//===- RegAllocFast.cpp - A fast register allocator for debug code --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This register allocator allocates registers to a basic block at a /// time, attempting to keep values in registers and reusing registers as /// appropriate. // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IndexedMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegAllocRegistry.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Metadata.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "regalloc" STATISTIC(NumStores, "Number of stores added"); STATISTIC(NumLoads , "Number of loads added"); STATISTIC(NumCoalesced, "Number of copies coalesced"); static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); namespace { class RegAllocFast : public MachineFunctionPass { public: static char ID; RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} private: MachineFrameInfo *MFI; MachineRegisterInfo *MRI; const TargetRegisterInfo *TRI; const TargetInstrInfo *TII; RegisterClassInfo RegClassInfo; /// Basic block currently being allocated. MachineBasicBlock *MBB; /// Maps virtual regs to the frame index where these values are spilled. IndexedMap StackSlotForVirtReg; /// Everything we know about a live virtual register. struct LiveReg { MachineInstr *LastUse = nullptr; ///< Last instr to use reg. unsigned VirtReg; ///< Virtual register number. MCPhysReg PhysReg = 0; ///< Currently held here. unsigned short LastOpNum = 0; ///< OpNum on LastUse. bool Dirty = false; ///< Register needs spill. explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} unsigned getSparseSetIndex() const { return TargetRegisterInfo::virtReg2Index(VirtReg); } }; using LiveRegMap = SparseSet; /// This map contains entries for each virtual register that is currently /// available in a physical register. LiveRegMap LiveVirtRegs; DenseMap> LiveDbgValueMap; /// Has a bit set for every virtual register for which it was determined /// that it is alive across blocks. BitVector MayLiveAcrossBlocks; /// State of a physical register. enum RegState { /// A disabled register is not available for allocation, but an alias may /// be in use. A register can only be moved out of the disabled state if /// all aliases are disabled. regDisabled, /// A free register is not currently in use and can be allocated /// immediately without checking aliases. regFree, /// A reserved register has been assigned explicitly (e.g., setting up a /// call parameter), and it remains reserved until it is used. regReserved /// A register state may also be a virtual register number, indication /// that the physical register is currently allocated to a virtual /// register. In that case, LiveVirtRegs contains the inverse mapping. }; /// Maps each physical register to a RegState enum or a virtual register. std::vector PhysRegState; SmallVector VirtDead; SmallVector Coalesced; using RegUnitSet = SparseSet>; /// Set of register units that are used in the current instruction, and so /// cannot be allocated. RegUnitSet UsedInInstr; void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); /// Mark a physreg as used in this instruction. void markRegUsedInInstr(MCPhysReg PhysReg) { for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) UsedInInstr.insert(*Units); } /// Check if a physreg or any of its aliases are used in this instruction. bool isRegUsedInInstr(MCPhysReg PhysReg) const { for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) if (UsedInInstr.count(*Units)) return true; return false; } enum : unsigned { spillClean = 50, spillDirty = 100, spillPrefBonus = 20, spillImpossible = ~0u }; public: StringRef getPassName() const override { return "Fast Register Allocator"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoPHIs); } MachineFunctionProperties getSetProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: bool runOnMachineFunction(MachineFunction &MF) override; void allocateBasicBlock(MachineBasicBlock &MBB); void allocateInstruction(MachineInstr &MI); void handleDebugValue(MachineInstr &MI); void handleThroughOperands(MachineInstr &MI, SmallVectorImpl &VirtDead); bool isLastUseOfLocalReg(const MachineOperand &MO) const; void addKillFlag(const LiveReg &LRI); void killVirtReg(LiveReg &LR); void killVirtReg(unsigned VirtReg); void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); void usePhysReg(MachineOperand &MO); void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, RegState NewState); unsigned calcSpillCost(MCPhysReg PhysReg) const; void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); } LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); } void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); void allocVirtRegUndef(MachineOperand &MO); MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, unsigned Hint); LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, unsigned Hint); void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); unsigned traceCopies(unsigned VirtReg) const; unsigned traceCopyChain(unsigned Reg) const; int getStackSpaceFor(unsigned VirtReg); void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, MCPhysReg AssignedReg, bool Kill); void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, MCPhysReg PhysReg); bool mayLiveOut(unsigned VirtReg); bool mayLiveIn(unsigned VirtReg); void dumpState(); }; } // end anonymous namespace char RegAllocFast::ID = 0; INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, false) void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { PhysRegState[PhysReg] = NewState; } /// This allocates space for the specified virtual register to be held on the /// stack. int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { // Find the location Reg would belong... int SS = StackSlotForVirtReg[VirtReg]; // Already has space allocated? if (SS != -1) return SS; // Allocate a new stack object for this spill location... const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); unsigned Size = TRI->getSpillSize(RC); unsigned Align = TRI->getSpillAlignment(RC); int FrameIdx = MFI->CreateSpillStackObject(Size, Align); // Assign the slot. StackSlotForVirtReg[VirtReg] = FrameIdx; return FrameIdx; } /// Returns false if \p VirtReg is known to not live out of the current block. bool RegAllocFast::mayLiveOut(unsigned VirtReg) { if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) { // Cannot be live-out if there are no successors. return !MBB->succ_empty(); } // If this block loops back to itself, it would be necessary to check whether // the use comes after the def. if (MBB->isSuccessor(MBB)) { MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); return true; } // See if the first \p Limit uses of the register are all in the current // block. static const unsigned Limit = 8; unsigned C = 0; for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { if (UseInst.getParent() != MBB || ++C >= Limit) { MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); // Cannot be live-out if there are no successors. return !MBB->succ_empty(); } } return false; } /// Returns false if \p VirtReg is known to not be live into the current block. bool RegAllocFast::mayLiveIn(unsigned VirtReg) { if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) return !MBB->pred_empty(); // See if the first \p Limit def of the register are all in the current block. static const unsigned Limit = 8; unsigned C = 0; for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { if (DefInst.getParent() != MBB || ++C >= Limit) { MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); return !MBB->pred_empty(); } } return false; } /// Insert spill instruction for \p AssignedReg before \p Before. Update /// DBG_VALUEs with \p VirtReg operands with the stack slot. void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, MCPhysReg AssignedReg, bool Kill) { LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " << printReg(AssignedReg, TRI)); int FI = getStackSpaceFor(VirtReg); LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); ++NumStores; // If this register is used by DBG_VALUE then insert new DBG_VALUE to // identify spilled location as the place to find corresponding variable's // value. SmallVectorImpl &LRIDbgValues = LiveDbgValueMap[VirtReg]; for (MachineInstr *DBG : LRIDbgValues) { MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); assert(NewDV->getParent() == MBB && "dangling parent pointer"); (void)NewDV; LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); } // Now this register is spilled there is should not be any DBG_VALUE // pointing to this register because they are all pointing to spilled value // now. LRIDbgValues.clear(); } /// Insert reload instruction for \p PhysReg before \p Before. void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, MCPhysReg PhysReg) { LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " << printReg(PhysReg, TRI) << '\n'); int FI = getStackSpaceFor(VirtReg); const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); ++NumLoads; } /// Return true if MO is the only remaining reference to its virtual register, /// and it is guaranteed to be a block-local register. bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { // If the register has ever been spilled or reloaded, we conservatively assume // it is a global register used in multiple blocks. if (StackSlotForVirtReg[MO.getReg()] != -1) return false; // Check that the use/def chain has exactly one operand - MO. MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); if (&*I != &MO) return false; return ++I == MRI->reg_nodbg_end(); } /// Set kill flags on last use of a virtual register. void RegAllocFast::addKillFlag(const LiveReg &LR) { if (!LR.LastUse) return; MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { if (MO.getReg() == LR.PhysReg) MO.setIsKill(); // else, don't do anything we are problably redefining a // subreg of this register and given we don't track which // lanes are actually dead, we cannot insert a kill flag here. // Otherwise we may end up in a situation like this: // ... = (MO) physreg:sub1, implicit killed physreg // ... <== Here we would allow later pass to reuse physreg:sub1 // which is potentially wrong. // LR:sub0 = ... // ... = LR.sub1 <== This is going to use physreg:sub1 } } /// Mark virtreg as no longer available. void RegAllocFast::killVirtReg(LiveReg &LR) { addKillFlag(LR); assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); setPhysRegState(LR.PhysReg, regFree); LR.PhysReg = 0; } /// Mark virtreg as no longer available. void RegAllocFast::killVirtReg(unsigned VirtReg) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "killVirtReg needs a virtual register"); LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); if (LRI != LiveVirtRegs.end() && LRI->PhysReg) killVirtReg(*LRI); } /// This method spills the value specified by VirtReg into the corresponding /// stack slot if needed. void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Spilling a physical register is illegal!"); LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && "Spilling unmapped virtual register"); spillVirtReg(MI, *LRI); } /// Do the actual work of spilling. void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); if (LR.Dirty) { // If this physreg is used by the instruction, we want to kill it on the // instruction, not on the spill. bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; LR.Dirty = false; spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); if (SpillKill) LR.LastUse = nullptr; // Don't kill register again } killVirtReg(LR); } /// Spill all dirty virtregs without killing them. void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { if (LiveVirtRegs.empty()) return; // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order // of spilling here is deterministic, if arbitrary. for (LiveReg &LR : LiveVirtRegs) { if (!LR.PhysReg) continue; if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) continue; spillVirtReg(MI, LR); } LiveVirtRegs.clear(); } /// Handle the direct use of a physical register. Check that the register is /// not used by a virtreg. Kill the physreg, marking it free. This may add /// implicit kills to MO->getParent() and invalidate MO. void RegAllocFast::usePhysReg(MachineOperand &MO) { // Ignore undef uses. if (MO.isUndef()) return; unsigned PhysReg = MO.getReg(); assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand"); markRegUsedInInstr(PhysReg); switch (PhysRegState[PhysReg]) { case regDisabled: break; case regReserved: PhysRegState[PhysReg] = regFree; LLVM_FALLTHROUGH; case regFree: MO.setIsKill(); return; default: // The physreg was allocated to a virtual register. That means the value we // wanted has been clobbered. llvm_unreachable("Instruction uses an allocated register"); } // Maybe a superregister is reserved? for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { MCPhysReg Alias = *AI; switch (PhysRegState[Alias]) { case regDisabled: break; case regReserved: // Either PhysReg is a subregister of Alias and we mark the // whole register as free, or PhysReg is the superregister of // Alias and we mark all the aliases as disabled before freeing // PhysReg. // In the latter case, since PhysReg was disabled, this means that // its value is defined only by physical sub-registers. This check // is performed by the assert of the default case in this loop. // Note: The value of the superregister may only be partial // defined, that is why regDisabled is a valid state for aliases. assert((TRI->isSuperRegister(PhysReg, Alias) || TRI->isSuperRegister(Alias, PhysReg)) && "Instruction is not using a subregister of a reserved register"); LLVM_FALLTHROUGH; case regFree: if (TRI->isSuperRegister(PhysReg, Alias)) { // Leave the superregister in the working set. setPhysRegState(Alias, regFree); MO.getParent()->addRegisterKilled(Alias, TRI, true); return; } // Some other alias was in the working set - clear it. setPhysRegState(Alias, regDisabled); break; default: llvm_unreachable("Instruction uses an alias of an allocated register"); } } // All aliases are disabled, bring register into working set. setPhysRegState(PhysReg, regFree); MO.setIsKill(); } /// Mark PhysReg as reserved or free after spilling any virtregs. This is very /// similar to defineVirtReg except the physreg is reserved instead of /// allocated. void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, RegState NewState) { markRegUsedInInstr(PhysReg); switch (unsigned VirtReg = PhysRegState[PhysReg]) { case regDisabled: break; default: spillVirtReg(MI, VirtReg); LLVM_FALLTHROUGH; case regFree: case regReserved: setPhysRegState(PhysReg, NewState); return; } // This is a disabled register, disable all aliases. setPhysRegState(PhysReg, NewState); for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { MCPhysReg Alias = *AI; switch (unsigned VirtReg = PhysRegState[Alias]) { case regDisabled: break; default: spillVirtReg(MI, VirtReg); LLVM_FALLTHROUGH; case regFree: case regReserved: setPhysRegState(Alias, regDisabled); if (TRI->isSuperRegister(PhysReg, Alias)) return; break; } } } /// Return the cost of spilling clearing out PhysReg and aliases so it is free /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases /// disabled - it can be allocated directly. /// \returns spillImpossible when PhysReg or an alias can't be spilled. unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { if (isRegUsedInInstr(PhysReg)) { LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is already used in instr.\n"); return spillImpossible; } switch (unsigned VirtReg = PhysRegState[PhysReg]) { case regDisabled: break; case regFree: return 0; case regReserved: LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " << printReg(PhysReg, TRI) << " is reserved already.\n"); return spillImpossible; default: { LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && "Missing VirtReg entry"); return LRI->Dirty ? spillDirty : spillClean; } } // This is a disabled register, add up cost of aliases. LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); unsigned Cost = 0; for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { MCPhysReg Alias = *AI; switch (unsigned VirtReg = PhysRegState[Alias]) { case regDisabled: break; case regFree: ++Cost; break; case regReserved: return spillImpossible; default: { LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && "Missing VirtReg entry"); Cost += LRI->Dirty ? spillDirty : spillClean; break; } } } return Cost; } /// This method updates local state so that we know that PhysReg is the /// proper container for VirtReg now. The physical register must not be used /// for anything else when this is called. void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { unsigned VirtReg = LR.VirtReg; LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " << printReg(PhysReg, TRI) << '\n'); assert(LR.PhysReg == 0 && "Already assigned a physreg"); assert(PhysReg != 0 && "Trying to assign no register"); LR.PhysReg = PhysReg; setPhysRegState(PhysReg, VirtReg); } static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } unsigned RegAllocFast::traceCopyChain(unsigned Reg) const { static const unsigned ChainLengthLimit = 3; unsigned C = 0; do { if (TargetRegisterInfo::isPhysicalRegister(Reg)) return Reg; assert(TargetRegisterInfo::isVirtualRegister(Reg)); MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); if (!VRegDef || !isCoalescable(*VRegDef)) return 0; Reg = VRegDef->getOperand(1).getReg(); } while (++C <= ChainLengthLimit); return 0; } /// Check if any of \p VirtReg's definitions is a copy. If it is follow the /// chain of copies to check whether we reach a physical register we can /// coalesce with. unsigned RegAllocFast::traceCopies(unsigned VirtReg) const { static const unsigned DefLimit = 3; unsigned C = 0; for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { if (isCoalescable(MI)) { unsigned Reg = MI.getOperand(1).getReg(); Reg = traceCopyChain(Reg); if (Reg != 0) return Reg; } if (++C >= DefLimit) break; } return 0; } /// Allocates a physical register for VirtReg. void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) { const unsigned VirtReg = LR.VirtReg; assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Can only allocate virtual registers"); const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) << " in class " << TRI->getRegClassName(&RC) << " with hint " << printReg(Hint0, TRI) << '\n'); // Take hint when possible. if (TargetRegisterInfo::isPhysicalRegister(Hint0) && MRI->isAllocatable(Hint0) && RC.contains(Hint0)) { // Ignore the hint if we would have to spill a dirty register. unsigned Cost = calcSpillCost(Hint0); if (Cost < spillDirty) { LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) << '\n'); if (Cost) definePhysReg(MI, Hint0, regFree); assignVirtToPhysReg(LR, Hint0); return; } else { LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) << "occupied\n"); } } else { Hint0 = 0; } // Try other hint. unsigned Hint1 = traceCopies(VirtReg); if (TargetRegisterInfo::isPhysicalRegister(Hint1) && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) { // Ignore the hint if we would have to spill a dirty register. unsigned Cost = calcSpillCost(Hint1); if (Cost < spillDirty) { LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) << '\n'); if (Cost) definePhysReg(MI, Hint1, regFree); assignVirtToPhysReg(LR, Hint1); return; } else { LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) << "occupied\n"); } } else { Hint1 = 0; } MCPhysReg BestReg = 0; unsigned BestCost = spillImpossible; ArrayRef AllocationOrder = RegClassInfo.getOrder(&RC); for (MCPhysReg PhysReg : AllocationOrder) { LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); unsigned Cost = calcSpillCost(PhysReg); LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); // Immediate take a register with cost 0. if (Cost == 0) { assignVirtToPhysReg(LR, PhysReg); return; } if (PhysReg == Hint1 || PhysReg == Hint0) Cost -= spillPrefBonus; if (Cost < BestCost) { BestReg = PhysReg; BestCost = Cost; } } if (!BestReg) { // Nothing we can do: Report an error and keep going with an invalid // allocation. if (MI.isInlineAsm()) MI.emitError("inline assembly requires more registers than available"); else MI.emitError("ran out of registers during register allocation"); definePhysReg(MI, *AllocationOrder.begin(), regFree); assignVirtToPhysReg(LR, *AllocationOrder.begin()); return; } definePhysReg(MI, BestReg, regFree); assignVirtToPhysReg(LR, BestReg); } void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { assert(MO.isUndef() && "expected undef use"); unsigned VirtReg = MO.getReg(); assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg"); LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); MCPhysReg PhysReg; if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { PhysReg = LRI->PhysReg; } else { const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); ArrayRef AllocationOrder = RegClassInfo.getOrder(&RC); assert(!AllocationOrder.empty() && "Allocation order must not be empty"); PhysReg = AllocationOrder[0]; } unsigned SubRegIdx = MO.getSubReg(); if (SubRegIdx != 0) { PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); MO.setSubReg(0); } MO.setReg(PhysReg); MO.setIsRenamable(true); } /// Allocates a register for VirtReg and mark it as dirty. MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, unsigned Hint) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Not a virtual register"); LiveRegMap::iterator LRI; bool New; std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); if (!LRI->PhysReg) { // If there is no hint, peek at the only use of this register. if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && MRI->hasOneNonDBGUse(VirtReg)) { const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); // It's a copy, use the destination register as a hint. if (UseMI.isCopyLike()) Hint = UseMI.getOperand(0).getReg(); } allocVirtReg(MI, *LRI, Hint); } else if (LRI->LastUse) { // Redefining a live register - kill at the last use, unless it is this // instruction defining VirtReg multiple times. if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) addKillFlag(*LRI); } assert(LRI->PhysReg && "Register not assigned"); LRI->LastUse = &MI; LRI->LastOpNum = OpNum; LRI->Dirty = true; markRegUsedInInstr(LRI->PhysReg); return LRI->PhysReg; } /// Make sure VirtReg is available in a physreg and return it. RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, unsigned Hint) { assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Not a virtual register"); LiveRegMap::iterator LRI; bool New; std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); MachineOperand &MO = MI.getOperand(OpNum); if (!LRI->PhysReg) { allocVirtReg(MI, *LRI, Hint); reload(MI, VirtReg, LRI->PhysReg); } else if (LRI->Dirty) { if (isLastUseOfLocalReg(MO)) { LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); if (MO.isUse()) MO.setIsKill(); else MO.setIsDead(); } else if (MO.isKill()) { LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); MO.setIsKill(false); } else if (MO.isDead()) { LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); MO.setIsDead(false); } } else if (MO.isKill()) { // We must remove kill flags from uses of reloaded registers because the // register would be killed immediately, and there might be a second use: // %foo = OR killed %x, %x // This would cause a second reload of %x into a different register. LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); MO.setIsKill(false); } else if (MO.isDead()) { LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); MO.setIsDead(false); } assert(LRI->PhysReg && "Register not assigned"); LRI->LastUse = &MI; LRI->LastOpNum = OpNum; markRegUsedInInstr(LRI->PhysReg); return *LRI; } /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This /// may invalidate any operand pointers. Return true if the operand kills its /// register. bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg) { bool Dead = MO.isDead(); if (!MO.getSubReg()) { MO.setReg(PhysReg); MO.setIsRenamable(true); return MO.isKill() || Dead; } // Handle subregister index. MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); MO.setIsRenamable(true); MO.setSubReg(0); // A kill flag implies killing the full register. Add corresponding super // register kill. if (MO.isKill()) { MI.addRegisterKilled(PhysReg, TRI, true); return true; } // A of a sub-register requires an implicit def of the full // register. if (MO.isDef() && MO.isUndef()) MI.addRegisterDefined(PhysReg, TRI); return Dead; } // Handles special instruction operand like early clobbers and tied ops when // there are additional physreg defines. void RegAllocFast::handleThroughOperands(MachineInstr &MI, SmallVectorImpl &VirtDead) { LLVM_DEBUG(dbgs() << "Scanning for through registers:"); SmallSet ThroughRegs; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { if (ThroughRegs.insert(Reg).second) LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); } } // If any physreg defines collide with preallocated through registers, // we must spill and reallocate. LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || !MO.isDef()) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; markRegUsedInInstr(Reg); for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { if (ThroughRegs.count(PhysRegState[*AI])) definePhysReg(MI, *AI, regFree); } } SmallVector PartialDefs; LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { MachineOperand &MO = MI.getOperand(I); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isUse()) { if (!MO.isTied()) continue; LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO << ") is tied to operand " << MI.findTiedOperandIdx(I) << ".\n"); LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); MCPhysReg PhysReg = LR.PhysReg; setPhysReg(MI, MO, PhysReg); // Note: we don't update the def operand yet. That would cause the normal // def-scan to attempt spilling. } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); // Reload the register, but don't assign to the operand just yet. // That would confuse the later phys-def processing pass. LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); PartialDefs.push_back(LR.PhysReg); } } LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { const MachineOperand &MO = MI.getOperand(I); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (!MO.isEarlyClobber()) continue; // Note: defineVirtReg may invalidate MO. MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); if (setPhysReg(MI, MI.getOperand(I), PhysReg)) VirtDead.push_back(Reg); } // Restore UsedInInstr to a state usable for allocating normal virtual uses. UsedInInstr.clear(); for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) << " as used in instr\n"); markRegUsedInInstr(Reg); } // Also mark PartialDefs as used to avoid reallocation. for (unsigned PartialDef : PartialDefs) markRegUsedInInstr(PartialDef); } #ifndef NDEBUG void RegAllocFast::dumpState() { for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { if (PhysRegState[Reg] == regDisabled) continue; dbgs() << " " << printReg(Reg, TRI); switch(PhysRegState[Reg]) { case regFree: break; case regReserved: dbgs() << "*"; break; default: { dbgs() << '=' << printReg(PhysRegState[Reg]); LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && "Missing VirtReg entry"); if (LRI->Dirty) dbgs() << "*"; assert(LRI->PhysReg == Reg && "Bad inverse map"); break; } } } dbgs() << '\n'; // Check that LiveVirtRegs is the inverse. for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); i != e; ++i) { if (!i->PhysReg) continue; assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && "Bad map key"); assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && "Bad map value"); assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); } } #endif void RegAllocFast::allocateInstruction(MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); // If this is a copy, we may be able to coalesce. unsigned CopySrcReg = 0; unsigned CopyDstReg = 0; unsigned CopySrcSub = 0; unsigned CopyDstSub = 0; if (MI.isCopy()) { CopyDstReg = MI.getOperand(0).getReg(); CopySrcReg = MI.getOperand(1).getReg(); CopyDstSub = MI.getOperand(0).getSubReg(); CopySrcSub = MI.getOperand(1).getSubReg(); } // Track registers used by instruction. UsedInInstr.clear(); // First scan. // Mark physreg uses and early clobbers as used. // Find the end of the virtreg operands unsigned VirtOpEnd = 0; bool hasTiedOps = false; bool hasEarlyClobbers = false; bool hasPartialRedefs = false; bool hasPhysDefs = false; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); // Make sure MRI knows about registers clobbered by regmasks. if (MO.isRegMask()) { MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); continue; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg) continue; if (TargetRegisterInfo::isVirtualRegister(Reg)) { VirtOpEnd = i+1; if (MO.isUse()) { hasTiedOps = hasTiedOps || MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; } else { if (MO.isEarlyClobber()) hasEarlyClobbers = true; if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) hasPartialRedefs = true; } continue; } if (!MRI->isAllocatable(Reg)) continue; if (MO.isUse()) { usePhysReg(MO); } else if (MO.isEarlyClobber()) { definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); hasEarlyClobbers = true; } else hasPhysDefs = true; } // The instruction may have virtual register operands that must be allocated // the same register at use-time and def-time: early clobbers and tied // operands. If there are also physical defs, these registers must avoid // both physical defs and uses, making them more constrained than normal // operands. // Similarly, if there are multiple defs and tied operands, we must make // sure the same register is allocated to uses and defs. // We didn't detect inline asm tied operands above, so just make this extra // pass for all inline asm. if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { handleThroughOperands(MI, VirtDead); // Don't attempt coalescing when we have funny stuff going on. CopyDstReg = 0; // Pretend we have early clobbers so the use operands get marked below. // This is not necessary for the common case of a single tied use. hasEarlyClobbers = true; } // Second scan. // Allocate virtreg uses. bool HasUndefUse = false; for (unsigned I = 0; I != VirtOpEnd; ++I) { MachineOperand &MO = MI.getOperand(I); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; if (MO.isUse()) { if (MO.isUndef()) { HasUndefUse = true; // There is no need to allocate a register for an undef use. continue; } // Populate MayLiveAcrossBlocks in case the use block is allocated before // the def block (removing the vreg uses). mayLiveIn(Reg); LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); MCPhysReg PhysReg = LR.PhysReg; CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; if (setPhysReg(MI, MO, PhysReg)) killVirtReg(LR); } } // Allocate undef operands. This is a separate step because in a situation // like ` = OP undef %X, %X` both operands need the same register assign // so we should perform the normal assignment first. if (HasUndefUse) { for (MachineOperand &MO : MI.uses()) { if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; assert(MO.isUndef() && "Should only have undef virtreg uses left"); allocVirtRegUndef(MO); } } // Track registers defined by instruction - early clobbers and tied uses at // this point. UsedInInstr.clear(); if (hasEarlyClobbers) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; // Look for physreg defs and tied uses. if (!MO.isDef() && !MO.isTied()) continue; markRegUsedInInstr(Reg); } } unsigned DefOpEnd = MI.getNumOperands(); if (MI.isCall()) { // Spill all virtregs before a call. This serves one purpose: If an // exception is thrown, the landing pad is going to expect to find // registers in their spill slots. // Note: although this is appealing to just consider all definitions // as call-clobbered, this is not correct because some of those // definitions may be used later on and we do not want to reuse // those for virtual registers in between. LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); spillAll(MI, /*OnlyLiveOut*/ false); } // Third scan. // Mark all physreg defs as used before allocating virtreg defs. for (unsigned I = 0; I != DefOpEnd; ++I) { const MachineOperand &MO = MI.getOperand(I); if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) continue; unsigned Reg = MO.getReg(); if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) || !MRI->isAllocatable(Reg)) continue; definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); } // Fourth scan. // Allocate defs and collect dead defs. for (unsigned I = 0; I != DefOpEnd; ++I) { const MachineOperand &MO = MI.getOperand(I); if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) continue; unsigned Reg = MO.getReg(); // We have already dealt with phys regs in the previous scan. if (TargetRegisterInfo::isPhysicalRegister(Reg)) continue; MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { VirtDead.push_back(Reg); CopyDstReg = 0; // cancel coalescing; } else CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; } // Kill dead defs after the scan to ensure that multiple defs of the same // register are allocated identically. We didn't need to do this for uses // because we are crerating our own kill flags, and they are always at the // last use. for (unsigned VirtReg : VirtDead) killVirtReg(VirtReg); VirtDead.clear(); LLVM_DEBUG(dbgs() << "<< " << MI); if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); Coalesced.push_back(&MI); } } void RegAllocFast::handleDebugValue(MachineInstr &MI) { MachineOperand &MO = MI.getOperand(0); // Ignore DBG_VALUEs that aren't based on virtual registers. These are // mostly constants and frame indices. if (!MO.isReg()) return; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isVirtualRegister(Reg)) return; // See if this virtual register has already been allocated to a physical // register or spilled to a stack slot. LiveRegMap::iterator LRI = findLiveVirtReg(Reg); if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { setPhysReg(MI, MO, LRI->PhysReg); } else { int SS = StackSlotForVirtReg[Reg]; if (SS != -1) { // Modify DBG_VALUE now that the value is in a spill slot. updateDbgValueForSpill(MI, SS); LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); return; } // We can't allocate a physreg for a DebugValue, sorry! LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); MO.setReg(0); } // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so // that future spills of Reg will have DBG_VALUEs. LiveDbgValueMap[Reg].push_back(&MI); } void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { this->MBB = &MBB; LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); PhysRegState.assign(TRI->getNumRegs(), regDisabled); assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); MachineBasicBlock::iterator MII = MBB.begin(); // Add live-in registers as live. for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) if (MRI->isAllocatable(LI.PhysReg)) definePhysReg(MII, LI.PhysReg, regReserved); VirtDead.clear(); Coalesced.clear(); // Otherwise, sequentially allocate each instruction in the MBB. for (MachineInstr &MI : MBB) { LLVM_DEBUG( dbgs() << "\n>> " << MI << "Regs:"; dumpState() ); // Special handling for debug values. Note that they are not allowed to // affect codegen of the other instructions in any way. if (MI.isDebugValue()) { handleDebugValue(MI); continue; } allocateInstruction(MI); } // Spill all physical registers holding virtual registers now. LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); // Erase all the coalesced copies. We are delaying it until now because // LiveVirtRegs might refer to the instrs. for (MachineInstr *MI : Coalesced) MBB.erase(MI); NumCoalesced += Coalesced.size(); LLVM_DEBUG(MBB.dump()); } bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" << "********** Function: " << MF.getName() << '\n'); MRI = &MF.getRegInfo(); const TargetSubtargetInfo &STI = MF.getSubtarget(); TRI = STI.getRegisterInfo(); TII = STI.getInstrInfo(); MFI = &MF.getFrameInfo(); MRI->freezeReservedRegs(MF); RegClassInfo.runOnMachineFunction(MF); UsedInInstr.clear(); UsedInInstr.setUniverse(TRI->getNumRegUnits()); // initialize the virtual->physical register map to have a 'null' // mapping for all virtual registers unsigned NumVirtRegs = MRI->getNumVirtRegs(); StackSlotForVirtReg.resize(NumVirtRegs); LiveVirtRegs.setUniverse(NumVirtRegs); MayLiveAcrossBlocks.clear(); MayLiveAcrossBlocks.resize(NumVirtRegs); // Loop over all of the basic blocks, eliminating virtual register references for (MachineBasicBlock &MBB : MF) allocateBasicBlock(MBB); // All machine operands and other references to virtual registers have been // replaced. Remove the virtual registers. MRI->clearVirtRegs(); StackSlotForVirtReg.clear(); LiveDbgValueMap.clear(); return true; } FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); }