//===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines vectorizer utilities. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/VectorUtils.h" #include "llvm/ADT/EquivalenceClasses.h" #include "llvm/Analysis/DemandedBits.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Constants.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/Value.h" #include "llvm/Support/CommandLine.h" #define DEBUG_TYPE "vectorutils" using namespace llvm; using namespace llvm::PatternMatch; /// Maximum factor for an interleaved memory access. static cl::opt MaxInterleaveGroupFactor( "max-interleave-group-factor", cl::Hidden, cl::desc("Maximum factor for an interleaved access group (default = 8)"), cl::init(8)); /// Return true if all of the intrinsic's arguments and return type are scalars /// for the scalar form of the intrinsic, and vectors for the vector form of the /// intrinsic (except operands that are marked as always being scalar by /// hasVectorInstrinsicScalarOpd). bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { switch (ID) { case Intrinsic::bswap: // Begin integer bit-manipulation. case Intrinsic::bitreverse: case Intrinsic::ctpop: case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::fshl: case Intrinsic::fshr: case Intrinsic::sadd_sat: case Intrinsic::ssub_sat: case Intrinsic::uadd_sat: case Intrinsic::usub_sat: case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::umul_fix: case Intrinsic::umul_fix_sat: case Intrinsic::sqrt: // Begin floating-point. case Intrinsic::sin: case Intrinsic::cos: case Intrinsic::exp: case Intrinsic::exp2: case Intrinsic::log: case Intrinsic::log10: case Intrinsic::log2: case Intrinsic::fabs: case Intrinsic::minnum: case Intrinsic::maxnum: case Intrinsic::minimum: case Intrinsic::maximum: case Intrinsic::copysign: case Intrinsic::floor: case Intrinsic::ceil: case Intrinsic::trunc: case Intrinsic::rint: case Intrinsic::nearbyint: case Intrinsic::round: case Intrinsic::pow: case Intrinsic::fma: case Intrinsic::fmuladd: case Intrinsic::powi: case Intrinsic::canonicalize: return true; default: return false; } } /// Identifies if the vector form of the intrinsic has a scalar operand. bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, unsigned ScalarOpdIdx) { switch (ID) { case Intrinsic::ctlz: case Intrinsic::cttz: case Intrinsic::powi: return (ScalarOpdIdx == 1); case Intrinsic::smul_fix: case Intrinsic::smul_fix_sat: case Intrinsic::umul_fix: case Intrinsic::umul_fix_sat: return (ScalarOpdIdx == 2); default: return false; } } /// Returns intrinsic ID for call. /// For the input call instruction it finds mapping intrinsic and returns /// its ID, in case it does not found it return not_intrinsic. Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, const TargetLibraryInfo *TLI) { Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); if (ID == Intrinsic::not_intrinsic) return Intrinsic::not_intrinsic; if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || ID == Intrinsic::sideeffect) return ID; return Intrinsic::not_intrinsic; } /// Find the operand of the GEP that should be checked for consecutive /// stores. This ignores trailing indices that have no effect on the final /// pointer. unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { const DataLayout &DL = Gep->getModule()->getDataLayout(); unsigned LastOperand = Gep->getNumOperands() - 1; unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); // Walk backwards and try to peel off zeros. while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { // Find the type we're currently indexing into. gep_type_iterator GEPTI = gep_type_begin(Gep); std::advance(GEPTI, LastOperand - 2); // If it's a type with the same allocation size as the result of the GEP we // can peel off the zero index. if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) break; --LastOperand; } return LastOperand; } /// If the argument is a GEP, then returns the operand identified by /// getGEPInductionOperand. However, if there is some other non-loop-invariant /// operand, it returns that instead. Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { GetElementPtrInst *GEP = dyn_cast(Ptr); if (!GEP) return Ptr; unsigned InductionOperand = getGEPInductionOperand(GEP); // Check that all of the gep indices are uniform except for our induction // operand. for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) if (i != InductionOperand && !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) return Ptr; return GEP->getOperand(InductionOperand); } /// If a value has only one user that is a CastInst, return it. Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { Value *UniqueCast = nullptr; for (User *U : Ptr->users()) { CastInst *CI = dyn_cast(U); if (CI && CI->getType() == Ty) { if (!UniqueCast) UniqueCast = CI; else return nullptr; } } return UniqueCast; } /// Get the stride of a pointer access in a loop. Looks for symbolic /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { auto *PtrTy = dyn_cast(Ptr->getType()); if (!PtrTy || PtrTy->isAggregateType()) return nullptr; // Try to remove a gep instruction to make the pointer (actually index at this // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the // pointer, otherwise, we are analyzing the index. Value *OrigPtr = Ptr; // The size of the pointer access. int64_t PtrAccessSize = 1; Ptr = stripGetElementPtr(Ptr, SE, Lp); const SCEV *V = SE->getSCEV(Ptr); if (Ptr != OrigPtr) // Strip off casts. while (const SCEVCastExpr *C = dyn_cast(V)) V = C->getOperand(); const SCEVAddRecExpr *S = dyn_cast(V); if (!S) return nullptr; V = S->getStepRecurrence(*SE); if (!V) return nullptr; // Strip off the size of access multiplication if we are still analyzing the // pointer. if (OrigPtr == Ptr) { if (const SCEVMulExpr *M = dyn_cast(V)) { if (M->getOperand(0)->getSCEVType() != scConstant) return nullptr; const APInt &APStepVal = cast(M->getOperand(0))->getAPInt(); // Huge step value - give up. if (APStepVal.getBitWidth() > 64) return nullptr; int64_t StepVal = APStepVal.getSExtValue(); if (PtrAccessSize != StepVal) return nullptr; V = M->getOperand(1); } } // Strip off casts. Type *StripedOffRecurrenceCast = nullptr; if (const SCEVCastExpr *C = dyn_cast(V)) { StripedOffRecurrenceCast = C->getType(); V = C->getOperand(); } // Look for the loop invariant symbolic value. const SCEVUnknown *U = dyn_cast(V); if (!U) return nullptr; Value *Stride = U->getValue(); if (!Lp->isLoopInvariant(Stride)) return nullptr; // If we have stripped off the recurrence cast we have to make sure that we // return the value that is used in this loop so that we can replace it later. if (StripedOffRecurrenceCast) Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); return Stride; } /// Given a vector and an element number, see if the scalar value is /// already around as a register, for example if it were inserted then extracted /// from the vector. Value *llvm::findScalarElement(Value *V, unsigned EltNo) { assert(V->getType()->isVectorTy() && "Not looking at a vector?"); VectorType *VTy = cast(V->getType()); unsigned Width = VTy->getNumElements(); if (EltNo >= Width) // Out of range access. return UndefValue::get(VTy->getElementType()); if (Constant *C = dyn_cast(V)) return C->getAggregateElement(EltNo); if (InsertElementInst *III = dyn_cast(V)) { // If this is an insert to a variable element, we don't know what it is. if (!isa(III->getOperand(2))) return nullptr; unsigned IIElt = cast(III->getOperand(2))->getZExtValue(); // If this is an insert to the element we are looking for, return the // inserted value. if (EltNo == IIElt) return III->getOperand(1); // Otherwise, the insertelement doesn't modify the value, recurse on its // vector input. return findScalarElement(III->getOperand(0), EltNo); } if (ShuffleVectorInst *SVI = dyn_cast(V)) { unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); int InEl = SVI->getMaskValue(EltNo); if (InEl < 0) return UndefValue::get(VTy->getElementType()); if (InEl < (int)LHSWidth) return findScalarElement(SVI->getOperand(0), InEl); return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); } // Extract a value from a vector add operation with a constant zero. // TODO: Use getBinOpIdentity() to generalize this. Value *Val; Constant *C; if (match(V, m_Add(m_Value(Val), m_Constant(C)))) if (Constant *Elt = C->getAggregateElement(EltNo)) if (Elt->isNullValue()) return findScalarElement(Val, EltNo); // Otherwise, we don't know. return nullptr; } /// Get splat value if the input is a splat vector or return nullptr. /// This function is not fully general. It checks only 2 cases: /// the input value is (1) a splat constant vector or (2) a sequence /// of instructions that broadcasts a scalar at element 0. const llvm::Value *llvm::getSplatValue(const Value *V) { if (isa(V->getType())) if (auto *C = dyn_cast(V)) return C->getSplatValue(); // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...> Value *Splat; if (match(V, m_ShuffleVector(m_InsertElement(m_Value(), m_Value(Splat), m_ZeroInt()), m_Value(), m_ZeroInt()))) return Splat; return nullptr; } // This setting is based on its counterpart in value tracking, but it could be // adjusted if needed. const unsigned MaxDepth = 6; bool llvm::isSplatValue(const Value *V, unsigned Depth) { assert(Depth <= MaxDepth && "Limit Search Depth"); if (isa(V->getType())) { if (isa(V)) return true; // FIXME: Constant splat analysis does not allow undef elements. if (auto *C = dyn_cast(V)) return C->getSplatValue() != nullptr; } // FIXME: Constant splat analysis does not allow undef elements. Constant *Mask; if (match(V, m_ShuffleVector(m_Value(), m_Value(), m_Constant(Mask)))) return Mask->getSplatValue() != nullptr; // The remaining tests are all recursive, so bail out if we hit the limit. if (Depth++ == MaxDepth) return false; // If both operands of a binop are splats, the result is a splat. Value *X, *Y, *Z; if (match(V, m_BinOp(m_Value(X), m_Value(Y)))) return isSplatValue(X, Depth) && isSplatValue(Y, Depth); // If all operands of a select are splats, the result is a splat. if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z)))) return isSplatValue(X, Depth) && isSplatValue(Y, Depth) && isSplatValue(Z, Depth); // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops). return false; } MapVector llvm::computeMinimumValueSizes(ArrayRef Blocks, DemandedBits &DB, const TargetTransformInfo *TTI) { // DemandedBits will give us every value's live-out bits. But we want // to ensure no extra casts would need to be inserted, so every DAG // of connected values must have the same minimum bitwidth. EquivalenceClasses ECs; SmallVector Worklist; SmallPtrSet Roots; SmallPtrSet Visited; DenseMap DBits; SmallPtrSet InstructionSet; MapVector MinBWs; // Determine the roots. We work bottom-up, from truncs or icmps. bool SeenExtFromIllegalType = false; for (auto *BB : Blocks) for (auto &I : *BB) { InstructionSet.insert(&I); if (TTI && (isa(&I) || isa(&I)) && !TTI->isTypeLegal(I.getOperand(0)->getType())) SeenExtFromIllegalType = true; // Only deal with non-vector integers up to 64-bits wide. if ((isa(&I) || isa(&I)) && !I.getType()->isVectorTy() && I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { // Don't make work for ourselves. If we know the loaded type is legal, // don't add it to the worklist. if (TTI && isa(&I) && TTI->isTypeLegal(I.getType())) continue; Worklist.push_back(&I); Roots.insert(&I); } } // Early exit. if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) return MinBWs; // Now proceed breadth-first, unioning values together. while (!Worklist.empty()) { Value *Val = Worklist.pop_back_val(); Value *Leader = ECs.getOrInsertLeaderValue(Val); if (Visited.count(Val)) continue; Visited.insert(Val); // Non-instructions terminate a chain successfully. if (!isa(Val)) continue; Instruction *I = cast(Val); // If we encounter a type that is larger than 64 bits, we can't represent // it so bail out. if (DB.getDemandedBits(I).getBitWidth() > 64) return MapVector(); uint64_t V = DB.getDemandedBits(I).getZExtValue(); DBits[Leader] |= V; DBits[I] = V; // Casts, loads and instructions outside of our range terminate a chain // successfully. if (isa(I) || isa(I) || isa(I) || !InstructionSet.count(I)) continue; // Unsafe casts terminate a chain unsuccessfully. We can't do anything // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to // transform anything that relies on them. if (isa(I) || isa(I) || isa(I) || !I->getType()->isIntegerTy()) { DBits[Leader] |= ~0ULL; continue; } // We don't modify the types of PHIs. Reductions will already have been // truncated if possible, and inductions' sizes will have been chosen by // indvars. if (isa(I)) continue; if (DBits[Leader] == ~0ULL) // All bits demanded, no point continuing. continue; for (Value *O : cast(I)->operands()) { ECs.unionSets(Leader, O); Worklist.push_back(O); } } // Now we've discovered all values, walk them to see if there are // any users we didn't see. If there are, we can't optimize that // chain. for (auto &I : DBits) for (auto *U : I.first->users()) if (U->getType()->isIntegerTy() && DBits.count(U) == 0) DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { uint64_t LeaderDemandedBits = 0; for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) LeaderDemandedBits |= DBits[*MI]; uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - llvm::countLeadingZeros(LeaderDemandedBits); // Round up to a power of 2 if (!isPowerOf2_64((uint64_t)MinBW)) MinBW = NextPowerOf2(MinBW); // We don't modify the types of PHIs. Reductions will already have been // truncated if possible, and inductions' sizes will have been chosen by // indvars. // If we are required to shrink a PHI, abandon this entire equivalence class. bool Abort = false; for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) if (isa(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { Abort = true; break; } if (Abort) continue; for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { if (!isa(*MI)) continue; Type *Ty = (*MI)->getType(); if (Roots.count(*MI)) Ty = cast(*MI)->getOperand(0)->getType(); if (MinBW < Ty->getScalarSizeInBits()) MinBWs[cast(*MI)] = MinBW; } } return MinBWs; } /// Add all access groups in @p AccGroups to @p List. template static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { // Interpret an access group as a list containing itself. if (AccGroups->getNumOperands() == 0) { assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); List.insert(AccGroups); return; } for (auto &AccGroupListOp : AccGroups->operands()) { auto *Item = cast(AccGroupListOp.get()); assert(isValidAsAccessGroup(Item) && "List item must be an access group"); List.insert(Item); } } MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { if (!AccGroups1) return AccGroups2; if (!AccGroups2) return AccGroups1; if (AccGroups1 == AccGroups2) return AccGroups1; SmallSetVector Union; addToAccessGroupList(Union, AccGroups1); addToAccessGroupList(Union, AccGroups2); if (Union.size() == 0) return nullptr; if (Union.size() == 1) return cast(Union.front()); LLVMContext &Ctx = AccGroups1->getContext(); return MDNode::get(Ctx, Union.getArrayRef()); } MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, const Instruction *Inst2) { bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); if (!MayAccessMem1 && !MayAccessMem2) return nullptr; if (!MayAccessMem1) return Inst2->getMetadata(LLVMContext::MD_access_group); if (!MayAccessMem2) return Inst1->getMetadata(LLVMContext::MD_access_group); MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); if (!MD1 || !MD2) return nullptr; if (MD1 == MD2) return MD1; // Use set for scalable 'contains' check. SmallPtrSet AccGroupSet2; addToAccessGroupList(AccGroupSet2, MD2); SmallVector Intersection; if (MD1->getNumOperands() == 0) { assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); if (AccGroupSet2.count(MD1)) Intersection.push_back(MD1); } else { for (const MDOperand &Node : MD1->operands()) { auto *Item = cast(Node.get()); assert(isValidAsAccessGroup(Item) && "List item must be an access group"); if (AccGroupSet2.count(Item)) Intersection.push_back(Item); } } if (Intersection.size() == 0) return nullptr; if (Intersection.size() == 1) return cast(Intersection.front()); LLVMContext &Ctx = Inst1->getContext(); return MDNode::get(Ctx, Intersection); } /// \returns \p I after propagating metadata from \p VL. Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef VL) { Instruction *I0 = cast(VL[0]); SmallVector, 4> Metadata; I0->getAllMetadataOtherThanDebugLoc(Metadata); for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, LLVMContext::MD_noalias, LLVMContext::MD_fpmath, LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, LLVMContext::MD_access_group}) { MDNode *MD = I0->getMetadata(Kind); for (int J = 1, E = VL.size(); MD && J != E; ++J) { const Instruction *IJ = cast(VL[J]); MDNode *IMD = IJ->getMetadata(Kind); switch (Kind) { case LLVMContext::MD_tbaa: MD = MDNode::getMostGenericTBAA(MD, IMD); break; case LLVMContext::MD_alias_scope: MD = MDNode::getMostGenericAliasScope(MD, IMD); break; case LLVMContext::MD_fpmath: MD = MDNode::getMostGenericFPMath(MD, IMD); break; case LLVMContext::MD_noalias: case LLVMContext::MD_nontemporal: case LLVMContext::MD_invariant_load: MD = MDNode::intersect(MD, IMD); break; case LLVMContext::MD_access_group: MD = intersectAccessGroups(Inst, IJ); break; default: llvm_unreachable("unhandled metadata"); } } Inst->setMetadata(Kind, MD); } return Inst; } Constant * llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, const InterleaveGroup &Group) { // All 1's means mask is not needed. if (Group.getNumMembers() == Group.getFactor()) return nullptr; // TODO: support reversed access. assert(!Group.isReverse() && "Reversed group not supported."); SmallVector Mask; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < Group.getFactor(); ++j) { unsigned HasMember = Group.getMember(j) ? 1 : 0; Mask.push_back(Builder.getInt1(HasMember)); } return ConstantVector::get(Mask); } Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, unsigned ReplicationFactor, unsigned VF) { SmallVector MaskVec; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < ReplicationFactor; j++) MaskVec.push_back(Builder.getInt32(i)); return ConstantVector::get(MaskVec); } Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, unsigned NumVecs) { SmallVector Mask; for (unsigned i = 0; i < VF; i++) for (unsigned j = 0; j < NumVecs; j++) Mask.push_back(Builder.getInt32(j * VF + i)); return ConstantVector::get(Mask); } Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, unsigned Stride, unsigned VF) { SmallVector Mask; for (unsigned i = 0; i < VF; i++) Mask.push_back(Builder.getInt32(Start + i * Stride)); return ConstantVector::get(Mask); } Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, unsigned NumInts, unsigned NumUndefs) { SmallVector Mask; for (unsigned i = 0; i < NumInts; i++) Mask.push_back(Builder.getInt32(Start + i)); Constant *Undef = UndefValue::get(Builder.getInt32Ty()); for (unsigned i = 0; i < NumUndefs; i++) Mask.push_back(Undef); return ConstantVector::get(Mask); } /// A helper function for concatenating vectors. This function concatenates two /// vectors having the same element type. If the second vector has fewer /// elements than the first, it is padded with undefs. static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, Value *V2) { VectorType *VecTy1 = dyn_cast(V1->getType()); VectorType *VecTy2 = dyn_cast(V2->getType()); assert(VecTy1 && VecTy2 && VecTy1->getScalarType() == VecTy2->getScalarType() && "Expect two vectors with the same element type"); unsigned NumElts1 = VecTy1->getNumElements(); unsigned NumElts2 = VecTy2->getNumElements(); assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); if (NumElts1 > NumElts2) { // Extend with UNDEFs. Constant *ExtMask = createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); } Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); return Builder.CreateShuffleVector(V1, V2, Mask); } Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef Vecs) { unsigned NumVecs = Vecs.size(); assert(NumVecs > 1 && "Should be at least two vectors"); SmallVector ResList; ResList.append(Vecs.begin(), Vecs.end()); do { SmallVector TmpList; for (unsigned i = 0; i < NumVecs - 1; i += 2) { Value *V0 = ResList[i], *V1 = ResList[i + 1]; assert((V0->getType() == V1->getType() || i == NumVecs - 2) && "Only the last vector may have a different type"); TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); } // Push the last vector if the total number of vectors is odd. if (NumVecs % 2 != 0) TmpList.push_back(ResList[NumVecs - 1]); ResList = TmpList; NumVecs = ResList.size(); } while (NumVecs > 1); return ResList[0]; } bool llvm::maskIsAllZeroOrUndef(Value *Mask) { auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; if (ConstMask->isNullValue() || isa(ConstMask)) return true; for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; ++I) { if (auto *MaskElt = ConstMask->getAggregateElement(I)) if (MaskElt->isNullValue() || isa(MaskElt)) continue; return false; } return true; } bool llvm::maskIsAllOneOrUndef(Value *Mask) { auto *ConstMask = dyn_cast(Mask); if (!ConstMask) return false; if (ConstMask->isAllOnesValue() || isa(ConstMask)) return true; for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; ++I) { if (auto *MaskElt = ConstMask->getAggregateElement(I)) if (MaskElt->isAllOnesValue() || isa(MaskElt)) continue; return false; } return true; } /// TODO: This is a lot like known bits, but for /// vectors. Is there something we can common this with? APInt llvm::possiblyDemandedEltsInMask(Value *Mask) { const unsigned VWidth = cast(Mask->getType())->getNumElements(); APInt DemandedElts = APInt::getAllOnesValue(VWidth); if (auto *CV = dyn_cast(Mask)) for (unsigned i = 0; i < VWidth; i++) if (CV->getAggregateElement(i)->isNullValue()) DemandedElts.clearBit(i); return DemandedElts; } bool InterleavedAccessInfo::isStrided(int Stride) { unsigned Factor = std::abs(Stride); return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; } void InterleavedAccessInfo::collectConstStrideAccesses( MapVector &AccessStrideInfo, const ValueToValueMap &Strides) { auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); // Since it's desired that the load/store instructions be maintained in // "program order" for the interleaved access analysis, we have to visit the // blocks in the loop in reverse postorder (i.e., in a topological order). // Such an ordering will ensure that any load/store that may be executed // before a second load/store will precede the second load/store in // AccessStrideInfo. LoopBlocksDFS DFS(TheLoop); DFS.perform(LI); for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) for (auto &I : *BB) { auto *LI = dyn_cast(&I); auto *SI = dyn_cast(&I); if (!LI && !SI) continue; Value *Ptr = getLoadStorePointerOperand(&I); // We don't check wrapping here because we don't know yet if Ptr will be // part of a full group or a group with gaps. Checking wrapping for all // pointers (even those that end up in groups with no gaps) will be overly // conservative. For full groups, wrapping should be ok since if we would // wrap around the address space we would do a memory access at nullptr // even without the transformation. The wrapping checks are therefore // deferred until after we've formed the interleaved groups. int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, /*Assume=*/true, /*ShouldCheckWrap=*/false); const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); PointerType *PtrTy = cast(Ptr->getType()); uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); // An alignment of 0 means target ABI alignment. MaybeAlign Alignment = MaybeAlign(getLoadStoreAlignment(&I)); if (!Alignment) Alignment = Align(DL.getABITypeAlignment(PtrTy->getElementType())); AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, *Alignment); } } // Analyze interleaved accesses and collect them into interleaved load and // store groups. // // When generating code for an interleaved load group, we effectively hoist all // loads in the group to the location of the first load in program order. When // generating code for an interleaved store group, we sink all stores to the // location of the last store. This code motion can change the order of load // and store instructions and may break dependences. // // The code generation strategy mentioned above ensures that we won't violate // any write-after-read (WAR) dependences. // // E.g., for the WAR dependence: a = A[i]; // (1) // A[i] = b; // (2) // // The store group of (2) is always inserted at or below (2), and the load // group of (1) is always inserted at or above (1). Thus, the instructions will // never be reordered. All other dependences are checked to ensure the // correctness of the instruction reordering. // // The algorithm visits all memory accesses in the loop in bottom-up program // order. Program order is established by traversing the blocks in the loop in // reverse postorder when collecting the accesses. // // We visit the memory accesses in bottom-up order because it can simplify the // construction of store groups in the presence of write-after-write (WAW) // dependences. // // E.g., for the WAW dependence: A[i] = a; // (1) // A[i] = b; // (2) // A[i + 1] = c; // (3) // // We will first create a store group with (3) and (2). (1) can't be added to // this group because it and (2) are dependent. However, (1) can be grouped // with other accesses that may precede it in program order. Note that a // bottom-up order does not imply that WAW dependences should not be checked. void InterleavedAccessInfo::analyzeInterleaving( bool EnablePredicatedInterleavedMemAccesses) { LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); const ValueToValueMap &Strides = LAI->getSymbolicStrides(); // Holds all accesses with a constant stride. MapVector AccessStrideInfo; collectConstStrideAccesses(AccessStrideInfo, Strides); if (AccessStrideInfo.empty()) return; // Collect the dependences in the loop. collectDependences(); // Holds all interleaved store groups temporarily. SmallSetVector *, 4> StoreGroups; // Holds all interleaved load groups temporarily. SmallSetVector *, 4> LoadGroups; // Search in bottom-up program order for pairs of accesses (A and B) that can // form interleaved load or store groups. In the algorithm below, access A // precedes access B in program order. We initialize a group for B in the // outer loop of the algorithm, and then in the inner loop, we attempt to // insert each A into B's group if: // // 1. A and B have the same stride, // 2. A and B have the same memory object size, and // 3. A belongs in B's group according to its distance from B. // // Special care is taken to ensure group formation will not break any // dependences. for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); BI != E; ++BI) { Instruction *B = BI->first; StrideDescriptor DesB = BI->second; // Initialize a group for B if it has an allowable stride. Even if we don't // create a group for B, we continue with the bottom-up algorithm to ensure // we don't break any of B's dependences. InterleaveGroup *Group = nullptr; if (isStrided(DesB.Stride) && (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { Group = getInterleaveGroup(B); if (!Group) { LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n'); Group = createInterleaveGroup(B, DesB.Stride, DesB.Alignment); } if (B->mayWriteToMemory()) StoreGroups.insert(Group); else LoadGroups.insert(Group); } for (auto AI = std::next(BI); AI != E; ++AI) { Instruction *A = AI->first; StrideDescriptor DesA = AI->second; // Our code motion strategy implies that we can't have dependences // between accesses in an interleaved group and other accesses located // between the first and last member of the group. Note that this also // means that a group can't have more than one member at a given offset. // The accesses in a group can have dependences with other accesses, but // we must ensure we don't extend the boundaries of the group such that // we encompass those dependent accesses. // // For example, assume we have the sequence of accesses shown below in a // stride-2 loop: // // (1, 2) is a group | A[i] = a; // (1) // | A[i-1] = b; // (2) | // A[i-3] = c; // (3) // A[i] = d; // (4) | (2, 4) is not a group // // Because accesses (2) and (3) are dependent, we can group (2) with (1) // but not with (4). If we did, the dependent access (3) would be within // the boundaries of the (2, 4) group. if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { // If a dependence exists and A is already in a group, we know that A // must be a store since A precedes B and WAR dependences are allowed. // Thus, A would be sunk below B. We release A's group to prevent this // illegal code motion. A will then be free to form another group with // instructions that precede it. if (isInterleaved(A)) { InterleaveGroup *StoreGroup = getInterleaveGroup(A); LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to " "dependence between " << *A << " and "<< *B << '\n'); StoreGroups.remove(StoreGroup); releaseGroup(StoreGroup); } // If a dependence exists and A is not already in a group (or it was // and we just released it), B might be hoisted above A (if B is a // load) or another store might be sunk below A (if B is a store). In // either case, we can't add additional instructions to B's group. B // will only form a group with instructions that it precedes. break; } // At this point, we've checked for illegal code motion. If either A or B // isn't strided, there's nothing left to do. if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) continue; // Ignore A if it's already in a group or isn't the same kind of memory // operation as B. // Note that mayReadFromMemory() isn't mutually exclusive to // mayWriteToMemory in the case of atomic loads. We shouldn't see those // here, canVectorizeMemory() should have returned false - except for the // case we asked for optimization remarks. if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory()) || (A->mayWriteToMemory() != B->mayWriteToMemory())) continue; // Check rules 1 and 2. Ignore A if its stride or size is different from // that of B. if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) continue; // Ignore A if the memory object of A and B don't belong to the same // address space if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) continue; // Calculate the distance from A to B. const SCEVConstant *DistToB = dyn_cast( PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); if (!DistToB) continue; int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); // Check rule 3. Ignore A if its distance to B is not a multiple of the // size. if (DistanceToB % static_cast(DesB.Size)) continue; // All members of a predicated interleave-group must have the same predicate, // and currently must reside in the same BB. BasicBlock *BlockA = A->getParent(); BasicBlock *BlockB = B->getParent(); if ((isPredicated(BlockA) || isPredicated(BlockB)) && (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) continue; // The index of A is the index of B plus A's distance to B in multiples // of the size. int IndexA = Group->getIndex(B) + DistanceToB / static_cast(DesB.Size); // Try to insert A into B's group. if (Group->insertMember(A, IndexA, DesA.Alignment)) { LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' << " into the interleave group with" << *B << '\n'); InterleaveGroupMap[A] = Group; // Set the first load in program order as the insert position. if (A->mayReadFromMemory()) Group->setInsertPos(A); } } // Iteration over A accesses. } // Iteration over B accesses. // Remove interleaved store groups with gaps. for (auto *Group : StoreGroups) if (Group->getNumMembers() != Group->getFactor()) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved store group due " "to gaps.\n"); releaseGroup(Group); } // Remove interleaved groups with gaps (currently only loads) whose memory // accesses may wrap around. We have to revisit the getPtrStride analysis, // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does // not check wrapping (see documentation there). // FORNOW we use Assume=false; // TODO: Change to Assume=true but making sure we don't exceed the threshold // of runtime SCEV assumptions checks (thereby potentially failing to // vectorize altogether). // Additional optional optimizations: // TODO: If we are peeling the loop and we know that the first pointer doesn't // wrap then we can deduce that all pointers in the group don't wrap. // This means that we can forcefully peel the loop in order to only have to // check the first pointer for no-wrap. When we'll change to use Assume=true // we'll only need at most one runtime check per interleaved group. for (auto *Group : LoadGroups) { // Case 1: A full group. Can Skip the checks; For full groups, if the wide // load would wrap around the address space we would do a memory access at // nullptr even without the transformation. if (Group->getNumMembers() == Group->getFactor()) continue; // Case 2: If first and last members of the group don't wrap this implies // that all the pointers in the group don't wrap. // So we check only group member 0 (which is always guaranteed to exist), // and group member Factor - 1; If the latter doesn't exist we rely on // peeling (if it is a non-reversed accsess -- see Case 3). Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, /*ShouldCheckWrap=*/true)) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved group due to " "first group member potentially pointer-wrapping.\n"); releaseGroup(Group); continue; } Instruction *LastMember = Group->getMember(Group->getFactor() - 1); if (LastMember) { Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, /*ShouldCheckWrap=*/true)) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved group due to " "last group member potentially pointer-wrapping.\n"); releaseGroup(Group); } } else { // Case 3: A non-reversed interleaved load group with gaps: We need // to execute at least one scalar epilogue iteration. This will ensure // we don't speculatively access memory out-of-bounds. We only need // to look for a member at index factor - 1, since every group must have // a member at index zero. if (Group->isReverse()) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved group due to " "a reverse access with gaps.\n"); releaseGroup(Group); continue; } LLVM_DEBUG( dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); RequiresScalarEpilogue = true; } } } void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { // If no group had triggered the requirement to create an epilogue loop, // there is nothing to do. if (!requiresScalarEpilogue()) return; // Avoid releasing a Group twice. SmallPtrSet *, 4> DelSet; for (auto &I : InterleaveGroupMap) { InterleaveGroup *Group = I.second; if (Group->requiresScalarEpilogue()) DelSet.insert(Group); } for (auto *Ptr : DelSet) { LLVM_DEBUG( dbgs() << "LV: Invalidate candidate interleaved group due to gaps that " "require a scalar epilogue (not allowed under optsize) and cannot " "be masked (not enabled). \n"); releaseGroup(Ptr); } RequiresScalarEpilogue = false; } template void InterleaveGroup::addMetadata(InstT *NewInst) const { llvm_unreachable("addMetadata can only be used for Instruction"); } namespace llvm { template <> void InterleaveGroup::addMetadata(Instruction *NewInst) const { SmallVector VL; std::transform(Members.begin(), Members.end(), std::back_inserter(VL), [](std::pair p) { return p.second; }); propagateMetadata(NewInst, VL); } } void VFABI::getVectorVariantNames( const CallInst &CI, SmallVectorImpl &VariantMappings) { const StringRef S = CI.getAttribute(AttributeList::FunctionIndex, VFABI::MappingsAttrName) .getValueAsString(); if (S.empty()) return; SmallVector ListAttr; S.split(ListAttr, ","); for (auto &S : SetVector(ListAttr.begin(), ListAttr.end())) { #ifndef NDEBUG Optional Info = VFABI::tryDemangleForVFABI(S); assert(Info.hasValue() && "Invalid name for a VFABI variant."); assert(CI.getModule()->getFunction(Info.getValue().VectorName) && "Vector function is missing."); #endif VariantMappings.push_back(S); } } bool VFShape::hasValidParameterList() const { for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams; ++Pos) { assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list."); switch (Parameters[Pos].ParamKind) { default: // Nothing to check. break; case VFParamKind::OMP_Linear: case VFParamKind::OMP_LinearRef: case VFParamKind::OMP_LinearVal: case VFParamKind::OMP_LinearUVal: // Compile time linear steps must be non-zero. if (Parameters[Pos].LinearStepOrPos == 0) return false; break; case VFParamKind::OMP_LinearPos: case VFParamKind::OMP_LinearRefPos: case VFParamKind::OMP_LinearValPos: case VFParamKind::OMP_LinearUValPos: // The runtime linear step must be referring to some other // parameters in the signature. if (Parameters[Pos].LinearStepOrPos >= int(NumParams)) return false; // The linear step parameter must be marked as uniform. if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind != VFParamKind::OMP_Uniform) return false; // The linear step parameter can't point at itself. if (Parameters[Pos].LinearStepOrPos == int(Pos)) return false; break; case VFParamKind::GlobalPredicate: // The global predicate must be the unique. Can be placed anywhere in the // signature. for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos) if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate) return false; break; } } return true; }