//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass statically checks for common and easily-identified constructs // which produce undefined or likely unintended behavior in LLVM IR. // // It is not a guarantee of correctness, in two ways. First, it isn't // comprehensive. There are checks which could be done statically which are // not yet implemented. Some of these are indicated by TODO comments, but // those aren't comprehensive either. Second, many conditions cannot be // checked statically. This pass does no dynamic instrumentation, so it // can't check for all possible problems. // // Another limitation is that it assumes all code will be executed. A store // through a null pointer in a basic block which is never reached is harmless, // but this pass will warn about it anyway. This is the main reason why most // of these checks live here instead of in the Verifier pass. // // Optimization passes may make conditions that this pass checks for more or // less obvious. If an optimization pass appears to be introducing a warning, // it may be that the optimization pass is merely exposing an existing // condition in the code. // // This code may be run before instcombine. In many cases, instcombine checks // for the same kinds of things and turns instructions with undefined behavior // into unreachable (or equivalent). Because of this, this pass makes some // effort to look through bitcasts and so on. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Lint.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Argument.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstVisitor.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace llvm; namespace { namespace MemRef { static const unsigned Read = 1; static const unsigned Write = 2; static const unsigned Callee = 4; static const unsigned Branchee = 8; } // end namespace MemRef class Lint : public InstVisitor { friend class InstVisitor; void visitFunction(Function &F); void visitCallBase(CallBase &CB); void visitMemoryReference(Instruction &I, const MemoryLocation &Loc, MaybeAlign Alignment, Type *Ty, unsigned Flags); void visitEHBeginCatch(IntrinsicInst *II); void visitEHEndCatch(IntrinsicInst *II); void visitReturnInst(ReturnInst &I); void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitXor(BinaryOperator &I); void visitSub(BinaryOperator &I); void visitLShr(BinaryOperator &I); void visitAShr(BinaryOperator &I); void visitShl(BinaryOperator &I); void visitSDiv(BinaryOperator &I); void visitUDiv(BinaryOperator &I); void visitSRem(BinaryOperator &I); void visitURem(BinaryOperator &I); void visitAllocaInst(AllocaInst &I); void visitVAArgInst(VAArgInst &I); void visitIndirectBrInst(IndirectBrInst &I); void visitExtractElementInst(ExtractElementInst &I); void visitInsertElementInst(InsertElementInst &I); void visitUnreachableInst(UnreachableInst &I); Value *findValue(Value *V, bool OffsetOk) const; Value *findValueImpl(Value *V, bool OffsetOk, SmallPtrSetImpl &Visited) const; public: Module *Mod; const DataLayout *DL; AliasAnalysis *AA; AssumptionCache *AC; DominatorTree *DT; TargetLibraryInfo *TLI; std::string Messages; raw_string_ostream MessagesStr; Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA, AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI) : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI), MessagesStr(Messages) {} void WriteValues(ArrayRef Vs) { for (const Value *V : Vs) { if (!V) continue; if (isa(V)) { MessagesStr << *V << '\n'; } else { V->printAsOperand(MessagesStr, true, Mod); MessagesStr << '\n'; } } } /// A check failed, so printout out the condition and the message. /// /// This provides a nice place to put a breakpoint if you want to see why /// something is not correct. void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; } /// A check failed (with values to print). /// /// This calls the Message-only version so that the above is easier to set /// a breakpoint on. template void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) { CheckFailed(Message); WriteValues({V1, Vs...}); } }; } // end anonymous namespace // Check - We know that cond should be true, if not print an error message. #define Check(C, ...) \ do { \ if (!(C)) { \ CheckFailed(__VA_ARGS__); \ return; \ } \ } while (false) void Lint::visitFunction(Function &F) { // This isn't undefined behavior, it's just a little unusual, and it's a // fairly common mistake to neglect to name a function. Check(F.hasName() || F.hasLocalLinkage(), "Unusual: Unnamed function with non-local linkage", &F); // TODO: Check for irreducible control flow. } void Lint::visitCallBase(CallBase &I) { Value *Callee = I.getCalledOperand(); visitMemoryReference(I, MemoryLocation::getAfter(Callee), None, nullptr, MemRef::Callee); if (Function *F = dyn_cast(findValue(Callee, /*OffsetOk=*/false))) { Check(I.getCallingConv() == F->getCallingConv(), "Undefined behavior: Caller and callee calling convention differ", &I); FunctionType *FT = F->getFunctionType(); unsigned NumActualArgs = I.arg_size(); Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs : FT->getNumParams() == NumActualArgs, "Undefined behavior: Call argument count mismatches callee " "argument count", &I); Check(FT->getReturnType() == I.getType(), "Undefined behavior: Call return type mismatches " "callee return type", &I); // Check argument types (in case the callee was casted) and attributes. // TODO: Verify that caller and callee attributes are compatible. Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); auto AI = I.arg_begin(), AE = I.arg_end(); for (; AI != AE; ++AI) { Value *Actual = *AI; if (PI != PE) { Argument *Formal = &*PI++; Check(Formal->getType() == Actual->getType(), "Undefined behavior: Call argument type mismatches " "callee parameter type", &I); // Check that noalias arguments don't alias other arguments. This is // not fully precise because we don't know the sizes of the dereferenced // memory regions. if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) { AttributeList PAL = I.getAttributes(); unsigned ArgNo = 0; for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) { // Skip ByVal arguments since they will be memcpy'd to the callee's // stack so we're not really passing the pointer anyway. if (PAL.hasParamAttr(ArgNo, Attribute::ByVal)) continue; // If both arguments are readonly, they have no dependence. if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo)) continue; if (AI != BI && (*BI)->getType()->isPointerTy()) { AliasResult Result = AA->alias(*AI, *BI); Check(Result != AliasResult::MustAlias && Result != AliasResult::PartialAlias, "Unusual: noalias argument aliases another argument", &I); } } } // Check that an sret argument points to valid memory. if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { Type *Ty = Formal->getParamStructRetType(); MemoryLocation Loc( Actual, LocationSize::precise(DL->getTypeStoreSize(Ty))); visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty, MemRef::Read | MemRef::Write); } } } } if (const auto *CI = dyn_cast(&I)) { if (CI->isTailCall()) { const AttributeList &PAL = CI->getAttributes(); unsigned ArgNo = 0; for (Value *Arg : I.args()) { // Skip ByVal arguments since they will be memcpy'd to the callee's // stack anyway. if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal)) continue; Value *Obj = findValue(Arg, /*OffsetOk=*/true); Check(!isa(Obj), "Undefined behavior: Call with \"tail\" keyword references " "alloca", &I); } } } if (IntrinsicInst *II = dyn_cast(&I)) switch (II->getIntrinsicID()) { default: break; // TODO: Check more intrinsics case Intrinsic::memcpy: { MemCpyInst *MCI = cast(&I); visitMemoryReference(I, MemoryLocation::getForDest(MCI), MCI->getDestAlign(), nullptr, MemRef::Write); visitMemoryReference(I, MemoryLocation::getForSource(MCI), MCI->getSourceAlign(), nullptr, MemRef::Read); // Check that the memcpy arguments don't overlap. The AliasAnalysis API // isn't expressive enough for what we really want to do. Known partial // overlap is not distinguished from the case where nothing is known. auto Size = LocationSize::afterPointer(); if (const ConstantInt *Len = dyn_cast(findValue(MCI->getLength(), /*OffsetOk=*/false))) if (Len->getValue().isIntN(32)) Size = LocationSize::precise(Len->getValue().getZExtValue()); Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != AliasResult::MustAlias, "Undefined behavior: memcpy source and destination overlap", &I); break; } case Intrinsic::memcpy_inline: { MemCpyInlineInst *MCII = cast(&I); const uint64_t Size = MCII->getLength()->getValue().getLimitedValue(); visitMemoryReference(I, MemoryLocation::getForDest(MCII), MCII->getDestAlign(), nullptr, MemRef::Write); visitMemoryReference(I, MemoryLocation::getForSource(MCII), MCII->getSourceAlign(), nullptr, MemRef::Read); // Check that the memcpy arguments don't overlap. The AliasAnalysis API // isn't expressive enough for what we really want to do. Known partial // overlap is not distinguished from the case where nothing is known. const LocationSize LS = LocationSize::precise(Size); Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) != AliasResult::MustAlias, "Undefined behavior: memcpy source and destination overlap", &I); break; } case Intrinsic::memmove: { MemMoveInst *MMI = cast(&I); visitMemoryReference(I, MemoryLocation::getForDest(MMI), MMI->getDestAlign(), nullptr, MemRef::Write); visitMemoryReference(I, MemoryLocation::getForSource(MMI), MMI->getSourceAlign(), nullptr, MemRef::Read); break; } case Intrinsic::memset: { MemSetInst *MSI = cast(&I); visitMemoryReference(I, MemoryLocation::getForDest(MSI), MSI->getDestAlign(), nullptr, MemRef::Write); break; } case Intrinsic::memset_inline: { MemSetInlineInst *MSII = cast(&I); visitMemoryReference(I, MemoryLocation::getForDest(MSII), MSII->getDestAlign(), nullptr, MemRef::Write); break; } case Intrinsic::vastart: Check(I.getParent()->getParent()->isVarArg(), "Undefined behavior: va_start called in a non-varargs function", &I); visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, nullptr, MemRef::Read | MemRef::Write); break; case Intrinsic::vacopy: visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, nullptr, MemRef::Write); visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI), None, nullptr, MemRef::Read); break; case Intrinsic::vaend: visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, nullptr, MemRef::Read | MemRef::Write); break; case Intrinsic::stackrestore: // Stackrestore doesn't read or write memory, but it sets the // stack pointer, which the compiler may read from or write to // at any time, so check it for both readability and writeability. visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI), None, nullptr, MemRef::Read | MemRef::Write); break; case Intrinsic::get_active_lane_mask: if (auto *TripCount = dyn_cast(I.getArgOperand(1))) Check(!TripCount->isZero(), "get_active_lane_mask: operand #2 " "must be greater than 0", &I); break; } } void Lint::visitReturnInst(ReturnInst &I) { Function *F = I.getParent()->getParent(); Check(!F->doesNotReturn(), "Unusual: Return statement in function with noreturn attribute", &I); if (Value *V = I.getReturnValue()) { Value *Obj = findValue(V, /*OffsetOk=*/true); Check(!isa(Obj), "Unusual: Returning alloca value", &I); } } // TODO: Check that the reference is in bounds. // TODO: Check readnone/readonly function attributes. void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc, MaybeAlign Align, Type *Ty, unsigned Flags) { // If no memory is being referenced, it doesn't matter if the pointer // is valid. if (Loc.Size.isZero()) return; Value *Ptr = const_cast(Loc.Ptr); Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); Check(!isa(UnderlyingObject), "Undefined behavior: Null pointer dereference", &I); Check(!isa(UnderlyingObject), "Undefined behavior: Undef pointer dereference", &I); Check(!isa(UnderlyingObject) || !cast(UnderlyingObject)->isMinusOne(), "Unusual: All-ones pointer dereference", &I); Check(!isa(UnderlyingObject) || !cast(UnderlyingObject)->isOne(), "Unusual: Address one pointer dereference", &I); if (Flags & MemRef::Write) { if (const GlobalVariable *GV = dyn_cast(UnderlyingObject)) Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory", &I); Check(!isa(UnderlyingObject) && !isa(UnderlyingObject), "Undefined behavior: Write to text section", &I); } if (Flags & MemRef::Read) { Check(!isa(UnderlyingObject), "Unusual: Load from function body", &I); Check(!isa(UnderlyingObject), "Undefined behavior: Load from block address", &I); } if (Flags & MemRef::Callee) { Check(!isa(UnderlyingObject), "Undefined behavior: Call to block address", &I); } if (Flags & MemRef::Branchee) { Check(!isa(UnderlyingObject) || isa(UnderlyingObject), "Undefined behavior: Branch to non-blockaddress", &I); } // Check for buffer overflows and misalignment. // Only handles memory references that read/write something simple like an // alloca instruction or a global variable. int64_t Offset = 0; if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) { // OK, so the access is to a constant offset from Ptr. Check that Ptr is // something we can handle and if so extract the size of this base object // along with its alignment. uint64_t BaseSize = MemoryLocation::UnknownSize; MaybeAlign BaseAlign; if (AllocaInst *AI = dyn_cast(Base)) { Type *ATy = AI->getAllocatedType(); if (!AI->isArrayAllocation() && ATy->isSized()) BaseSize = DL->getTypeAllocSize(ATy); BaseAlign = AI->getAlign(); } else if (GlobalVariable *GV = dyn_cast(Base)) { // If the global may be defined differently in another compilation unit // then don't warn about funky memory accesses. if (GV->hasDefinitiveInitializer()) { Type *GTy = GV->getValueType(); if (GTy->isSized()) BaseSize = DL->getTypeAllocSize(GTy); BaseAlign = GV->getAlign(); if (!BaseAlign && GTy->isSized()) BaseAlign = DL->getABITypeAlign(GTy); } } // Accesses from before the start or after the end of the object are not // defined. Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize || (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize), "Undefined behavior: Buffer overflow", &I); // Accesses that say that the memory is more aligned than it is are not // defined. if (!Align && Ty && Ty->isSized()) Align = DL->getABITypeAlign(Ty); if (BaseAlign && Align) Check(*Align <= commonAlignment(*BaseAlign, Offset), "Undefined behavior: Memory reference address is misaligned", &I); } } void Lint::visitLoadInst(LoadInst &I) { visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(), MemRef::Read); } void Lint::visitStoreInst(StoreInst &I) { visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getOperand(0)->getType(), MemRef::Write); } void Lint::visitXor(BinaryOperator &I) { Check(!isa(I.getOperand(0)) || !isa(I.getOperand(1)), "Undefined result: xor(undef, undef)", &I); } void Lint::visitSub(BinaryOperator &I) { Check(!isa(I.getOperand(0)) || !isa(I.getOperand(1)), "Undefined result: sub(undef, undef)", &I); } void Lint::visitLShr(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(findValue(I.getOperand(1), /*OffsetOk=*/false))) Check(CI->getValue().ult(cast(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } void Lint::visitAShr(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(findValue(I.getOperand(1), /*OffsetOk=*/false))) Check(CI->getValue().ult(cast(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } void Lint::visitShl(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast(findValue(I.getOperand(1), /*OffsetOk=*/false))) Check(CI->getValue().ult(cast(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC) { // Assume undef could be zero. if (isa(V)) return true; VectorType *VecTy = dyn_cast(V->getType()); if (!VecTy) { KnownBits Known = computeKnownBits(V, DL, 0, AC, dyn_cast(V), DT); return Known.isZero(); } // Per-component check doesn't work with zeroinitializer Constant *C = dyn_cast(V); if (!C) return false; if (C->isZeroValue()) return true; // For a vector, KnownZero will only be true if all values are zero, so check // this per component for (unsigned I = 0, N = cast(VecTy)->getNumElements(); I != N; ++I) { Constant *Elem = C->getAggregateElement(I); if (isa(Elem)) return true; KnownBits Known = computeKnownBits(Elem, DL); if (Known.isZero()) return true; } return false; } void Lint::visitSDiv(BinaryOperator &I) { Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), "Undefined behavior: Division by zero", &I); } void Lint::visitUDiv(BinaryOperator &I) { Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), "Undefined behavior: Division by zero", &I); } void Lint::visitSRem(BinaryOperator &I) { Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), "Undefined behavior: Division by zero", &I); } void Lint::visitURem(BinaryOperator &I) { Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC), "Undefined behavior: Division by zero", &I); } void Lint::visitAllocaInst(AllocaInst &I) { if (isa(I.getArraySize())) // This isn't undefined behavior, it's just an obvious pessimization. Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), "Pessimization: Static alloca outside of entry block", &I); // TODO: Check for an unusual size (MSB set?) } void Lint::visitVAArgInst(VAArgInst &I) { visitMemoryReference(I, MemoryLocation::get(&I), None, nullptr, MemRef::Read | MemRef::Write); } void Lint::visitIndirectBrInst(IndirectBrInst &I) { visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()), None, nullptr, MemRef::Branchee); Check(I.getNumDestinations() != 0, "Undefined behavior: indirectbr with no destinations", &I); } void Lint::visitExtractElementInst(ExtractElementInst &I) { if (ConstantInt *CI = dyn_cast(findValue(I.getIndexOperand(), /*OffsetOk=*/false))) Check( CI->getValue().ult( cast(I.getVectorOperandType())->getNumElements()), "Undefined result: extractelement index out of range", &I); } void Lint::visitInsertElementInst(InsertElementInst &I) { if (ConstantInt *CI = dyn_cast(findValue(I.getOperand(2), /*OffsetOk=*/false))) Check(CI->getValue().ult( cast(I.getType())->getNumElements()), "Undefined result: insertelement index out of range", &I); } void Lint::visitUnreachableInst(UnreachableInst &I) { // This isn't undefined behavior, it's merely suspicious. Check(&I == &I.getParent()->front() || std::prev(I.getIterator())->mayHaveSideEffects(), "Unusual: unreachable immediately preceded by instruction without " "side effects", &I); } /// findValue - Look through bitcasts and simple memory reference patterns /// to identify an equivalent, but more informative, value. If OffsetOk /// is true, look through getelementptrs with non-zero offsets too. /// /// Most analysis passes don't require this logic, because instcombine /// will simplify most of these kinds of things away. But it's a goal of /// this Lint pass to be useful even on non-optimized IR. Value *Lint::findValue(Value *V, bool OffsetOk) const { SmallPtrSet Visited; return findValueImpl(V, OffsetOk, Visited); } /// findValueImpl - Implementation helper for findValue. Value *Lint::findValueImpl(Value *V, bool OffsetOk, SmallPtrSetImpl &Visited) const { // Detect self-referential values. if (!Visited.insert(V).second) return UndefValue::get(V->getType()); // TODO: Look through sext or zext cast, when the result is known to // be interpreted as signed or unsigned, respectively. // TODO: Look through eliminable cast pairs. // TODO: Look through calls with unique return values. // TODO: Look through vector insert/extract/shuffle. V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts(); if (LoadInst *L = dyn_cast(V)) { BasicBlock::iterator BBI = L->getIterator(); BasicBlock *BB = L->getParent(); SmallPtrSet VisitedBlocks; for (;;) { if (!VisitedBlocks.insert(BB).second) break; if (Value *U = FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA)) return findValueImpl(U, OffsetOk, Visited); if (BBI != BB->begin()) break; BB = BB->getUniquePredecessor(); if (!BB) break; BBI = BB->end(); } } else if (PHINode *PN = dyn_cast(V)) { if (Value *W = PN->hasConstantValue()) return findValueImpl(W, OffsetOk, Visited); } else if (CastInst *CI = dyn_cast(V)) { if (CI->isNoopCast(*DL)) return findValueImpl(CI->getOperand(0), OffsetOk, Visited); } else if (ExtractValueInst *Ex = dyn_cast(V)) { if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices())) if (W != V) return findValueImpl(W, OffsetOk, Visited); } else if (ConstantExpr *CE = dyn_cast(V)) { // Same as above, but for ConstantExpr instead of Instruction. if (Instruction::isCast(CE->getOpcode())) { if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), CE->getOperand(0)->getType(), CE->getType(), *DL)) return findValueImpl(CE->getOperand(0), OffsetOk, Visited); } } // As a last resort, try SimplifyInstruction or constant folding. if (Instruction *Inst = dyn_cast(V)) { if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC})) return findValueImpl(W, OffsetOk, Visited); } else if (auto *C = dyn_cast(V)) { Value *W = ConstantFoldConstant(C, *DL, TLI); if (W != V) return findValueImpl(W, OffsetOk, Visited); } return V; } PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) { auto *Mod = F.getParent(); auto *DL = &F.getParent()->getDataLayout(); auto *AA = &AM.getResult(F); auto *AC = &AM.getResult(F); auto *DT = &AM.getResult(F); auto *TLI = &AM.getResult(F); Lint L(Mod, DL, AA, AC, DT, TLI); L.visit(F); dbgs() << L.MessagesStr.str(); return PreservedAnalyses::all(); } namespace { class LintLegacyPass : public FunctionPass { public: static char ID; // Pass identification, replacement for typeid LintLegacyPass() : FunctionPass(ID) { initializeLintLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesAll(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); } void print(raw_ostream &O, const Module *M) const override {} }; } // namespace char LintLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LintLegacyPass, "lint", "Statically lint-checks LLVM IR", false, true) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(LintLegacyPass, "lint", "Statically lint-checks LLVM IR", false, true) bool LintLegacyPass::runOnFunction(Function &F) { auto *Mod = F.getParent(); auto *DL = &F.getParent()->getDataLayout(); auto *AA = &getAnalysis().getAAResults(); auto *AC = &getAnalysis().getAssumptionCache(F); auto *DT = &getAnalysis().getDomTree(); auto *TLI = &getAnalysis().getTLI(F); Lint L(Mod, DL, AA, AC, DT, TLI); L.visit(F); dbgs() << L.MessagesStr.str(); return false; } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// FunctionPass *llvm::createLintLegacyPassPass() { return new LintLegacyPass(); } /// lintFunction - Check a function for errors, printing messages on stderr. /// void llvm::lintFunction(const Function &f) { Function &F = const_cast(f); assert(!F.isDeclaration() && "Cannot lint external functions"); legacy::FunctionPassManager FPM(F.getParent()); auto *V = new LintLegacyPass(); FPM.add(V); FPM.run(F); } /// lintModule - Check a module for errors, printing messages on stderr. /// void llvm::lintModule(const Module &M) { legacy::PassManager PM; auto *V = new LintLegacyPass(); PM.add(V); PM.run(const_cast(M)); }