//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This file implements the LegalizerHelper class to legalize /// individual instructions and the LegalizeMachineIR wrapper pass for the /// primary legalization. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/CallLowering.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "legalizer" using namespace llvm; using namespace LegalizeActions; /// Try to break down \p OrigTy into \p NarrowTy sized pieces. /// /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, /// with any leftover piece as type \p LeftoverTy /// /// Returns -1 in the first element of the pair if the breakdown is not /// satisfiable. static std::pair getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { assert(!LeftoverTy.isValid() && "this is an out argument"); unsigned Size = OrigTy.getSizeInBits(); unsigned NarrowSize = NarrowTy.getSizeInBits(); unsigned NumParts = Size / NarrowSize; unsigned LeftoverSize = Size - NumParts * NarrowSize; assert(Size > NarrowSize); if (LeftoverSize == 0) return {NumParts, 0}; if (NarrowTy.isVector()) { unsigned EltSize = OrigTy.getScalarSizeInBits(); if (LeftoverSize % EltSize != 0) return {-1, -1}; LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); } else { LeftoverTy = LLT::scalar(LeftoverSize); } int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); return std::make_pair(NumParts, NumLeftover); } LegalizerHelper::LegalizerHelper(MachineFunction &MF, GISelChangeObserver &Observer, MachineIRBuilder &Builder) : MIRBuilder(Builder), MRI(MF.getRegInfo()), LI(*MF.getSubtarget().getLegalizerInfo()), Observer(Observer) { MIRBuilder.setMF(MF); MIRBuilder.setChangeObserver(Observer); } LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, GISelChangeObserver &Observer, MachineIRBuilder &B) : MIRBuilder(B), MRI(MF.getRegInfo()), LI(LI), Observer(Observer) { MIRBuilder.setMF(MF); MIRBuilder.setChangeObserver(Observer); } LegalizerHelper::LegalizeResult LegalizerHelper::legalizeInstrStep(MachineInstr &MI) { LLVM_DEBUG(dbgs() << "Legalizing: "; MI.print(dbgs())); if (MI.getOpcode() == TargetOpcode::G_INTRINSIC || MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS) return LI.legalizeIntrinsic(MI, MRI, MIRBuilder) ? Legalized : UnableToLegalize; auto Step = LI.getAction(MI, MRI); switch (Step.Action) { case Legal: LLVM_DEBUG(dbgs() << ".. Already legal\n"); return AlreadyLegal; case Libcall: LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); return libcall(MI); case NarrowScalar: LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); return narrowScalar(MI, Step.TypeIdx, Step.NewType); case WidenScalar: LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); return widenScalar(MI, Step.TypeIdx, Step.NewType); case Lower: LLVM_DEBUG(dbgs() << ".. Lower\n"); return lower(MI, Step.TypeIdx, Step.NewType); case FewerElements: LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); case MoreElements: LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); return moreElementsVector(MI, Step.TypeIdx, Step.NewType); case Custom: LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); return LI.legalizeCustom(MI, MRI, MIRBuilder, Observer) ? Legalized : UnableToLegalize; default: LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); return UnableToLegalize; } } void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, SmallVectorImpl &VRegs) { for (int i = 0; i < NumParts; ++i) VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); MIRBuilder.buildUnmerge(VRegs, Reg); } bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, LLT MainTy, LLT &LeftoverTy, SmallVectorImpl &VRegs, SmallVectorImpl &LeftoverRegs) { assert(!LeftoverTy.isValid() && "this is an out argument"); unsigned RegSize = RegTy.getSizeInBits(); unsigned MainSize = MainTy.getSizeInBits(); unsigned NumParts = RegSize / MainSize; unsigned LeftoverSize = RegSize - NumParts * MainSize; // Use an unmerge when possible. if (LeftoverSize == 0) { for (unsigned I = 0; I < NumParts; ++I) VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); MIRBuilder.buildUnmerge(VRegs, Reg); return true; } if (MainTy.isVector()) { unsigned EltSize = MainTy.getScalarSizeInBits(); if (LeftoverSize % EltSize != 0) return false; LeftoverTy = LLT::scalarOrVector(LeftoverSize / EltSize, EltSize); } else { LeftoverTy = LLT::scalar(LeftoverSize); } // For irregular sizes, extract the individual parts. for (unsigned I = 0; I != NumParts; ++I) { Register NewReg = MRI.createGenericVirtualRegister(MainTy); VRegs.push_back(NewReg); MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); } for (unsigned Offset = MainSize * NumParts; Offset < RegSize; Offset += LeftoverSize) { Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); LeftoverRegs.push_back(NewReg); MIRBuilder.buildExtract(NewReg, Reg, Offset); } return true; } void LegalizerHelper::insertParts(Register DstReg, LLT ResultTy, LLT PartTy, ArrayRef PartRegs, LLT LeftoverTy, ArrayRef LeftoverRegs) { if (!LeftoverTy.isValid()) { assert(LeftoverRegs.empty()); if (!ResultTy.isVector()) { MIRBuilder.buildMerge(DstReg, PartRegs); return; } if (PartTy.isVector()) MIRBuilder.buildConcatVectors(DstReg, PartRegs); else MIRBuilder.buildBuildVector(DstReg, PartRegs); return; } unsigned PartSize = PartTy.getSizeInBits(); unsigned LeftoverPartSize = LeftoverTy.getSizeInBits(); Register CurResultReg = MRI.createGenericVirtualRegister(ResultTy); MIRBuilder.buildUndef(CurResultReg); unsigned Offset = 0; for (Register PartReg : PartRegs) { Register NewResultReg = MRI.createGenericVirtualRegister(ResultTy); MIRBuilder.buildInsert(NewResultReg, CurResultReg, PartReg, Offset); CurResultReg = NewResultReg; Offset += PartSize; } for (unsigned I = 0, E = LeftoverRegs.size(); I != E; ++I) { // Use the original output register for the final insert to avoid a copy. Register NewResultReg = (I + 1 == E) ? DstReg : MRI.createGenericVirtualRegister(ResultTy); MIRBuilder.buildInsert(NewResultReg, CurResultReg, LeftoverRegs[I], Offset); CurResultReg = NewResultReg; Offset += LeftoverPartSize; } } static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { switch (Opcode) { case TargetOpcode::G_SDIV: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::SDIV_I64 : RTLIB::SDIV_I32; case TargetOpcode::G_UDIV: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::UDIV_I64 : RTLIB::UDIV_I32; case TargetOpcode::G_SREM: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::SREM_I64 : RTLIB::SREM_I32; case TargetOpcode::G_UREM: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::UREM_I64 : RTLIB::UREM_I32; case TargetOpcode::G_CTLZ_ZERO_UNDEF: assert(Size == 32 && "Unsupported size"); return RTLIB::CTLZ_I32; case TargetOpcode::G_FADD: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::ADD_F64 : RTLIB::ADD_F32; case TargetOpcode::G_FSUB: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::SUB_F64 : RTLIB::SUB_F32; case TargetOpcode::G_FMUL: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::MUL_F64 : RTLIB::MUL_F32; case TargetOpcode::G_FDIV: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::DIV_F64 : RTLIB::DIV_F32; case TargetOpcode::G_FEXP: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::EXP_F64 : RTLIB::EXP_F32; case TargetOpcode::G_FEXP2: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::EXP2_F64 : RTLIB::EXP2_F32; case TargetOpcode::G_FREM: return Size == 64 ? RTLIB::REM_F64 : RTLIB::REM_F32; case TargetOpcode::G_FPOW: return Size == 64 ? RTLIB::POW_F64 : RTLIB::POW_F32; case TargetOpcode::G_FMA: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::FMA_F64 : RTLIB::FMA_F32; case TargetOpcode::G_FSIN: assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); return Size == 128 ? RTLIB::SIN_F128 : Size == 64 ? RTLIB::SIN_F64 : RTLIB::SIN_F32; case TargetOpcode::G_FCOS: assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); return Size == 128 ? RTLIB::COS_F128 : Size == 64 ? RTLIB::COS_F64 : RTLIB::COS_F32; case TargetOpcode::G_FLOG10: assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); return Size == 128 ? RTLIB::LOG10_F128 : Size == 64 ? RTLIB::LOG10_F64 : RTLIB::LOG10_F32; case TargetOpcode::G_FLOG: assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); return Size == 128 ? RTLIB::LOG_F128 : Size == 64 ? RTLIB::LOG_F64 : RTLIB::LOG_F32; case TargetOpcode::G_FLOG2: assert((Size == 32 || Size == 64 || Size == 128) && "Unsupported size"); return Size == 128 ? RTLIB::LOG2_F128 : Size == 64 ? RTLIB::LOG2_F64 : RTLIB::LOG2_F32; case TargetOpcode::G_FCEIL: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::CEIL_F64 : RTLIB::CEIL_F32; case TargetOpcode::G_FFLOOR: assert((Size == 32 || Size == 64) && "Unsupported size"); return Size == 64 ? RTLIB::FLOOR_F64 : RTLIB::FLOOR_F32; } llvm_unreachable("Unknown libcall function"); } LegalizerHelper::LegalizeResult llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, const CallLowering::ArgInfo &Result, ArrayRef Args) { auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); const char *Name = TLI.getLibcallName(Libcall); MIRBuilder.getMF().getFrameInfo().setHasCalls(true); if (!CLI.lowerCall(MIRBuilder, TLI.getLibcallCallingConv(Libcall), MachineOperand::CreateES(Name), Result, Args)) return LegalizerHelper::UnableToLegalize; return LegalizerHelper::Legalized; } // Useful for libcalls where all operands have the same type. static LegalizerHelper::LegalizeResult simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, Type *OpType) { auto Libcall = getRTLibDesc(MI.getOpcode(), Size); SmallVector Args; for (unsigned i = 1; i < MI.getNumOperands(); i++) Args.push_back({MI.getOperand(i).getReg(), OpType}); return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), OpType}, Args); } static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, Type *FromType) { auto ToMVT = MVT::getVT(ToType); auto FromMVT = MVT::getVT(FromType); switch (Opcode) { case TargetOpcode::G_FPEXT: return RTLIB::getFPEXT(FromMVT, ToMVT); case TargetOpcode::G_FPTRUNC: return RTLIB::getFPROUND(FromMVT, ToMVT); case TargetOpcode::G_FPTOSI: return RTLIB::getFPTOSINT(FromMVT, ToMVT); case TargetOpcode::G_FPTOUI: return RTLIB::getFPTOUINT(FromMVT, ToMVT); case TargetOpcode::G_SITOFP: return RTLIB::getSINTTOFP(FromMVT, ToMVT); case TargetOpcode::G_UITOFP: return RTLIB::getUINTTOFP(FromMVT, ToMVT); } llvm_unreachable("Unsupported libcall function"); } static LegalizerHelper::LegalizeResult conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, Type *FromType) { RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); return createLibcall(MIRBuilder, Libcall, {MI.getOperand(0).getReg(), ToType}, {{MI.getOperand(1).getReg(), FromType}}); } LegalizerHelper::LegalizeResult LegalizerHelper::libcall(MachineInstr &MI) { LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); unsigned Size = LLTy.getSizeInBits(); auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_SDIV: case TargetOpcode::G_UDIV: case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: case TargetOpcode::G_CTLZ_ZERO_UNDEF: { Type *HLTy = IntegerType::get(Ctx, Size); auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FADD: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMUL: case TargetOpcode::G_FDIV: case TargetOpcode::G_FMA: case TargetOpcode::G_FPOW: case TargetOpcode::G_FREM: case TargetOpcode::G_FCOS: case TargetOpcode::G_FSIN: case TargetOpcode::G_FLOG10: case TargetOpcode::G_FLOG: case TargetOpcode::G_FLOG2: case TargetOpcode::G_FEXP: case TargetOpcode::G_FEXP2: case TargetOpcode::G_FCEIL: case TargetOpcode::G_FFLOOR: { if (Size > 64) { LLVM_DEBUG(dbgs() << "Size " << Size << " too large to legalize.\n"); return UnableToLegalize; } Type *HLTy = Size == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx); auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPEXT: { // FIXME: Support other floating point types (half, fp128 etc) unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if (ToSize != 64 || FromSize != 32) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, Type::getDoubleTy(Ctx), Type::getFloatTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPTRUNC: { // FIXME: Support other floating point types (half, fp128 etc) unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if (ToSize != 32 || FromSize != 64) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, Type::getFloatTy(Ctx), Type::getDoubleTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: { // FIXME: Support other types unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); if (Status != Legalized) return Status; break; } case TargetOpcode::G_SITOFP: case TargetOpcode::G_UITOFP: { // FIXME: Support other types unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) return UnableToLegalize; LegalizeResult Status = conversionLibcall( MI, MIRBuilder, ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); if (Status != Legalized) return Status; break; } } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { MIRBuilder.setInstr(MI); uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); uint64_t NarrowSize = NarrowTy.getSizeInBits(); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_IMPLICIT_DEF: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; SmallVector DstRegs; for (int i = 0; i < NumParts; ++i) DstRegs.push_back( MIRBuilder.buildUndef(NarrowTy)->getOperand(0).getReg()); Register DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CONSTANT: { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); const APInt &Val = MI.getOperand(1).getCImm()->getValue(); unsigned TotalSize = Ty.getSizeInBits(); unsigned NarrowSize = NarrowTy.getSizeInBits(); int NumParts = TotalSize / NarrowSize; SmallVector PartRegs; for (int I = 0; I != NumParts; ++I) { unsigned Offset = I * NarrowSize; auto K = MIRBuilder.buildConstant(NarrowTy, Val.lshr(Offset).trunc(NarrowSize)); PartRegs.push_back(K.getReg(0)); } LLT LeftoverTy; unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; SmallVector LeftoverRegs; if (LeftoverBits != 0) { LeftoverTy = LLT::scalar(LeftoverBits); auto K = MIRBuilder.buildConstant( LeftoverTy, Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); LeftoverRegs.push_back(K.getReg(0)); } insertParts(MI.getOperand(0).getReg(), Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_ADD: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; // Expand in terms of carry-setting/consuming G_ADDE instructions. int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); SmallVector Src1Regs, Src2Regs, DstRegs; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); Register CarryIn = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildConstant(CarryIn, 0); for (int i = 0; i < NumParts; ++i) { Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildUAdde(DstReg, CarryOut, Src1Regs[i], Src2Regs[i], CarryIn); DstRegs.push_back(DstReg); CarryIn = CarryOut; } Register DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_SUB: { // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowTy.getSizeInBits(); SmallVector Src1Regs, Src2Regs, DstRegs; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src1Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src2Regs); Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); Register BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildInstr(TargetOpcode::G_USUBO, {DstReg, BorrowOut}, {Src1Regs[0], Src2Regs[0]}); DstRegs.push_back(DstReg); Register BorrowIn = BorrowOut; for (int i = 1; i < NumParts; ++i) { DstReg = MRI.createGenericVirtualRegister(NarrowTy); BorrowOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildInstr(TargetOpcode::G_USUBE, {DstReg, BorrowOut}, {Src1Regs[i], Src2Regs[i], BorrowIn}); DstRegs.push_back(DstReg); BorrowIn = BorrowOut; } MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_MUL: case TargetOpcode::G_UMULH: return narrowScalarMul(MI, NarrowTy); case TargetOpcode::G_EXTRACT: return narrowScalarExtract(MI, TypeIdx, NarrowTy); case TargetOpcode::G_INSERT: return narrowScalarInsert(MI, TypeIdx, NarrowTy); case TargetOpcode::G_LOAD: { const auto &MMO = **MI.memoperands_begin(); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; if (8 * MMO.getSize() != DstTy.getSizeInBits()) { Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); auto &MMO = **MI.memoperands_begin(); MIRBuilder.buildLoad(TmpReg, MI.getOperand(1).getReg(), MMO); MIRBuilder.buildAnyExt(DstReg, TmpReg); MI.eraseFromParent(); return Legalized; } return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); } case TargetOpcode::G_ZEXTLOAD: case TargetOpcode::G_SEXTLOAD: { bool ZExt = MI.getOpcode() == TargetOpcode::G_ZEXTLOAD; Register DstReg = MI.getOperand(0).getReg(); Register PtrReg = MI.getOperand(1).getReg(); Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); auto &MMO = **MI.memoperands_begin(); if (MMO.getSizeInBits() == NarrowSize) { MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); } else { unsigned ExtLoad = ZExt ? TargetOpcode::G_ZEXTLOAD : TargetOpcode::G_SEXTLOAD; MIRBuilder.buildInstr(ExtLoad) .addDef(TmpReg) .addUse(PtrReg) .addMemOperand(&MMO); } if (ZExt) MIRBuilder.buildZExt(DstReg, TmpReg); else MIRBuilder.buildSExt(DstReg, TmpReg); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_STORE: { const auto &MMO = **MI.memoperands_begin(); Register SrcReg = MI.getOperand(0).getReg(); LLT SrcTy = MRI.getType(SrcReg); if (SrcTy.isVector()) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; if (SrcTy.isVector() && LeftoverBits != 0) return UnableToLegalize; if (8 * MMO.getSize() != SrcTy.getSizeInBits()) { Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); auto &MMO = **MI.memoperands_begin(); MIRBuilder.buildTrunc(TmpReg, SrcReg); MIRBuilder.buildStore(TmpReg, MI.getOperand(1).getReg(), MMO); MI.eraseFromParent(); return Legalized; } return reduceLoadStoreWidth(MI, 0, NarrowTy); } case TargetOpcode::G_SELECT: return narrowScalarSelect(MI, TypeIdx, NarrowTy); case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: { // Legalize bitwise operation: // A = BinOp B, C // into: // B1, ..., BN = G_UNMERGE_VALUES B // C1, ..., CN = G_UNMERGE_VALUES C // A1 = BinOp B1, C2 // ... // AN = BinOp BN, CN // A = G_MERGE_VALUES A1, ..., AN return narrowScalarBasic(MI, TypeIdx, NarrowTy); } case TargetOpcode::G_SHL: case TargetOpcode::G_LSHR: case TargetOpcode::G_ASHR: return narrowScalarShift(MI, TypeIdx, NarrowTy); case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTPOP: if (TypeIdx != 0) return UnableToLegalize; // TODO Observer.changingInstr(MI); narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_INTTOPTR: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarSrc(MI, NarrowTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PTRTOINT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PHI: { unsigned NumParts = SizeOp0 / NarrowSize; SmallVector DstRegs; SmallVector, 2> SrcRegs; DstRegs.resize(NumParts); SrcRegs.resize(MI.getNumOperands() / 2); Observer.changingInstr(MI); for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, SrcRegs[i / 2]); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, MI); for (unsigned i = 0; i < NumParts; ++i) { DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); MachineInstrBuilder MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); for (unsigned j = 1; j < MI.getNumOperands(); j += 2) MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); } MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); MIRBuilder.buildMerge(MI.getOperand(0).getReg(), DstRegs); Observer.changedInstr(MI); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: case TargetOpcode::G_INSERT_VECTOR_ELT: { if (TypeIdx != 2) return UnableToLegalize; int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; Observer.changingInstr(MI); narrowScalarSrc(MI, NarrowTy, OpIdx); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_ICMP: { uint64_t SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); if (NarrowSize * 2 != SrcSize) return UnableToLegalize; Observer.changingInstr(MI); Register LHSL = MRI.createGenericVirtualRegister(NarrowTy); Register LHSH = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildUnmerge({LHSL, LHSH}, MI.getOperand(2).getReg()); Register RHSL = MRI.createGenericVirtualRegister(NarrowTy); Register RHSH = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildUnmerge({RHSL, RHSH}, MI.getOperand(3).getReg()); CmpInst::Predicate Pred = static_cast(MI.getOperand(1).getPredicate()); if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { MachineInstrBuilder XorL = MIRBuilder.buildXor(NarrowTy, LHSL, RHSL); MachineInstrBuilder XorH = MIRBuilder.buildXor(NarrowTy, LHSH, RHSH); MachineInstrBuilder Or = MIRBuilder.buildOr(NarrowTy, XorL, XorH); MachineInstrBuilder Zero = MIRBuilder.buildConstant(NarrowTy, 0); MIRBuilder.buildICmp(Pred, MI.getOperand(0).getReg(), Or, Zero); } else { const LLT s1 = LLT::scalar(1); MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, s1, LHSH, RHSH); MachineInstrBuilder CmpHEQ = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, s1, LHSH, RHSH); MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( ICmpInst::getUnsignedPredicate(Pred), s1, LHSL, RHSL); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), CmpHEQ, CmpLU, CmpH); } Observer.changedInstr(MI); MI.eraseFromParent(); return Legalized; } } } void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned ExtOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO.getReg()}); MO.setReg(ExtB->getOperand(0).getReg()); } void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); auto ExtB = MIRBuilder.buildInstr(TargetOpcode::G_TRUNC, {NarrowTy}, {MO.getReg()}); MO.setReg(ExtB->getOperand(0).getReg()); } void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx, unsigned TruncOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); Register DstExt = MRI.createGenericVirtualRegister(WideTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildInstr(TruncOpcode, {MO.getReg()}, {DstExt}); MO.setReg(DstExt); } void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, unsigned OpIdx, unsigned ExtOpcode) { MachineOperand &MO = MI.getOperand(OpIdx); Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildInstr(ExtOpcode, {MO.getReg()}, {DstTrunc}); MO.setReg(DstTrunc); } void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); Register DstExt = MRI.createGenericVirtualRegister(WideTy); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); MIRBuilder.buildExtract(MO.getReg(), DstExt, 0); MO.setReg(DstExt); } void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, unsigned OpIdx) { MachineOperand &MO = MI.getOperand(OpIdx); LLT OldTy = MRI.getType(MO.getReg()); unsigned OldElts = OldTy.getNumElements(); unsigned NewElts = MoreTy.getNumElements(); unsigned NumParts = NewElts / OldElts; // Use concat_vectors if the result is a multiple of the number of elements. if (NumParts * OldElts == NewElts) { SmallVector Parts; Parts.push_back(MO.getReg()); Register ImpDef = MIRBuilder.buildUndef(OldTy).getReg(0); for (unsigned I = 1; I != NumParts; ++I) Parts.push_back(ImpDef); auto Concat = MIRBuilder.buildConcatVectors(MoreTy, Parts); MO.setReg(Concat.getReg(0)); return; } Register MoreReg = MRI.createGenericVirtualRegister(MoreTy); Register ImpDef = MIRBuilder.buildUndef(MoreTy).getReg(0); MIRBuilder.buildInsert(MoreReg, ImpDef, MO.getReg(), 0); MO.setReg(MoreReg); } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx != 1) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; Register Src1 = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(Src1); const int DstSize = DstTy.getSizeInBits(); const int SrcSize = SrcTy.getSizeInBits(); const int WideSize = WideTy.getSizeInBits(); const int NumMerge = (DstSize + WideSize - 1) / WideSize; unsigned NumOps = MI.getNumOperands(); unsigned NumSrc = MI.getNumOperands() - 1; unsigned PartSize = DstTy.getSizeInBits() / NumSrc; if (WideSize >= DstSize) { // Directly pack the bits in the target type. Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0); for (unsigned I = 2; I != NumOps; ++I) { const unsigned Offset = (I - 1) * PartSize; Register SrcReg = MI.getOperand(I).getReg(); assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); Register NextResult = I + 1 == NumOps && WideSize == DstSize ? DstReg : MRI.createGenericVirtualRegister(WideTy); auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); MIRBuilder.buildOr(NextResult, ResultReg, Shl); ResultReg = NextResult; } if (WideSize > DstSize) MIRBuilder.buildTrunc(DstReg, ResultReg); MI.eraseFromParent(); return Legalized; } // Unmerge the original values to the GCD type, and recombine to the next // multiple greater than the original type. // // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 // %12:_(s12) = G_MERGE_VALUES %10, %11 // // Padding with undef if necessary: // // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 // %7:_(s2) = G_IMPLICIT_DEF // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 // %10:_(s12) = G_MERGE_VALUES %8, %9 const int GCD = greatestCommonDivisor(SrcSize, WideSize); LLT GCDTy = LLT::scalar(GCD); SmallVector Parts; SmallVector NewMergeRegs; SmallVector Unmerges; LLT WideDstTy = LLT::scalar(NumMerge * WideSize); // Decompose the original operands if they don't evenly divide. for (int I = 1, E = MI.getNumOperands(); I != E; ++I) { Register SrcReg = MI.getOperand(I).getReg(); if (GCD == SrcSize) { Unmerges.push_back(SrcReg); } else { auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) Unmerges.push_back(Unmerge.getReg(J)); } } // Pad with undef to the next size that is a multiple of the requested size. if (static_cast(Unmerges.size()) != NumMerge * WideSize) { Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) Unmerges.push_back(UndefReg); } const int PartsPerGCD = WideSize / GCD; // Build merges of each piece. ArrayRef Slicer(Unmerges); for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD)); NewMergeRegs.push_back(Merge.getReg(0)); } // A truncate may be necessary if the requested type doesn't evenly divide the // original result type. if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { MIRBuilder.buildMerge(DstReg, NewMergeRegs); } else { auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs); MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx != 0) return UnableToLegalize; unsigned NumDst = MI.getNumOperands() - 1; Register SrcReg = MI.getOperand(NumDst).getReg(); LLT SrcTy = MRI.getType(SrcReg); if (!SrcTy.isScalar()) return UnableToLegalize; Register Dst0Reg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst0Reg); if (!DstTy.isScalar()) return UnableToLegalize; unsigned NewSrcSize = NumDst * WideTy.getSizeInBits(); LLT NewSrcTy = LLT::scalar(NewSrcSize); unsigned SizeDiff = WideTy.getSizeInBits() - DstTy.getSizeInBits(); auto WideSrc = MIRBuilder.buildZExt(NewSrcTy, SrcReg); for (unsigned I = 1; I != NumDst; ++I) { auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, SizeDiff * I); auto Shl = MIRBuilder.buildShl(NewSrcTy, WideSrc, ShiftAmt); WideSrc = MIRBuilder.buildOr(NewSrcTy, WideSrc, Shl); } Observer.changingInstr(MI); MI.getOperand(NumDst).setReg(WideSrc->getOperand(0).getReg()); for (unsigned I = 0; I != NumDst; ++I) widenScalarDst(MI, WideTy, I); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT SrcTy = MRI.getType(SrcReg); LLT DstTy = MRI.getType(DstReg); unsigned Offset = MI.getOperand(2).getImm(); if (TypeIdx == 0) { if (SrcTy.isVector() || DstTy.isVector()) return UnableToLegalize; SrcOp Src(SrcReg); if (SrcTy.isPointer()) { // Extracts from pointers can be handled only if they are really just // simple integers. const DataLayout &DL = MIRBuilder.getDataLayout(); if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) return UnableToLegalize; LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); SrcTy = SrcAsIntTy; } if (DstTy.isPointer()) return UnableToLegalize; if (Offset == 0) { // Avoid a shift in the degenerate case. MIRBuilder.buildTrunc(DstReg, MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); MI.eraseFromParent(); return Legalized; } // Do a shift in the source type. LLT ShiftTy = SrcTy; if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { Src = MIRBuilder.buildAnyExt(WideTy, Src); ShiftTy = WideTy; } else if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) return UnableToLegalize; auto LShr = MIRBuilder.buildLShr( ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); MIRBuilder.buildTrunc(DstReg, LShr); MI.eraseFromParent(); return Legalized; } if (SrcTy.isScalar()) { Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); Observer.changedInstr(MI); return Legalized; } if (!SrcTy.isVector()) return UnableToLegalize; if (DstTy != SrcTy.getElementType()) return UnableToLegalize; if (Offset % SrcTy.getScalarSizeInBits() != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * Offset); widenScalarDst(MI, WideTy.getScalarType(), 0); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_EXTRACT: return widenScalarExtract(MI, TypeIdx, WideTy); case TargetOpcode::G_INSERT: return widenScalarInsert(MI, TypeIdx, WideTy); case TargetOpcode::G_MERGE_VALUES: return widenScalarMergeValues(MI, TypeIdx, WideTy); case TargetOpcode::G_UNMERGE_VALUES: return widenScalarUnmergeValues(MI, TypeIdx, WideTy); case TargetOpcode::G_UADDO: case TargetOpcode::G_USUBO: { if (TypeIdx == 1) return UnableToLegalize; // TODO auto LHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, {MI.getOperand(2).getReg()}); auto RHSZext = MIRBuilder.buildInstr(TargetOpcode::G_ZEXT, {WideTy}, {MI.getOperand(3).getReg()}); unsigned Opcode = MI.getOpcode() == TargetOpcode::G_UADDO ? TargetOpcode::G_ADD : TargetOpcode::G_SUB; // Do the arithmetic in the larger type. auto NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSZext, RHSZext}); LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); APInt Mask = APInt::getAllOnesValue(OrigTy.getSizeInBits()); auto AndOp = MIRBuilder.buildInstr( TargetOpcode::G_AND, {WideTy}, {NewOp, MIRBuilder.buildConstant(WideTy, Mask.getZExtValue())}); // There is no overflow if the AndOp is the same as NewOp. MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1).getReg(), NewOp, AndOp); // Now trunc the NewOp to the original result. MIRBuilder.buildTrunc(MI.getOperand(0).getReg(), NewOp); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTPOP: { if (TypeIdx == 0) { Observer.changingInstr(MI); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; } Register SrcReg = MI.getOperand(1).getReg(); // First ZEXT the input. auto MIBSrc = MIRBuilder.buildZExt(WideTy, SrcReg); LLT CurTy = MRI.getType(SrcReg); if (MI.getOpcode() == TargetOpcode::G_CTTZ) { // The count is the same in the larger type except if the original // value was zero. This can be handled by setting the bit just off // the top of the original type. auto TopBit = APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); MIBSrc = MIRBuilder.buildOr( WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); } // Perform the operation at the larger size. auto MIBNewOp = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, {MIBSrc}); // This is already the correct result for CTPOP and CTTZs if (MI.getOpcode() == TargetOpcode::G_CTLZ || MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { // The correct result is NewOp - (Difference in widety and current ty). unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); MIBNewOp = MIRBuilder.buildInstr( TargetOpcode::G_SUB, {WideTy}, {MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)}); } MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_BSWAP: { Observer.changingInstr(MI); Register DstReg = MI.getOperand(0).getReg(); Register ShrReg = MRI.createGenericVirtualRegister(WideTy); Register DstExt = MRI.createGenericVirtualRegister(WideTy); Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); MI.getOperand(0).setReg(DstExt); MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); LLT Ty = MRI.getType(DstReg); unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); MIRBuilder.buildInstr(TargetOpcode::G_LSHR) .addDef(ShrReg) .addUse(DstExt) .addUse(ShiftAmtReg); MIRBuilder.buildTrunc(DstReg, ShrReg); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_ADD: case TargetOpcode::G_AND: case TargetOpcode::G_MUL: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: case TargetOpcode::G_SUB: // Perform operation at larger width (any extension is fines here, high bits // don't affect the result) and then truncate the result back to the // original type. Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SHL: Observer.changingInstr(MI); if (TypeIdx == 0) { widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); } else { assert(TypeIdx == 1); // The "number of bits to shift" operand must preserve its value as an // unsigned integer: widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SDIV: case TargetOpcode::G_SREM: case TargetOpcode::G_SMIN: case TargetOpcode::G_SMAX: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ASHR: case TargetOpcode::G_LSHR: Observer.changingInstr(MI); if (TypeIdx == 0) { unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; widenScalarSrc(MI, WideTy, 1, CvtOp); widenScalarDst(MI, WideTy); } else { assert(TypeIdx == 1); // The "number of bits to shift" operand must preserve its value as an // unsigned integer: widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UDIV: case TargetOpcode::G_UREM: case TargetOpcode::G_UMIN: case TargetOpcode::G_UMAX: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SELECT: Observer.changingInstr(MI); if (TypeIdx == 0) { // Perform operation at larger width (any extension is fine here, high // bits don't affect the result) and then truncate the result back to the // original type. widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); widenScalarDst(MI, WideTy); } else { bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); // Explicit extension is required here since high bits affect the result. widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FPTOSI: case TargetOpcode::G_FPTOUI: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SITOFP: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_UITOFP: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_LOAD: case TargetOpcode::G_SEXTLOAD: case TargetOpcode::G_ZEXTLOAD: Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_STORE: { if (TypeIdx != 0) return UnableToLegalize; LLT Ty = MRI.getType(MI.getOperand(0).getReg()); if (!isPowerOf2_32(Ty.getSizeInBits())) return UnableToLegalize; Observer.changingInstr(MI); unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; widenScalarSrc(MI, WideTy, 0, ExtType); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CONSTANT: { MachineOperand &SrcMO = MI.getOperand(1); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); const APInt &Val = SrcMO.getCImm()->getValue().sext(WideTy.getSizeInBits()); Observer.changingInstr(MI); SrcMO.setCImm(ConstantInt::get(Ctx, Val)); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FCONSTANT: { MachineOperand &SrcMO = MI.getOperand(1); LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); APFloat Val = SrcMO.getFPImm()->getValueAPF(); bool LosesInfo; switch (WideTy.getSizeInBits()) { case 32: Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo); break; case 64: Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &LosesInfo); break; default: return UnableToLegalize; } assert(!LosesInfo && "extend should always be lossless"); Observer.changingInstr(MI); SrcMO.setFPImm(ConstantFP::get(Ctx, Val)); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_IMPLICIT_DEF: { Observer.changingInstr(MI); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_BRCOND: Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_FCMP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else { widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_ICMP: Observer.changingInstr(MI); if (TypeIdx == 0) widenScalarDst(MI, WideTy); else { unsigned ExtOpcode = CmpInst::isSigned(static_cast( MI.getOperand(1).getPredicate())) ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; widenScalarSrc(MI, WideTy, 2, ExtOpcode); widenScalarSrc(MI, WideTy, 3, ExtOpcode); } Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_GEP: assert(TypeIdx == 1 && "unable to legalize pointer of GEP"); Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PHI: { assert(TypeIdx == 0 && "Expecting only Idx 0"); Observer.changingInstr(MI); for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); widenScalarDst(MI, WideTy); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_EXTRACT_VECTOR_ELT: { if (TypeIdx == 0) { Register VecReg = MI.getOperand(1).getReg(); LLT VecTy = MRI.getType(VecReg); Observer.changingInstr(MI); widenScalarSrc(MI, LLT::vector(VecTy.getNumElements(), WideTy.getSizeInBits()), 1, TargetOpcode::G_SEXT); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; } if (TypeIdx != 2) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_FADD: case TargetOpcode::G_FMUL: case TargetOpcode::G_FSUB: case TargetOpcode::G_FMA: case TargetOpcode::G_FNEG: case TargetOpcode::G_FABS: case TargetOpcode::G_FCANONICALIZE: case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: case TargetOpcode::G_FMINIMUM: case TargetOpcode::G_FMAXIMUM: case TargetOpcode::G_FDIV: case TargetOpcode::G_FREM: case TargetOpcode::G_FCEIL: case TargetOpcode::G_FFLOOR: case TargetOpcode::G_FCOS: case TargetOpcode::G_FSIN: case TargetOpcode::G_FLOG10: case TargetOpcode::G_FLOG: case TargetOpcode::G_FLOG2: case TargetOpcode::G_FRINT: case TargetOpcode::G_FNEARBYINT: case TargetOpcode::G_FSQRT: case TargetOpcode::G_FEXP: case TargetOpcode::G_FEXP2: case TargetOpcode::G_FPOW: case TargetOpcode::G_INTRINSIC_TRUNC: case TargetOpcode::G_INTRINSIC_ROUND: assert(TypeIdx == 0); Observer.changingInstr(MI); for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_INTTOPTR: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PTRTOINT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); widenScalarDst(MI, WideTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_BUILD_VECTOR: { Observer.changingInstr(MI); const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); for (int I = 1, E = MI.getNumOperands(); I != E; ++I) widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); // Avoid changing the result vector type if the source element type was // requested. if (TypeIdx == 1) { auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); MI.setDesc(TII.get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); } else { widenScalarDst(MI, WideTy, 0); } Observer.changedInstr(MI); return Legalized; } } } LegalizerHelper::LegalizeResult LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { using namespace TargetOpcode; MIRBuilder.setInstr(MI); switch(MI.getOpcode()) { default: return UnableToLegalize; case TargetOpcode::G_SREM: case TargetOpcode::G_UREM: { Register QuotReg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV) .addDef(QuotReg) .addUse(MI.getOperand(1).getReg()) .addUse(MI.getOperand(2).getReg()); Register ProdReg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildMul(ProdReg, QuotReg, MI.getOperand(2).getReg()); MIRBuilder.buildSub(MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), ProdReg); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_SMULO: case TargetOpcode::G_UMULO: { // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the // result. Register Res = MI.getOperand(0).getReg(); Register Overflow = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); MIRBuilder.buildMul(Res, LHS, RHS); unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO ? TargetOpcode::G_SMULH : TargetOpcode::G_UMULH; Register HiPart = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildInstr(Opcode) .addDef(HiPart) .addUse(LHS) .addUse(RHS); Register Zero = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildConstant(Zero, 0); // For *signed* multiply, overflow is detected by checking: // (hi != (lo >> bitwidth-1)) if (Opcode == TargetOpcode::G_SMULH) { Register Shifted = MRI.createGenericVirtualRegister(Ty); Register ShiftAmt = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildConstant(ShiftAmt, Ty.getSizeInBits() - 1); MIRBuilder.buildInstr(TargetOpcode::G_ASHR) .addDef(Shifted) .addUse(Res) .addUse(ShiftAmt); MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); } else { MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); } MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FNEG: { // TODO: Handle vector types once we are able to // represent them. if (Ty.isVector()) return UnableToLegalize; Register Res = MI.getOperand(0).getReg(); Type *ZeroTy; LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); switch (Ty.getSizeInBits()) { case 16: ZeroTy = Type::getHalfTy(Ctx); break; case 32: ZeroTy = Type::getFloatTy(Ctx); break; case 64: ZeroTy = Type::getDoubleTy(Ctx); break; case 128: ZeroTy = Type::getFP128Ty(Ctx); break; default: llvm_unreachable("unexpected floating-point type"); } ConstantFP &ZeroForNegation = *cast(ConstantFP::getZeroValueForNegation(ZeroTy)); auto Zero = MIRBuilder.buildFConstant(Ty, ZeroForNegation); Register SubByReg = MI.getOperand(1).getReg(); Register ZeroReg = Zero->getOperand(0).getReg(); MIRBuilder.buildInstr(TargetOpcode::G_FSUB, {Res}, {ZeroReg, SubByReg}, MI.getFlags()); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_FSUB: { // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). // First, check if G_FNEG is marked as Lower. If so, we may // end up with an infinite loop as G_FSUB is used to legalize G_FNEG. if (LI.getAction({G_FNEG, {Ty}}).Action == Lower) return UnableToLegalize; Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); Register Neg = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildInstr(TargetOpcode::G_FNEG).addDef(Neg).addUse(RHS); MIRBuilder.buildInstr(TargetOpcode::G_FADD, {Res}, {LHS, Neg}, MI.getFlags()); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { Register OldValRes = MI.getOperand(0).getReg(); Register SuccessRes = MI.getOperand(1).getReg(); Register Addr = MI.getOperand(2).getReg(); Register CmpVal = MI.getOperand(3).getReg(); Register NewVal = MI.getOperand(4).getReg(); MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, **MI.memoperands_begin()); MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_LOAD: case TargetOpcode::G_SEXTLOAD: case TargetOpcode::G_ZEXTLOAD: { // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT Register DstReg = MI.getOperand(0).getReg(); Register PtrReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); auto &MMO = **MI.memoperands_begin(); if (DstTy.getSizeInBits() == MMO.getSize() /* in bytes */ * 8) { // In the case of G_LOAD, this was a non-extending load already and we're // about to lower to the same instruction. if (MI.getOpcode() == TargetOpcode::G_LOAD) return UnableToLegalize; MIRBuilder.buildLoad(DstReg, PtrReg, MMO); MI.eraseFromParent(); return Legalized; } if (DstTy.isScalar()) { Register TmpReg = MRI.createGenericVirtualRegister(LLT::scalar(MMO.getSizeInBits())); MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); switch (MI.getOpcode()) { default: llvm_unreachable("Unexpected opcode"); case TargetOpcode::G_LOAD: MIRBuilder.buildAnyExt(DstReg, TmpReg); break; case TargetOpcode::G_SEXTLOAD: MIRBuilder.buildSExt(DstReg, TmpReg); break; case TargetOpcode::G_ZEXTLOAD: MIRBuilder.buildZExt(DstReg, TmpReg); break; } MI.eraseFromParent(); return Legalized; } return UnableToLegalize; } case TargetOpcode::G_CTLZ_ZERO_UNDEF: case TargetOpcode::G_CTTZ_ZERO_UNDEF: case TargetOpcode::G_CTLZ: case TargetOpcode::G_CTTZ: case TargetOpcode::G_CTPOP: return lowerBitCount(MI, TypeIdx, Ty); case G_UADDO: { Register Res = MI.getOperand(0).getReg(); Register CarryOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); MIRBuilder.buildAdd(Res, LHS, RHS); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); MI.eraseFromParent(); return Legalized; } case G_UADDE: { Register Res = MI.getOperand(0).getReg(); Register CarryOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); Register CarryIn = MI.getOperand(4).getReg(); Register TmpRes = MRI.createGenericVirtualRegister(Ty); Register ZExtCarryIn = MRI.createGenericVirtualRegister(Ty); MIRBuilder.buildAdd(TmpRes, LHS, RHS); MIRBuilder.buildZExt(ZExtCarryIn, CarryIn); MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS); MI.eraseFromParent(); return Legalized; } case G_USUBO: { Register Res = MI.getOperand(0).getReg(); Register BorrowOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); MIRBuilder.buildSub(Res, LHS, RHS); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); MI.eraseFromParent(); return Legalized; } case G_USUBE: { Register Res = MI.getOperand(0).getReg(); Register BorrowOut = MI.getOperand(1).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); Register BorrowIn = MI.getOperand(4).getReg(); Register TmpRes = MRI.createGenericVirtualRegister(Ty); Register ZExtBorrowIn = MRI.createGenericVirtualRegister(Ty); Register LHS_EQ_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); Register LHS_ULT_RHS = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildSub(TmpRes, LHS, RHS); MIRBuilder.buildZExt(ZExtBorrowIn, BorrowIn); MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LHS_EQ_RHS, LHS, RHS); MIRBuilder.buildICmp(CmpInst::ICMP_ULT, LHS_ULT_RHS, LHS, RHS); MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS); MI.eraseFromParent(); return Legalized; } case G_UITOFP: return lowerUITOFP(MI, TypeIdx, Ty); case G_SITOFP: return lowerSITOFP(MI, TypeIdx, Ty); case G_SMIN: case G_SMAX: case G_UMIN: case G_UMAX: return lowerMinMax(MI, TypeIdx, Ty); case G_FCOPYSIGN: return lowerFCopySign(MI, TypeIdx, Ty); case G_FMINNUM: case G_FMAXNUM: return lowerFMinNumMaxNum(MI); } } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorImplicitDef( MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { SmallVector DstRegs; unsigned NarrowSize = NarrowTy.getSizeInBits(); Register DstReg = MI.getOperand(0).getReg(); unsigned Size = MRI.getType(DstReg).getSizeInBits(); int NumParts = Size / NarrowSize; // FIXME: Don't know how to handle the situation where the small vectors // aren't all the same size yet. if (Size % NarrowSize != 0) return UnableToLegalize; for (int i = 0; i < NumParts; ++i) { Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildUndef(TmpReg); DstRegs.push_back(TmpReg); } if (NarrowTy.isVector()) MIRBuilder.buildConcatVectors(DstReg, DstRegs); else MIRBuilder.buildBuildVector(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorBasic(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { const unsigned Opc = MI.getOpcode(); const unsigned NumOps = MI.getNumOperands() - 1; const unsigned NarrowSize = NarrowTy.getSizeInBits(); const Register DstReg = MI.getOperand(0).getReg(); const unsigned Flags = MI.getFlags(); const LLT DstTy = MRI.getType(DstReg); const unsigned Size = DstTy.getSizeInBits(); const int NumParts = Size / NarrowSize; const LLT EltTy = DstTy.getElementType(); const unsigned EltSize = EltTy.getSizeInBits(); const unsigned BitsForNumParts = NarrowSize * NumParts; // Check if we have any leftovers. If we do, then only handle the case where // the leftover is one element. if (BitsForNumParts != Size && BitsForNumParts + EltSize != Size) return UnableToLegalize; if (BitsForNumParts != Size) { Register AccumDstReg = MRI.createGenericVirtualRegister(DstTy); MIRBuilder.buildUndef(AccumDstReg); // Handle the pieces which evenly divide into the requested type with // extract/op/insert sequence. for (unsigned Offset = 0; Offset < BitsForNumParts; Offset += NarrowSize) { SmallVector SrcOps; for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { Register PartOpReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), Offset); SrcOps.push_back(PartOpReg); } Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); Register PartInsertReg = MRI.createGenericVirtualRegister(DstTy); MIRBuilder.buildInsert(PartInsertReg, AccumDstReg, PartDstReg, Offset); AccumDstReg = PartInsertReg; } // Handle the remaining element sized leftover piece. SmallVector SrcOps; for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { Register PartOpReg = MRI.createGenericVirtualRegister(EltTy); MIRBuilder.buildExtract(PartOpReg, MI.getOperand(I).getReg(), BitsForNumParts); SrcOps.push_back(PartOpReg); } Register PartDstReg = MRI.createGenericVirtualRegister(EltTy); MIRBuilder.buildInstr(Opc, {PartDstReg}, SrcOps, Flags); MIRBuilder.buildInsert(DstReg, AccumDstReg, PartDstReg, BitsForNumParts); MI.eraseFromParent(); return Legalized; } SmallVector DstRegs, Src0Regs, Src1Regs, Src2Regs; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, Src0Regs); if (NumOps >= 2) extractParts(MI.getOperand(2).getReg(), NarrowTy, NumParts, Src1Regs); if (NumOps >= 3) extractParts(MI.getOperand(3).getReg(), NarrowTy, NumParts, Src2Regs); for (int i = 0; i < NumParts; ++i) { Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); if (NumOps == 1) MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i]}, Flags); else if (NumOps == 2) { MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i]}, Flags); } else if (NumOps == 3) { MIRBuilder.buildInstr(Opc, {DstReg}, {Src0Regs[i], Src1Regs[i], Src2Regs[i]}, Flags); } DstRegs.push_back(DstReg); } if (NarrowTy.isVector()) MIRBuilder.buildConcatVectors(DstReg, DstRegs); else MIRBuilder.buildBuildVector(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } // Handle splitting vector operations which need to have the same number of // elements in each type index, but each type index may have a different element // type. // // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> // <2 x s64> = G_SHL <2 x s64>, <2 x s32> // <2 x s64> = G_SHL <2 x s64>, <2 x s32> // // Also handles some irregular breakdown cases, e.g. // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> // <2 x s64> = G_SHL <2 x s64>, <2 x s32> // s64 = G_SHL s64, s32 LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorMultiEltType( MachineInstr &MI, unsigned TypeIdx, LLT NarrowTyArg) { if (TypeIdx != 0) return UnableToLegalize; const LLT NarrowTy0 = NarrowTyArg; const unsigned NewNumElts = NarrowTy0.isVector() ? NarrowTy0.getNumElements() : 1; const Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); LLT LeftoverTy0; // All of the operands need to have the same number of elements, so if we can // determine a type breakdown for the result type, we can for all of the // source types. int NumParts = getNarrowTypeBreakDown(DstTy, NarrowTy0, LeftoverTy0).first; if (NumParts < 0) return UnableToLegalize; SmallVector NewInsts; SmallVector DstRegs, LeftoverDstRegs; SmallVector PartRegs, LeftoverRegs; for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) { LLT LeftoverTy; Register SrcReg = MI.getOperand(I).getReg(); LLT SrcTyI = MRI.getType(SrcReg); LLT NarrowTyI = LLT::scalarOrVector(NewNumElts, SrcTyI.getScalarType()); LLT LeftoverTyI; // Split this operand into the requested typed registers, and any leftover // required to reproduce the original type. if (!extractParts(SrcReg, SrcTyI, NarrowTyI, LeftoverTyI, PartRegs, LeftoverRegs)) return UnableToLegalize; if (I == 1) { // For the first operand, create an instruction for each part and setup // the result. for (Register PartReg : PartRegs) { Register PartDstReg = MRI.createGenericVirtualRegister(NarrowTy0); NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) .addDef(PartDstReg) .addUse(PartReg)); DstRegs.push_back(PartDstReg); } for (Register LeftoverReg : LeftoverRegs) { Register PartDstReg = MRI.createGenericVirtualRegister(LeftoverTy0); NewInsts.push_back(MIRBuilder.buildInstrNoInsert(MI.getOpcode()) .addDef(PartDstReg) .addUse(LeftoverReg)); LeftoverDstRegs.push_back(PartDstReg); } } else { assert(NewInsts.size() == PartRegs.size() + LeftoverRegs.size()); // Add the newly created operand splits to the existing instructions. The // odd-sized pieces are ordered after the requested NarrowTyArg sized // pieces. unsigned InstCount = 0; for (unsigned J = 0, JE = PartRegs.size(); J != JE; ++J) NewInsts[InstCount++].addUse(PartRegs[J]); for (unsigned J = 0, JE = LeftoverRegs.size(); J != JE; ++J) NewInsts[InstCount++].addUse(LeftoverRegs[J]); } PartRegs.clear(); LeftoverRegs.clear(); } // Insert the newly built operations and rebuild the result register. for (auto &MIB : NewInsts) MIRBuilder.insertInstr(MIB); insertParts(DstReg, DstTy, NarrowTy0, DstRegs, LeftoverTy0, LeftoverDstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorCasts(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 0) return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); LLT NarrowTy0 = NarrowTy; LLT NarrowTy1; unsigned NumParts; if (NarrowTy.isVector()) { // Uneven breakdown not handled. NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); if (NumParts * NarrowTy.getNumElements() != DstTy.getNumElements()) return UnableToLegalize; NarrowTy1 = LLT::vector(NumParts, SrcTy.getElementType().getSizeInBits()); } else { NumParts = DstTy.getNumElements(); NarrowTy1 = SrcTy.getElementType(); } SmallVector SrcRegs, DstRegs; extractParts(SrcReg, NarrowTy1, NumParts, SrcRegs); for (unsigned I = 0; I < NumParts; ++I) { Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); MachineInstr *NewInst = MIRBuilder.buildInstr(MI.getOpcode()) .addDef(DstReg) .addUse(SrcRegs[I]); NewInst->setFlags(MI.getFlags()); DstRegs.push_back(DstReg); } if (NarrowTy.isVector()) MIRBuilder.buildConcatVectors(DstReg, DstRegs); else MIRBuilder.buildBuildVector(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorCmp(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); Register Src0Reg = MI.getOperand(2).getReg(); LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(Src0Reg); unsigned NumParts; LLT NarrowTy0, NarrowTy1; if (TypeIdx == 0) { unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; unsigned OldElts = DstTy.getNumElements(); NarrowTy0 = NarrowTy; NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : DstTy.getNumElements(); NarrowTy1 = NarrowTy.isVector() ? LLT::vector(NarrowTy.getNumElements(), SrcTy.getScalarSizeInBits()) : SrcTy.getElementType(); } else { unsigned NewElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; unsigned OldElts = SrcTy.getNumElements(); NumParts = NarrowTy.isVector() ? (OldElts / NewElts) : NarrowTy.getNumElements(); NarrowTy0 = LLT::vector(NarrowTy.getNumElements(), DstTy.getScalarSizeInBits()); NarrowTy1 = NarrowTy; } // FIXME: Don't know how to handle the situation where the small vectors // aren't all the same size yet. if (NarrowTy1.isVector() && NarrowTy1.getNumElements() * NumParts != DstTy.getNumElements()) return UnableToLegalize; CmpInst::Predicate Pred = static_cast(MI.getOperand(1).getPredicate()); SmallVector Src1Regs, Src2Regs, DstRegs; extractParts(MI.getOperand(2).getReg(), NarrowTy1, NumParts, Src1Regs); extractParts(MI.getOperand(3).getReg(), NarrowTy1, NumParts, Src2Regs); for (unsigned I = 0; I < NumParts; ++I) { Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); DstRegs.push_back(DstReg); if (MI.getOpcode() == TargetOpcode::G_ICMP) MIRBuilder.buildICmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); else { MachineInstr *NewCmp = MIRBuilder.buildFCmp(Pred, DstReg, Src1Regs[I], Src2Regs[I]); NewCmp->setFlags(MI.getFlags()); } } if (NarrowTy1.isVector()) MIRBuilder.buildConcatVectors(DstReg, DstRegs); else MIRBuilder.buildBuildVector(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorSelect(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); Register CondReg = MI.getOperand(1).getReg(); unsigned NumParts = 0; LLT NarrowTy0, NarrowTy1; LLT DstTy = MRI.getType(DstReg); LLT CondTy = MRI.getType(CondReg); unsigned Size = DstTy.getSizeInBits(); assert(TypeIdx == 0 || CondTy.isVector()); if (TypeIdx == 0) { NarrowTy0 = NarrowTy; NarrowTy1 = CondTy; unsigned NarrowSize = NarrowTy0.getSizeInBits(); // FIXME: Don't know how to handle the situation where the small vectors // aren't all the same size yet. if (Size % NarrowSize != 0) return UnableToLegalize; NumParts = Size / NarrowSize; // Need to break down the condition type if (CondTy.isVector()) { if (CondTy.getNumElements() == NumParts) NarrowTy1 = CondTy.getElementType(); else NarrowTy1 = LLT::vector(CondTy.getNumElements() / NumParts, CondTy.getScalarSizeInBits()); } } else { NumParts = CondTy.getNumElements(); if (NarrowTy.isVector()) { // TODO: Handle uneven breakdown. if (NumParts * NarrowTy.getNumElements() != CondTy.getNumElements()) return UnableToLegalize; return UnableToLegalize; } else { NarrowTy0 = DstTy.getElementType(); NarrowTy1 = NarrowTy; } } SmallVector DstRegs, Src0Regs, Src1Regs, Src2Regs; if (CondTy.isVector()) extractParts(MI.getOperand(1).getReg(), NarrowTy1, NumParts, Src0Regs); extractParts(MI.getOperand(2).getReg(), NarrowTy0, NumParts, Src1Regs); extractParts(MI.getOperand(3).getReg(), NarrowTy0, NumParts, Src2Regs); for (unsigned i = 0; i < NumParts; ++i) { Register DstReg = MRI.createGenericVirtualRegister(NarrowTy0); MIRBuilder.buildSelect(DstReg, CondTy.isVector() ? Src0Regs[i] : CondReg, Src1Regs[i], Src2Regs[i]); DstRegs.push_back(DstReg); } if (NarrowTy0.isVector()) MIRBuilder.buildConcatVectors(DstReg, DstRegs); else MIRBuilder.buildBuildVector(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { const Register DstReg = MI.getOperand(0).getReg(); LLT PhiTy = MRI.getType(DstReg); LLT LeftoverTy; // All of the operands need to have the same number of elements, so if we can // determine a type breakdown for the result type, we can for all of the // source types. int NumParts, NumLeftover; std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(PhiTy, NarrowTy, LeftoverTy); if (NumParts < 0) return UnableToLegalize; SmallVector DstRegs, LeftoverDstRegs; SmallVector NewInsts; const int TotalNumParts = NumParts + NumLeftover; // Insert the new phis in the result block first. for (int I = 0; I != TotalNumParts; ++I) { LLT Ty = I < NumParts ? NarrowTy : LeftoverTy; Register PartDstReg = MRI.createGenericVirtualRegister(Ty); NewInsts.push_back(MIRBuilder.buildInstr(TargetOpcode::G_PHI) .addDef(PartDstReg)); if (I < NumParts) DstRegs.push_back(PartDstReg); else LeftoverDstRegs.push_back(PartDstReg); } MachineBasicBlock *MBB = MI.getParent(); MIRBuilder.setInsertPt(*MBB, MBB->getFirstNonPHI()); insertParts(DstReg, PhiTy, NarrowTy, DstRegs, LeftoverTy, LeftoverDstRegs); SmallVector PartRegs, LeftoverRegs; // Insert code to extract the incoming values in each predecessor block. for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { PartRegs.clear(); LeftoverRegs.clear(); Register SrcReg = MI.getOperand(I).getReg(); MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); LLT Unused; if (!extractParts(SrcReg, PhiTy, NarrowTy, Unused, PartRegs, LeftoverRegs)) return UnableToLegalize; // Add the newly created operand splits to the existing instructions. The // odd-sized pieces are ordered after the requested NarrowTyArg sized // pieces. for (int J = 0; J != TotalNumParts; ++J) { MachineInstrBuilder MIB = NewInsts[J]; MIB.addUse(J < NumParts ? PartRegs[J] : LeftoverRegs[J - NumParts]); MIB.addMBB(&OpMBB); } } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::reduceLoadStoreWidth(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; MachineMemOperand *MMO = *MI.memoperands_begin(); // This implementation doesn't work for atomics. Give up instead of doing // something invalid. if (MMO->getOrdering() != AtomicOrdering::NotAtomic || MMO->getFailureOrdering() != AtomicOrdering::NotAtomic) return UnableToLegalize; bool IsLoad = MI.getOpcode() == TargetOpcode::G_LOAD; Register ValReg = MI.getOperand(0).getReg(); Register AddrReg = MI.getOperand(1).getReg(); LLT ValTy = MRI.getType(ValReg); int NumParts = -1; int NumLeftover = -1; LLT LeftoverTy; SmallVector NarrowRegs, NarrowLeftoverRegs; if (IsLoad) { std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); } else { if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, NarrowLeftoverRegs)) { NumParts = NarrowRegs.size(); NumLeftover = NarrowLeftoverRegs.size(); } } if (NumParts == -1) return UnableToLegalize; const LLT OffsetTy = LLT::scalar(MRI.getType(AddrReg).getScalarSizeInBits()); unsigned TotalSize = ValTy.getSizeInBits(); // Split the load/store into PartTy sized pieces starting at Offset. If this // is a load, return the new registers in ValRegs. For a store, each elements // of ValRegs should be PartTy. Returns the next offset that needs to be // handled. auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl &ValRegs, unsigned Offset) -> unsigned { MachineFunction &MF = MIRBuilder.getMF(); unsigned PartSize = PartTy.getSizeInBits(); for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; Offset += PartSize, ++Idx) { unsigned ByteSize = PartSize / 8; unsigned ByteOffset = Offset / 8; Register NewAddrReg; MIRBuilder.materializeGEP(NewAddrReg, AddrReg, OffsetTy, ByteOffset); MachineMemOperand *NewMMO = MF.getMachineMemOperand(MMO, ByteOffset, ByteSize); if (IsLoad) { Register Dst = MRI.createGenericVirtualRegister(PartTy); ValRegs.push_back(Dst); MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); } else { MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); } } return Offset; }; unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0); // Handle the rest of the register if this isn't an even type breakdown. if (LeftoverTy.isValid()) splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset); if (IsLoad) { insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, LeftoverTy, NarrowLeftoverRegs); } MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { using namespace TargetOpcode; MIRBuilder.setInstr(MI); switch (MI.getOpcode()) { case G_IMPLICIT_DEF: return fewerElementsVectorImplicitDef(MI, TypeIdx, NarrowTy); case G_AND: case G_OR: case G_XOR: case G_ADD: case G_SUB: case G_MUL: case G_SMULH: case G_UMULH: case G_FADD: case G_FMUL: case G_FSUB: case G_FNEG: case G_FABS: case G_FCANONICALIZE: case G_FDIV: case G_FREM: case G_FMA: case G_FPOW: case G_FEXP: case G_FEXP2: case G_FLOG: case G_FLOG2: case G_FLOG10: case G_FNEARBYINT: case G_FCEIL: case G_FFLOOR: case G_FRINT: case G_INTRINSIC_ROUND: case G_INTRINSIC_TRUNC: case G_FCOS: case G_FSIN: case G_FSQRT: case G_BSWAP: case G_SDIV: case G_SMIN: case G_SMAX: case G_UMIN: case G_UMAX: case G_FMINNUM: case G_FMAXNUM: case G_FMINNUM_IEEE: case G_FMAXNUM_IEEE: case G_FMINIMUM: case G_FMAXIMUM: return fewerElementsVectorBasic(MI, TypeIdx, NarrowTy); case G_SHL: case G_LSHR: case G_ASHR: case G_CTLZ: case G_CTLZ_ZERO_UNDEF: case G_CTTZ: case G_CTTZ_ZERO_UNDEF: case G_CTPOP: case G_FCOPYSIGN: return fewerElementsVectorMultiEltType(MI, TypeIdx, NarrowTy); case G_ZEXT: case G_SEXT: case G_ANYEXT: case G_FPEXT: case G_FPTRUNC: case G_SITOFP: case G_UITOFP: case G_FPTOSI: case G_FPTOUI: case G_INTTOPTR: case G_PTRTOINT: case G_ADDRSPACE_CAST: return fewerElementsVectorCasts(MI, TypeIdx, NarrowTy); case G_ICMP: case G_FCMP: return fewerElementsVectorCmp(MI, TypeIdx, NarrowTy); case G_SELECT: return fewerElementsVectorSelect(MI, TypeIdx, NarrowTy); case G_PHI: return fewerElementsVectorPhi(MI, TypeIdx, NarrowTy); case G_LOAD: case G_STORE: return reduceLoadStoreWidth(MI, TypeIdx, NarrowTy); default: return UnableToLegalize; } } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, const LLT HalfTy, const LLT AmtTy) { Register InL = MRI.createGenericVirtualRegister(HalfTy); Register InH = MRI.createGenericVirtualRegister(HalfTy); MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); if (Amt.isNullValue()) { MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {InL, InH}); MI.eraseFromParent(); return Legalized; } LLT NVT = HalfTy; unsigned NVTBits = HalfTy.getSizeInBits(); unsigned VTBits = 2 * NVTBits; SrcOp Lo(Register(0)), Hi(Register(0)); if (MI.getOpcode() == TargetOpcode::G_SHL) { if (Amt.ugt(VTBits)) { Lo = Hi = MIRBuilder.buildConstant(NVT, 0); } else if (Amt.ugt(NVTBits)) { Lo = MIRBuilder.buildConstant(NVT, 0); Hi = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); } else if (Amt == NVTBits) { Lo = MIRBuilder.buildConstant(NVT, 0); Hi = InL; } else { Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); auto OrLHS = MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); auto OrRHS = MIRBuilder.buildLShr( NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); } } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { if (Amt.ugt(VTBits)) { Lo = Hi = MIRBuilder.buildConstant(NVT, 0); } else if (Amt.ugt(NVTBits)) { Lo = MIRBuilder.buildLShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); Hi = MIRBuilder.buildConstant(NVT, 0); } else if (Amt == NVTBits) { Lo = InH; Hi = MIRBuilder.buildConstant(NVT, 0); } else { auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); auto OrRHS = MIRBuilder.buildShl( NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); } } else { if (Amt.ugt(VTBits)) { Hi = Lo = MIRBuilder.buildAShr( NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); } else if (Amt.ugt(NVTBits)) { Lo = MIRBuilder.buildAShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); Hi = MIRBuilder.buildAShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); } else if (Amt == NVTBits) { Lo = InH; Hi = MIRBuilder.buildAShr(NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); } else { auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); auto OrRHS = MIRBuilder.buildShl( NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); } } MIRBuilder.buildMerge(MI.getOperand(0).getReg(), {Lo.getReg(), Hi.getReg()}); MI.eraseFromParent(); return Legalized; } // TODO: Optimize if constant shift amount. LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, LLT RequestedTy) { if (TypeIdx == 1) { Observer.changingInstr(MI); narrowScalarSrc(MI, RequestedTy, 2); Observer.changedInstr(MI); return Legalized; } Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (DstTy.isVector()) return UnableToLegalize; Register Amt = MI.getOperand(2).getReg(); LLT ShiftAmtTy = MRI.getType(Amt); const unsigned DstEltSize = DstTy.getScalarSizeInBits(); if (DstEltSize % 2 != 0) return UnableToLegalize; // Ignore the input type. We can only go to exactly half the size of the // input. If that isn't small enough, the resulting pieces will be further // legalized. const unsigned NewBitSize = DstEltSize / 2; const LLT HalfTy = LLT::scalar(NewBitSize); const LLT CondTy = LLT::scalar(1); if (const MachineInstr *KShiftAmt = getOpcodeDef(TargetOpcode::G_CONSTANT, Amt, MRI)) { return narrowScalarShiftByConstant( MI, KShiftAmt->getOperand(1).getCImm()->getValue(), HalfTy, ShiftAmtTy); } // TODO: Expand with known bits. // Handle the fully general expansion by an unknown amount. auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); Register InL = MRI.createGenericVirtualRegister(HalfTy); Register InH = MRI.createGenericVirtualRegister(HalfTy); MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1).getReg()); auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); Register ResultRegs[2]; switch (MI.getOpcode()) { case TargetOpcode::G_SHL: { // Short: ShAmt < NewBitSize auto LoS = MIRBuilder.buildShl(HalfTy, InH, Amt); auto OrLHS = MIRBuilder.buildShl(HalfTy, InH, Amt); auto OrRHS = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); auto HiS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); // Long: ShAmt >= NewBitSize auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); auto Hi = MIRBuilder.buildSelect( HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); ResultRegs[0] = Lo.getReg(0); ResultRegs[1] = Hi.getReg(0); break; } case TargetOpcode::G_LSHR: { // Short: ShAmt < NewBitSize auto HiS = MIRBuilder.buildLShr(HalfTy, InH, Amt); auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); auto OrRHS = MIRBuilder.buildShl(HalfTy, InH, AmtLack); auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); // Long: ShAmt >= NewBitSize auto HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. auto LoL = MIRBuilder.buildLShr(HalfTy, InH, AmtExcess); // Lo from Hi part. auto Lo = MIRBuilder.buildSelect( HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); ResultRegs[0] = Lo.getReg(0); ResultRegs[1] = Hi.getReg(0); break; } case TargetOpcode::G_ASHR: { // Short: ShAmt < NewBitSize auto HiS = MIRBuilder.buildAShr(HalfTy, InH, Amt); auto OrLHS = MIRBuilder.buildLShr(HalfTy, InL, Amt); auto OrRHS = MIRBuilder.buildLShr(HalfTy, InH, AmtLack); auto LoS = MIRBuilder.buildOr(HalfTy, OrLHS, OrRHS); // Long: ShAmt >= NewBitSize // Sign of Hi part. auto HiL = MIRBuilder.buildAShr( HalfTy, InH, MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1)); auto LoL = MIRBuilder.buildAShr(HalfTy, InH, AmtExcess); // Lo from Hi part. auto Lo = MIRBuilder.buildSelect( HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); ResultRegs[0] = Lo.getReg(0); ResultRegs[1] = Hi.getReg(0); break; } default: llvm_unreachable("not a shift"); } MIRBuilder.buildMerge(DstReg, ResultRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, LLT MoreTy) { assert(TypeIdx == 0 && "Expecting only Idx 0"); Observer.changingInstr(MI); for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); moreElementsVectorSrc(MI, MoreTy, I); } MachineBasicBlock &MBB = *MI.getParent(); MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, LLT MoreTy) { MIRBuilder.setInstr(MI); unsigned Opc = MI.getOpcode(); switch (Opc) { case TargetOpcode::G_IMPLICIT_DEF: { Observer.changingInstr(MI); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_AND: case TargetOpcode::G_OR: case TargetOpcode::G_XOR: case TargetOpcode::G_SMIN: case TargetOpcode::G_SMAX: case TargetOpcode::G_UMIN: case TargetOpcode::G_UMAX: { Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorSrc(MI, MoreTy, 2); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_EXTRACT: if (TypeIdx != 1) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_INSERT: if (TypeIdx != 0) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 1); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_SELECT: if (TypeIdx != 0) return UnableToLegalize; if (MRI.getType(MI.getOperand(1).getReg()).isVector()) return UnableToLegalize; Observer.changingInstr(MI); moreElementsVectorSrc(MI, MoreTy, 2); moreElementsVectorSrc(MI, MoreTy, 3); moreElementsVectorDst(MI, MoreTy, 0); Observer.changedInstr(MI); return Legalized; case TargetOpcode::G_PHI: return moreElementsVectorPhi(MI, TypeIdx, MoreTy); default: return UnableToLegalize; } } void LegalizerHelper::multiplyRegisters(SmallVectorImpl &DstRegs, ArrayRef Src1Regs, ArrayRef Src2Regs, LLT NarrowTy) { MachineIRBuilder &B = MIRBuilder; unsigned SrcParts = Src1Regs.size(); unsigned DstParts = DstRegs.size(); unsigned DstIdx = 0; // Low bits of the result. Register FactorSum = B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); DstRegs[DstIdx] = FactorSum; unsigned CarrySumPrevDstIdx; SmallVector Factors; for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { // Collect low parts of muls for DstIdx. for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; i <= std::min(DstIdx, SrcParts - 1); ++i) { MachineInstrBuilder Mul = B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); Factors.push_back(Mul.getReg(0)); } // Collect high parts of muls from previous DstIdx. for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { MachineInstrBuilder Umulh = B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); Factors.push_back(Umulh.getReg(0)); } // Add CarrySum from additons calculated for previous DstIdx. if (DstIdx != 1) { Factors.push_back(CarrySumPrevDstIdx); } Register CarrySum; // Add all factors and accumulate all carries into CarrySum. if (DstIdx != DstParts - 1) { MachineInstrBuilder Uaddo = B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); FactorSum = Uaddo.getReg(0); CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); for (unsigned i = 2; i < Factors.size(); ++i) { MachineInstrBuilder Uaddo = B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); FactorSum = Uaddo.getReg(0); MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); } } else { // Since value for the next index is not calculated, neither is CarrySum. FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); for (unsigned i = 2; i < Factors.size(); ++i) FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); } CarrySumPrevDstIdx = CarrySum; DstRegs[DstIdx] = FactorSum; Factors.clear(); } } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); Register Src1 = MI.getOperand(1).getReg(); Register Src2 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(DstReg); if (Ty.isVector()) return UnableToLegalize; unsigned SrcSize = MRI.getType(Src1).getSizeInBits(); unsigned DstSize = Ty.getSizeInBits(); unsigned NarrowSize = NarrowTy.getSizeInBits(); if (DstSize % NarrowSize != 0 || SrcSize % NarrowSize != 0) return UnableToLegalize; unsigned NumDstParts = DstSize / NarrowSize; unsigned NumSrcParts = SrcSize / NarrowSize; bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; unsigned DstTmpParts = NumDstParts * (IsMulHigh ? 2 : 1); SmallVector Src1Parts, Src2Parts, DstTmpRegs; extractParts(Src1, NarrowTy, NumSrcParts, Src1Parts); extractParts(Src2, NarrowTy, NumSrcParts, Src2Parts); DstTmpRegs.resize(DstTmpParts); multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); // Take only high half of registers if this is high mul. ArrayRef DstRegs( IsMulHigh ? &DstTmpRegs[DstTmpParts / 2] : &DstTmpRegs[0], NumDstParts); MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 1) return UnableToLegalize; uint64_t NarrowSize = NarrowTy.getSizeInBits(); int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); // FIXME: add support for when SizeOp1 isn't an exact multiple of // NarrowSize. if (SizeOp1 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp1 / NarrowSize; SmallVector SrcRegs, DstRegs; SmallVector Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); Register OpReg = MI.getOperand(0).getReg(); uint64_t OpStart = MI.getOperand(2).getImm(); uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); for (int i = 0; i < NumParts; ++i) { unsigned SrcStart = i * NarrowSize; if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { // No part of the extract uses this subregister, ignore it. continue; } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { // The entire subregister is extracted, forward the value. DstRegs.push_back(SrcRegs[i]); continue; } // OpSegStart is where this destination segment would start in OpReg if it // extended infinitely in both directions. int64_t ExtractOffset; uint64_t SegSize; if (OpStart < SrcStart) { ExtractOffset = 0; SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); } else { ExtractOffset = OpStart - SrcStart; SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); } Register SegReg = SrcRegs[i]; if (ExtractOffset != 0 || SegSize != NarrowSize) { // A genuine extract is needed. SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); } DstRegs.push_back(SegReg); } Register DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { // FIXME: Don't know how to handle secondary types yet. if (TypeIdx != 0) return UnableToLegalize; uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); uint64_t NarrowSize = NarrowTy.getSizeInBits(); // FIXME: add support for when SizeOp0 isn't an exact multiple of // NarrowSize. if (SizeOp0 % NarrowSize != 0) return UnableToLegalize; int NumParts = SizeOp0 / NarrowSize; SmallVector SrcRegs, DstRegs; SmallVector Indexes; extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); Register OpReg = MI.getOperand(2).getReg(); uint64_t OpStart = MI.getOperand(3).getImm(); uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); for (int i = 0; i < NumParts; ++i) { unsigned DstStart = i * NarrowSize; if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { // No part of the insert affects this subregister, forward the original. DstRegs.push_back(SrcRegs[i]); continue; } else if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { // The entire subregister is defined by this insert, forward the new // value. DstRegs.push_back(OpReg); continue; } // OpSegStart is where this destination segment would start in OpReg if it // extended infinitely in both directions. int64_t ExtractOffset, InsertOffset; uint64_t SegSize; if (OpStart < DstStart) { InsertOffset = 0; ExtractOffset = DstStart - OpStart; SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); } else { InsertOffset = OpStart - DstStart; ExtractOffset = 0; SegSize = std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); } Register SegReg = OpReg; if (ExtractOffset != 0 || SegSize != OpSize) { // A genuine extract is needed. SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); } Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); MIRBuilder.buildInsert(DstReg, SrcRegs[i], SegReg, InsertOffset); DstRegs.push_back(DstReg); } assert(DstRegs.size() == (unsigned)NumParts && "not all parts covered"); Register DstReg = MI.getOperand(0).getReg(); if(MRI.getType(DstReg).isVector()) MIRBuilder.buildBuildVector(DstReg, DstRegs); else MIRBuilder.buildMerge(DstReg, DstRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); assert(MI.getNumOperands() == 3 && TypeIdx == 0); SmallVector DstRegs, DstLeftoverRegs; SmallVector Src0Regs, Src0LeftoverRegs; SmallVector Src1Regs, Src1LeftoverRegs; LLT LeftoverTy; if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, Src0Regs, Src0LeftoverRegs)) return UnableToLegalize; LLT Unused; if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, Src1Regs, Src1LeftoverRegs)) llvm_unreachable("inconsistent extractParts result"); for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, {Src0Regs[I], Src1Regs[I]}); DstRegs.push_back(Inst->getOperand(0).getReg()); } for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { auto Inst = MIRBuilder.buildInstr( MI.getOpcode(), {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); DstLeftoverRegs.push_back(Inst->getOperand(0).getReg()); } insertParts(DstReg, DstTy, NarrowTy, DstRegs, LeftoverTy, DstLeftoverRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, LLT NarrowTy) { if (TypeIdx != 0) return UnableToLegalize; Register CondReg = MI.getOperand(1).getReg(); LLT CondTy = MRI.getType(CondReg); if (CondTy.isVector()) // TODO: Handle vselect return UnableToLegalize; Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); SmallVector DstRegs, DstLeftoverRegs; SmallVector Src1Regs, Src1LeftoverRegs; SmallVector Src2Regs, Src2LeftoverRegs; LLT LeftoverTy; if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, Src1Regs, Src1LeftoverRegs)) return UnableToLegalize; LLT Unused; if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, Src2Regs, Src2LeftoverRegs)) llvm_unreachable("inconsistent extractParts result"); for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { auto Select = MIRBuilder.buildSelect(NarrowTy, CondReg, Src1Regs[I], Src2Regs[I]); DstRegs.push_back(Select->getOperand(0).getReg()); } for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { auto Select = MIRBuilder.buildSelect( LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); DstLeftoverRegs.push_back(Select->getOperand(0).getReg()); } insertParts(DstReg, DstTy, NarrowTy, DstRegs, LeftoverTy, DstLeftoverRegs); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerBitCount(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { unsigned Opc = MI.getOpcode(); auto &TII = *MI.getMF()->getSubtarget().getInstrInfo(); auto isSupported = [this](const LegalityQuery &Q) { auto QAction = LI.getAction(Q).Action; return QAction == Legal || QAction == Libcall || QAction == Custom; }; switch (Opc) { default: return UnableToLegalize; case TargetOpcode::G_CTLZ_ZERO_UNDEF: { // This trivially expands to CTLZ. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CTLZ: { Register SrcReg = MI.getOperand(1).getReg(); unsigned Len = Ty.getSizeInBits(); if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty, Ty}})) { // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. auto MIBCtlzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTLZ_ZERO_UNDEF, {Ty}, {SrcReg}); auto MIBZero = MIRBuilder.buildConstant(Ty, 0); auto MIBLen = MIRBuilder.buildConstant(Ty, Len); auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), SrcReg, MIBZero); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, MIBCtlzZU); MI.eraseFromParent(); return Legalized; } // for now, we do this: // NewLen = NextPowerOf2(Len); // x = x | (x >> 1); // x = x | (x >> 2); // ... // x = x | (x >>16); // x = x | (x >>32); // for 64-bit input // Upto NewLen/2 // return Len - popcount(x); // // Ref: "Hacker's Delight" by Henry Warren Register Op = SrcReg; unsigned NewLen = PowerOf2Ceil(Len); for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { auto MIBShiftAmt = MIRBuilder.buildConstant(Ty, 1ULL << i); auto MIBOp = MIRBuilder.buildInstr( TargetOpcode::G_OR, {Ty}, {Op, MIRBuilder.buildInstr(TargetOpcode::G_LSHR, {Ty}, {Op, MIBShiftAmt})}); Op = MIBOp->getOperand(0).getReg(); } auto MIBPop = MIRBuilder.buildInstr(TargetOpcode::G_CTPOP, {Ty}, {Op}); MIRBuilder.buildInstr(TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, {MIRBuilder.buildConstant(Ty, Len), MIBPop}); MI.eraseFromParent(); return Legalized; } case TargetOpcode::G_CTTZ_ZERO_UNDEF: { // This trivially expands to CTTZ. Observer.changingInstr(MI); MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); Observer.changedInstr(MI); return Legalized; } case TargetOpcode::G_CTTZ: { Register SrcReg = MI.getOperand(1).getReg(); unsigned Len = Ty.getSizeInBits(); if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty, Ty}})) { // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with // zero. auto MIBCttzZU = MIRBuilder.buildInstr(TargetOpcode::G_CTTZ_ZERO_UNDEF, {Ty}, {SrcReg}); auto MIBZero = MIRBuilder.buildConstant(Ty, 0); auto MIBLen = MIRBuilder.buildConstant(Ty, Len); auto MIBICmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), SrcReg, MIBZero); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), MIBICmp, MIBLen, MIBCttzZU); MI.eraseFromParent(); return Legalized; } // for now, we use: { return popcount(~x & (x - 1)); } // unless the target has ctlz but not ctpop, in which case we use: // { return 32 - nlz(~x & (x-1)); } // Ref: "Hacker's Delight" by Henry Warren auto MIBCstNeg1 = MIRBuilder.buildConstant(Ty, -1); auto MIBNot = MIRBuilder.buildInstr(TargetOpcode::G_XOR, {Ty}, {SrcReg, MIBCstNeg1}); auto MIBTmp = MIRBuilder.buildInstr( TargetOpcode::G_AND, {Ty}, {MIBNot, MIRBuilder.buildInstr(TargetOpcode::G_ADD, {Ty}, {SrcReg, MIBCstNeg1})}); if (!isSupported({TargetOpcode::G_CTPOP, {Ty, Ty}}) && isSupported({TargetOpcode::G_CTLZ, {Ty, Ty}})) { auto MIBCstLen = MIRBuilder.buildConstant(Ty, Len); MIRBuilder.buildInstr( TargetOpcode::G_SUB, {MI.getOperand(0).getReg()}, {MIBCstLen, MIRBuilder.buildInstr(TargetOpcode::G_CTLZ, {Ty}, {MIBTmp})}); MI.eraseFromParent(); return Legalized; } MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); MI.getOperand(1).setReg(MIBTmp->getOperand(0).getReg()); return Legalized; } } } // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float // representation. LegalizerHelper::LegalizeResult LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); const LLT S1 = LLT::scalar(1); assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); // unsigned cul2f(ulong u) { // uint lz = clz(u); // uint e = (u != 0) ? 127U + 63U - lz : 0; // u = (u << lz) & 0x7fffffffffffffffUL; // ulong t = u & 0xffffffffffUL; // uint v = (e << 23) | (uint)(u >> 40); // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); // return as_float(v + r); // } auto Zero32 = MIRBuilder.buildConstant(S32, 0); auto Zero64 = MIRBuilder.buildConstant(S64, 0); auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); auto K = MIRBuilder.buildConstant(S32, 127U + 63U); auto Sub = MIRBuilder.buildSub(S32, K, LZ); auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); auto T = MIRBuilder.buildAnd(S64, U, Mask1); auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); auto One = MIRBuilder.buildConstant(S32, 1); auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); MIRBuilder.buildAdd(Dst, V, R); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); if (SrcTy != LLT::scalar(64)) return UnableToLegalize; if (DstTy == LLT::scalar(32)) { // TODO: SelectionDAG has several alternative expansions to port which may // be more reasonble depending on the available instructions. If a target // has sitofp, does not have CTLZ, or can efficiently use f64 as an // intermediate type, this is probably worse. return lowerU64ToF32BitOps(MI); } return UnableToLegalize; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); const LLT S1 = LLT::scalar(1); if (SrcTy != S64) return UnableToLegalize; if (DstTy == S32) { // signed cl2f(long l) { // long s = l >> 63; // float r = cul2f((l + s) ^ s); // return s ? -r : r; // } Register L = Src; auto SignBit = MIRBuilder.buildConstant(S64, 63); auto S = MIRBuilder.buildAShr(S64, L, SignBit); auto LPlusS = MIRBuilder.buildAdd(S64, L, S); auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); auto R = MIRBuilder.buildUITOFP(S32, Xor); auto RNeg = MIRBuilder.buildFNeg(S32, R); auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, MIRBuilder.buildConstant(S64, 0)); MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); return Legalized; } return UnableToLegalize; } static CmpInst::Predicate minMaxToCompare(unsigned Opc) { switch (Opc) { case TargetOpcode::G_SMIN: return CmpInst::ICMP_SLT; case TargetOpcode::G_SMAX: return CmpInst::ICMP_SGT; case TargetOpcode::G_UMIN: return CmpInst::ICMP_ULT; case TargetOpcode::G_UMAX: return CmpInst::ICMP_UGT; default: llvm_unreachable("not in integer min/max"); } } LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); LLT CmpType = MRI.getType(Dst).changeElementSize(1); auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFCopySign(MachineInstr &MI, unsigned TypeIdx, LLT Ty) { Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); const LLT Src0Ty = MRI.getType(Src0); const LLT Src1Ty = MRI.getType(Src1); const int Src0Size = Src0Ty.getScalarSizeInBits(); const int Src1Size = Src1Ty.getScalarSizeInBits(); auto SignBitMask = MIRBuilder.buildConstant( Src0Ty, APInt::getSignMask(Src0Size)); auto NotSignBitMask = MIRBuilder.buildConstant( Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); auto And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask); MachineInstr *Or; if (Src0Ty == Src1Ty) { auto And1 = MIRBuilder.buildAnd(Src1Ty, Src0, SignBitMask); Or = MIRBuilder.buildOr(Dst, And0, And1); } else if (Src0Size > Src1Size) { auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); auto And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask); Or = MIRBuilder.buildOr(Dst, And0, And1); } else { auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); auto And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask); Or = MIRBuilder.buildOr(Dst, And0, And1); } // Be careful about setting nsz/nnan/ninf on every instruction, since the // constants are a nan and -0.0, but the final result should preserve // everything. if (unsigned Flags = MI.getFlags()) Or->setFlags(Flags); MI.eraseFromParent(); return Legalized; } LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; Register Dst = MI.getOperand(0).getReg(); Register Src0 = MI.getOperand(1).getReg(); Register Src1 = MI.getOperand(2).getReg(); LLT Ty = MRI.getType(Dst); if (!MI.getFlag(MachineInstr::FmNoNans)) { // Insert canonicalizes if it's possible we need to quiet to get correct // sNaN behavior. // Note this must be done here, and not as an optimization combine in the // absence of a dedicate quiet-snan instruction as we're using an // omni-purpose G_FCANONICALIZE. if (!isKnownNeverSNaN(Src0, MRI)) Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); if (!isKnownNeverSNaN(Src1, MRI)) Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); } // If there are no nans, it's safe to simply replace this with the non-IEEE // version. MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); MI.eraseFromParent(); return Legalized; }