std::move(P)); } return Paths; } }; } // namespace internal /// A deterministic finite-state automaton. The automaton is defined in /// TableGen; this object drives an automaton defined by tblgen-emitted tables. /// /// An automaton accepts a sequence of input tokens ("actions"). This class is /// templated on the type of these actions. template class Automaton { /// Map from {State, Action} to {NewState, TransitionInfoIdx}. /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. /// FIXME: This uses a std::map because ActionT can be a pair type including /// an enum. In particular DenseMapInfo must be defined to use /// DenseMap here. /// This is a shared_ptr to allow very quick copy-construction of Automata; this /// state is immutable after construction so this is safe. using MapTy = std::map, std::pair>; std::shared_ptr M; /// An optional transcription object. This uses much more state than simply /// traversing the DFA for acceptance, so is heap allocated. std::shared_ptr Transcriber; /// The initial DFA state is 1. uint64_t State = 1; /// True if we should transcribe and false if not (even if Transcriber is defined). bool Transcribe; public: /// Create an automaton. /// \param Transitions The Transitions table as created by TableGen. Note that /// because the action type differs per automaton, the /// table type is templated as ArrayRef. /// \param TranscriptionTable The TransitionInfo table as created by TableGen. /// /// Providing the TranscriptionTable argument as non-empty will enable the /// use of transcription, which analyzes the possible paths in the original /// NFA taken by the DFA. NOTE: This is substantially more work than simply /// driving the DFA, so unless you require the getPaths() method leave this /// empty. template Automaton(ArrayRef Transitions, ArrayRef TranscriptionTable = {}) { if (!TranscriptionTable.empty()) Transcriber = std::make_shared(TranscriptionTable); Transcribe = Transcriber != nullptr; M = std::make_shared(); for (const auto &I : Transitions) // Greedily read and cache the transition table. M->emplace(std::make_pair(I.FromDfaState, I.Action), std::make_pair(I.ToDfaState, I.InfoIdx)); } Automaton(const Automaton &Other) : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) { // Transcriber is not thread-safe, so create a new instance on copy. if (Other.Transcriber) Transcriber = std::make_shared( Other.Transcriber->getTransitionInfo()); } /// Reset the automaton to its initial state. void reset() { State = 1; if (Transcriber) Transcriber->reset(); } /// Enable or disable transcription. Transcription is only available if /// TranscriptionTable was provided to the constructor. void enableTranscription(bool Enable = true) { assert(Transcriber && "Transcription is only available if TranscriptionTable was provided " "to the Automaton constructor"); Transcribe = Enable; } /// Transition the automaton based on input symbol A. Return true if the /// automaton transitioned to a valid state, false if the automaton /// transitioned to an invalid state. /// /// If this function returns false, all methods are undefined until reset() is /// called. bool add(const ActionT &A) { auto I = M->find({State, A}); if (I == M->end()) return false; if (Transcriber && Transcribe) Transcriber->transition(I->second.second); State = I->second.first; return true; } /// Return true if the automaton can be transitioned based on input symbol A. bool canAdd(const ActionT &A) { auto I = M->find({State, A}); return I != M->end(); } /// Obtain a set of possible paths through the input nondeterministic /// automaton that could be obtained from the sequence of input actions /// presented to this deterministic automaton. ArrayRef getNfaPaths() { assert(Transcriber && Transcribe && "Can only obtain NFA paths if transcribing!"); return Transcriber->getPaths(); } }; } // namespace llvm #endif // LLVM_SUPPORT_AUTOMATON_H