//===- LegacyPassManager.cpp - LLVM Pass Infrastructure Implementation ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the legacy LLVM Pass Manager infrastructure. // //===----------------------------------------------------------------------===// #include "llvm/IR/LegacyPassManager.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/IRPrintingPasses.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManagers.h" #include "llvm/IR/LegacyPassNameParser.h" #include "llvm/IR/Module.h" #include "llvm/IR/PassTimingInfo.h" #include "llvm/Support/Chrono.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace llvm; // See PassManagers.h for Pass Manager infrastructure overview. //===----------------------------------------------------------------------===// // Pass debugging information. Often it is useful to find out what pass is // running when a crash occurs in a utility. When this library is compiled with // debugging on, a command line option (--debug-pass) is enabled that causes the // pass name to be printed before it executes. // namespace { // Different debug levels that can be enabled... enum PassDebugLevel { Disabled, Arguments, Structure, Executions, Details }; } static cl::opt PassDebugging("debug-pass", cl::Hidden, cl::desc("Print PassManager debugging information"), cl::values( clEnumVal(Disabled , "disable debug output"), clEnumVal(Arguments , "print pass arguments to pass to 'opt'"), clEnumVal(Structure , "print pass structure before run()"), clEnumVal(Executions, "print pass name before it is executed"), clEnumVal(Details , "print pass details when it is executed"))); namespace { typedef llvm::cl::list PassOptionList; } // Print IR out before/after specified passes. static PassOptionList PrintBefore("print-before", llvm::cl::desc("Print IR before specified passes"), cl::Hidden); static PassOptionList PrintAfter("print-after", llvm::cl::desc("Print IR after specified passes"), cl::Hidden); static cl::opt PrintBeforeAll("print-before-all", llvm::cl::desc("Print IR before each pass"), cl::init(false), cl::Hidden); static cl::opt PrintAfterAll("print-after-all", llvm::cl::desc("Print IR after each pass"), cl::init(false), cl::Hidden); static cl::opt PrintModuleScope("print-module-scope", cl::desc("When printing IR for print-[before|after]{-all} " "always print a module IR"), cl::init(false), cl::Hidden); static cl::list PrintFuncsList("filter-print-funcs", cl::value_desc("function names"), cl::desc("Only print IR for functions whose name " "match this for all print-[before|after][-all] " "options"), cl::CommaSeparated, cl::Hidden); /// This is a helper to determine whether to print IR before or /// after a pass. bool llvm::shouldPrintBeforePass() { return PrintBeforeAll || !PrintBefore.empty(); } bool llvm::shouldPrintAfterPass() { return PrintAfterAll || !PrintAfter.empty(); } static bool ShouldPrintBeforeOrAfterPass(StringRef PassID, PassOptionList &PassesToPrint) { for (auto *PassInf : PassesToPrint) { if (PassInf) if (PassInf->getPassArgument() == PassID) { return true; } } return false; } bool llvm::shouldPrintBeforePass(StringRef PassID) { return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PassID, PrintBefore); } bool llvm::shouldPrintAfterPass(StringRef PassID) { return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PassID, PrintAfter); } bool llvm::forcePrintModuleIR() { return PrintModuleScope; } bool llvm::isFunctionInPrintList(StringRef FunctionName) { static std::unordered_set PrintFuncNames(PrintFuncsList.begin(), PrintFuncsList.end()); return PrintFuncNames.empty() || PrintFuncNames.count(std::string(FunctionName)); } /// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions /// or higher is specified. bool PMDataManager::isPassDebuggingExecutionsOrMore() const { return PassDebugging >= Executions; } unsigned PMDataManager::initSizeRemarkInfo( Module &M, StringMap> &FunctionToInstrCount) { // Only calculate getInstructionCount if the size-info remark is requested. unsigned InstrCount = 0; // Collect instruction counts for every function. We'll use this to emit // per-function size remarks later. for (Function &F : M) { unsigned FCount = F.getInstructionCount(); // Insert a record into FunctionToInstrCount keeping track of the current // size of the function as the first member of a pair. Set the second // member to 0; if the function is deleted by the pass, then when we get // here, we'll be able to let the user know that F no longer contributes to // the module. FunctionToInstrCount[F.getName().str()] = std::pair(FCount, 0); InstrCount += FCount; } return InstrCount; } void PMDataManager::emitInstrCountChangedRemark( Pass *P, Module &M, int64_t Delta, unsigned CountBefore, StringMap> &FunctionToInstrCount, Function *F) { // If it's a pass manager, don't emit a remark. (This hinges on the assumption // that the only passes that return non-null with getAsPMDataManager are pass // managers.) The reason we have to do this is to avoid emitting remarks for // CGSCC passes. if (P->getAsPMDataManager()) return; // Set to true if this isn't a module pass or CGSCC pass. bool CouldOnlyImpactOneFunction = (F != nullptr); // Helper lambda that updates the changes to the size of some function. auto UpdateFunctionChanges = [&FunctionToInstrCount](Function &MaybeChangedFn) { // Update the total module count. unsigned FnSize = MaybeChangedFn.getInstructionCount(); auto It = FunctionToInstrCount.find(MaybeChangedFn.getName()); // If we created a new function, then we need to add it to the map and // say that it changed from 0 instructions to FnSize. if (It == FunctionToInstrCount.end()) { FunctionToInstrCount[MaybeChangedFn.getName()] = std::pair(0, FnSize); return; } // Insert the new function size into the second member of the pair. This // tells us whether or not this function changed in size. It->second.second = FnSize; }; // We need to initially update all of the function sizes. // If no function was passed in, then we're either a module pass or an // CGSCC pass. if (!CouldOnlyImpactOneFunction) std::for_each(M.begin(), M.end(), UpdateFunctionChanges); else UpdateFunctionChanges(*F); // Do we have a function we can use to emit a remark? if (!CouldOnlyImpactOneFunction) { // We need a function containing at least one basic block in order to output // remarks. Since it's possible that the first function in the module // doesn't actually contain a basic block, we have to go and find one that's // suitable for emitting remarks. auto It = std::find_if(M.begin(), M.end(), [](const Function &Fn) { return !Fn.empty(); }); // Didn't find a function. Quit. if (It == M.end()) return; // We found a function containing at least one basic block. F = &*It; } int64_t CountAfter = static_cast(CountBefore) + Delta; BasicBlock &BB = *F->begin(); OptimizationRemarkAnalysis R("size-info", "IRSizeChange", DiagnosticLocation(), &BB); // FIXME: Move ore namespace to DiagnosticInfo so that we can use it. This // would let us use NV instead of DiagnosticInfoOptimizationBase::Argument. R << DiagnosticInfoOptimizationBase::Argument("Pass", P->getPassName()) << ": IR instruction count changed from " << DiagnosticInfoOptimizationBase::Argument("IRInstrsBefore", CountBefore) << " to " << DiagnosticInfoOptimizationBase::Argument("IRInstrsAfter", CountAfter) << "; Delta: " << DiagnosticInfoOptimizationBase::Argument("DeltaInstrCount", Delta); F->getContext().diagnose(R); // Not using ORE for layering reasons. // Emit per-function size change remarks separately. std::string PassName = P->getPassName().str(); // Helper lambda that emits a remark when the size of a function has changed. auto EmitFunctionSizeChangedRemark = [&FunctionToInstrCount, &F, &BB, &PassName](StringRef Fname) { unsigned FnCountBefore, FnCountAfter; std::pair &Change = FunctionToInstrCount[Fname]; std::tie(FnCountBefore, FnCountAfter) = Change; int64_t FnDelta = static_cast(FnCountAfter) - static_cast(FnCountBefore); if (FnDelta == 0) return; // FIXME: We shouldn't use BB for the location here. Unfortunately, because // the function that we're looking at could have been deleted, we can't use // it for the source location. We *want* remarks when a function is deleted // though, so we're kind of stuck here as is. (This remark, along with the // whole-module size change remarks really ought not to have source // locations at all.) OptimizationRemarkAnalysis FR("size-info", "FunctionIRSizeChange", DiagnosticLocation(), &BB); FR << DiagnosticInfoOptimizationBase::Argument("Pass", PassName) << ": Function: " << DiagnosticInfoOptimizationBase::Argument("Function", Fname) << ": IR instruction count changed from " << DiagnosticInfoOptimizationBase::Argument("IRInstrsBefore", FnCountBefore) << " to " << DiagnosticInfoOptimizationBase::Argument("IRInstrsAfter", FnCountAfter) << "; Delta: " << DiagnosticInfoOptimizationBase::Argument("DeltaInstrCount", FnDelta); F->getContext().diagnose(FR); // Update the function size. Change.first = FnCountAfter; }; // Are we looking at more than one function? If so, emit remarks for all of // the functions in the module. Otherwise, only emit one remark. if (!CouldOnlyImpactOneFunction) std::for_each(FunctionToInstrCount.keys().begin(), FunctionToInstrCount.keys().end(), EmitFunctionSizeChangedRemark); else EmitFunctionSizeChangedRemark(F->getName().str()); } void PassManagerPrettyStackEntry::print(raw_ostream &OS) const { if (!V && !M) OS << "Releasing pass '"; else OS << "Running pass '"; OS << P->getPassName() << "'"; if (M) { OS << " on module '" << M->getModuleIdentifier() << "'.\n"; return; } if (!V) { OS << '\n'; return; } OS << " on "; if (isa(V)) OS << "function"; else if (isa(V)) OS << "basic block"; else OS << "value"; OS << " '"; V->printAsOperand(OS, /*PrintType=*/false, M); OS << "'\n"; } namespace llvm { namespace legacy { //===----------------------------------------------------------------------===// // FunctionPassManagerImpl // /// FunctionPassManagerImpl manages FPPassManagers class FunctionPassManagerImpl : public Pass, public PMDataManager, public PMTopLevelManager { virtual void anchor(); private: bool wasRun; public: static char ID; explicit FunctionPassManagerImpl() : Pass(PT_PassManager, ID), PMDataManager(), PMTopLevelManager(new FPPassManager()), wasRun(false) {} /// \copydoc FunctionPassManager::add() void add(Pass *P) { schedulePass(P); } /// createPrinterPass - Get a function printer pass. Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const override { return createPrintFunctionPass(O, Banner); } // Prepare for running an on the fly pass, freeing memory if needed // from a previous run. void releaseMemoryOnTheFly(); /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Function &F); /// doInitialization - Run all of the initializers for the function passes. /// bool doInitialization(Module &M) override; /// doFinalization - Run all of the finalizers for the function passes. /// bool doFinalization(Module &M) override; PMDataManager *getAsPMDataManager() override { return this; } Pass *getAsPass() override { return this; } PassManagerType getTopLevelPassManagerType() override { return PMT_FunctionPassManager; } /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const override { Info.setPreservesAll(); } FPPassManager *getContainedManager(unsigned N) { assert(N < PassManagers.size() && "Pass number out of range!"); FPPassManager *FP = static_cast(PassManagers[N]); return FP; } void dumpPassStructure(unsigned Offset) override { for (unsigned I = 0; I < getNumContainedManagers(); ++I) getContainedManager(I)->dumpPassStructure(Offset); } }; void FunctionPassManagerImpl::anchor() {} char FunctionPassManagerImpl::ID = 0; //===----------------------------------------------------------------------===// // FunctionPassManagerImpl implementation // bool FunctionPassManagerImpl::doInitialization(Module &M) { bool Changed = false; dumpArguments(); dumpPasses(); for (ImmutablePass *ImPass : getImmutablePasses()) Changed |= ImPass->doInitialization(M); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) Changed |= getContainedManager(Index)->doInitialization(M); return Changed; } bool FunctionPassManagerImpl::doFinalization(Module &M) { bool Changed = false; for (int Index = getNumContainedManagers() - 1; Index >= 0; --Index) Changed |= getContainedManager(Index)->doFinalization(M); for (ImmutablePass *ImPass : getImmutablePasses()) Changed |= ImPass->doFinalization(M); return Changed; } void FunctionPassManagerImpl::releaseMemoryOnTheFly() { if (!wasRun) return; for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { FPPassManager *FPPM = getContainedManager(Index); for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) { FPPM->getContainedPass(Index)->releaseMemory(); } } wasRun = false; } // Execute all the passes managed by this top level manager. // Return true if any function is modified by a pass. bool FunctionPassManagerImpl::run(Function &F) { bool Changed = false; initializeAllAnalysisInfo(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { Changed |= getContainedManager(Index)->runOnFunction(F); F.getContext().yield(); } for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) getContainedManager(Index)->cleanup(); wasRun = true; return Changed; } } // namespace legacy } // namespace llvm namespace { //===----------------------------------------------------------------------===// // MPPassManager // /// MPPassManager manages ModulePasses and function pass managers. /// It batches all Module passes and function pass managers together and /// sequences them to process one module. class MPPassManager : public Pass, public PMDataManager { public: static char ID; explicit MPPassManager() : Pass(PT_PassManager, ID), PMDataManager() { } // Delete on the fly managers. ~MPPassManager() override { for (auto &OnTheFlyManager : OnTheFlyManagers) { legacy::FunctionPassManagerImpl *FPP = OnTheFlyManager.second; delete FPP; } } /// createPrinterPass - Get a module printer pass. Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const override { return createPrintModulePass(O, Banner); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool runOnModule(Module &M); using llvm::Pass::doInitialization; using llvm::Pass::doFinalization; /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const override { Info.setPreservesAll(); } /// Add RequiredPass into list of lower level passes required by pass P. /// RequiredPass is run on the fly by Pass Manager when P requests it /// through getAnalysis interface. void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) override; /// Return function pass corresponding to PassInfo PI, that is /// required by module pass MP. Instantiate analysis pass, by using /// its runOnFunction() for function F. std::tuple getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F) override; StringRef getPassName() const override { return "Module Pass Manager"; } PMDataManager *getAsPMDataManager() override { return this; } Pass *getAsPass() override { return this; } // Print passes managed by this manager void dumpPassStructure(unsigned Offset) override { dbgs().indent(Offset*2) << "ModulePass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { ModulePass *MP = getContainedPass(Index); MP->dumpPassStructure(Offset + 1); MapVector::const_iterator I = OnTheFlyManagers.find(MP); if (I != OnTheFlyManagers.end()) I->second->dumpPassStructure(Offset + 2); dumpLastUses(MP, Offset+1); } } ModulePass *getContainedPass(unsigned N) { assert(N < PassVector.size() && "Pass number out of range!"); return static_cast(PassVector[N]); } PassManagerType getPassManagerType() const override { return PMT_ModulePassManager; } private: /// Collection of on the fly FPPassManagers. These managers manage /// function passes that are required by module passes. MapVector OnTheFlyManagers; }; char MPPassManager::ID = 0; } // End anonymous namespace namespace llvm { namespace legacy { //===----------------------------------------------------------------------===// // PassManagerImpl // /// PassManagerImpl manages MPPassManagers class PassManagerImpl : public Pass, public PMDataManager, public PMTopLevelManager { virtual void anchor(); public: static char ID; explicit PassManagerImpl() : Pass(PT_PassManager, ID), PMDataManager(), PMTopLevelManager(new MPPassManager()) {} /// \copydoc PassManager::add() void add(Pass *P) { schedulePass(P); } /// createPrinterPass - Get a module printer pass. Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const override { return createPrintModulePass(O, Banner); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool run(Module &M); using llvm::Pass::doInitialization; using llvm::Pass::doFinalization; /// Pass Manager itself does not invalidate any analysis info. void getAnalysisUsage(AnalysisUsage &Info) const override { Info.setPreservesAll(); } PMDataManager *getAsPMDataManager() override { return this; } Pass *getAsPass() override { return this; } PassManagerType getTopLevelPassManagerType() override { return PMT_ModulePassManager; } MPPassManager *getContainedManager(unsigned N) { assert(N < PassManagers.size() && "Pass number out of range!"); MPPassManager *MP = static_cast(PassManagers[N]); return MP; } }; void PassManagerImpl::anchor() {} char PassManagerImpl::ID = 0; //===----------------------------------------------------------------------===// // PassManagerImpl implementation // /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManagerImpl::run(Module &M) { bool Changed = false; dumpArguments(); dumpPasses(); for (ImmutablePass *ImPass : getImmutablePasses()) Changed |= ImPass->doInitialization(M); initializeAllAnalysisInfo(); for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { Changed |= getContainedManager(Index)->runOnModule(M); M.getContext().yield(); } for (ImmutablePass *ImPass : getImmutablePasses()) Changed |= ImPass->doFinalization(M); return Changed; } } // namespace legacy } // namespace llvm //===----------------------------------------------------------------------===// // PMTopLevelManager implementation /// Initialize top level manager. Create first pass manager. PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) { PMDM->setTopLevelManager(this); addPassManager(PMDM); activeStack.push(PMDM); } /// Set pass P as the last user of the given analysis passes. void PMTopLevelManager::setLastUser(ArrayRef AnalysisPasses, Pass *P) { unsigned PDepth = 0; if (P->getResolver()) PDepth = P->getResolver()->getPMDataManager().getDepth(); for (Pass *AP : AnalysisPasses) { LastUser[AP] = P; if (P == AP) continue; // Update the last users of passes that are required transitive by AP. AnalysisUsage *AnUsage = findAnalysisUsage(AP); const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet(); SmallVector LastUses; SmallVector LastPMUses; for (AnalysisID ID : IDs) { Pass *AnalysisPass = findAnalysisPass(ID); assert(AnalysisPass && "Expected analysis pass to exist."); AnalysisResolver *AR = AnalysisPass->getResolver(); assert(AR && "Expected analysis resolver to exist."); unsigned APDepth = AR->getPMDataManager().getDepth(); if (PDepth == APDepth) LastUses.push_back(AnalysisPass); else if (PDepth > APDepth) LastPMUses.push_back(AnalysisPass); } setLastUser(LastUses, P); // If this pass has a corresponding pass manager, push higher level // analysis to this pass manager. if (P->getResolver()) setLastUser(LastPMUses, P->getResolver()->getPMDataManager().getAsPass()); // If AP is the last user of other passes then make P last user of // such passes. for (auto LU : LastUser) { if (LU.second == AP) // DenseMap iterator is not invalidated here because // this is just updating existing entries. LastUser[LU.first] = P; } } } /// Collect passes whose last user is P void PMTopLevelManager::collectLastUses(SmallVectorImpl &LastUses, Pass *P) { DenseMap >::iterator DMI = InversedLastUser.find(P); if (DMI == InversedLastUser.end()) return; SmallPtrSet &LU = DMI->second; for (Pass *LUP : LU) { LastUses.push_back(LUP); } } AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) { AnalysisUsage *AnUsage = nullptr; auto DMI = AnUsageMap.find(P); if (DMI != AnUsageMap.end()) AnUsage = DMI->second; else { // Look up the analysis usage from the pass instance (different instances // of the same pass can produce different results), but unique the // resulting object to reduce memory usage. This helps to greatly reduce // memory usage when we have many instances of only a few pass types // (e.g. instcombine, simplifycfg, etc...) which tend to share a fixed set // of dependencies. AnalysisUsage AU; P->getAnalysisUsage(AU); AUFoldingSetNode* Node = nullptr; FoldingSetNodeID ID; AUFoldingSetNode::Profile(ID, AU); void *IP = nullptr; if (auto *N = UniqueAnalysisUsages.FindNodeOrInsertPos(ID, IP)) Node = N; else { Node = new (AUFoldingSetNodeAllocator.Allocate()) AUFoldingSetNode(AU); UniqueAnalysisUsages.InsertNode(Node, IP); } assert(Node && "cached analysis usage must be non null"); AnUsageMap[P] = &Node->AU; AnUsage = &Node->AU; } return AnUsage; } /// Schedule pass P for execution. Make sure that passes required by /// P are run before P is run. Update analysis info maintained by /// the manager. Remove dead passes. This is a recursive function. void PMTopLevelManager::schedulePass(Pass *P) { // TODO : Allocate function manager for this pass, other wise required set // may be inserted into previous function manager // Give pass a chance to prepare the stage. P->preparePassManager(activeStack); // If P is an analysis pass and it is available then do not // generate the analysis again. Stale analysis info should not be // available at this point. const PassInfo *PI = findAnalysisPassInfo(P->getPassID()); if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) { // Remove any cached AnalysisUsage information. AnUsageMap.erase(P); delete P; return; } AnalysisUsage *AnUsage = findAnalysisUsage(P); bool checkAnalysis = true; while (checkAnalysis) { checkAnalysis = false; const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); for (const AnalysisID ID : RequiredSet) { Pass *AnalysisPass = findAnalysisPass(ID); if (!AnalysisPass) { const PassInfo *PI = findAnalysisPassInfo(ID); if (!PI) { // Pass P is not in the global PassRegistry dbgs() << "Pass '" << P->getPassName() << "' is not initialized." << "\n"; dbgs() << "Verify if there is a pass dependency cycle." << "\n"; dbgs() << "Required Passes:" << "\n"; for (const AnalysisID ID2 : RequiredSet) { if (ID == ID2) break; Pass *AnalysisPass2 = findAnalysisPass(ID2); if (AnalysisPass2) { dbgs() << "\t" << AnalysisPass2->getPassName() << "\n"; } else { dbgs() << "\t" << "Error: Required pass not found! Possible causes:" << "\n"; dbgs() << "\t\t" << "- Pass misconfiguration (e.g.: missing macros)" << "\n"; dbgs() << "\t\t" << "- Corruption of the global PassRegistry" << "\n"; } } } assert(PI && "Expected required passes to be initialized"); AnalysisPass = PI->createPass(); if (P->getPotentialPassManagerType () == AnalysisPass->getPotentialPassManagerType()) // Schedule analysis pass that is managed by the same pass manager. schedulePass(AnalysisPass); else if (P->getPotentialPassManagerType () > AnalysisPass->getPotentialPassManagerType()) { // Schedule analysis pass that is managed by a new manager. schedulePass(AnalysisPass); // Recheck analysis passes to ensure that required analyses that // are already checked are still available. checkAnalysis = true; } else // Do not schedule this analysis. Lower level analysis // passes are run on the fly. delete AnalysisPass; } } } // Now all required passes are available. if (ImmutablePass *IP = P->getAsImmutablePass()) { // P is a immutable pass and it will be managed by this // top level manager. Set up analysis resolver to connect them. PMDataManager *DM = getAsPMDataManager(); AnalysisResolver *AR = new AnalysisResolver(*DM); P->setResolver(AR); DM->initializeAnalysisImpl(P); addImmutablePass(IP); DM->recordAvailableAnalysis(IP); return; } if (PI && !PI->isAnalysis() && shouldPrintBeforePass(PI->getPassArgument())) { Pass *PP = P->createPrinterPass( dbgs(), ("*** IR Dump Before " + P->getPassName() + " ***").str()); PP->assignPassManager(activeStack, getTopLevelPassManagerType()); } // Add the requested pass to the best available pass manager. P->assignPassManager(activeStack, getTopLevelPassManagerType()); if (PI && !PI->isAnalysis() && shouldPrintAfterPass(PI->getPassArgument())) { Pass *PP = P->createPrinterPass( dbgs(), ("*** IR Dump After " + P->getPassName() + " ***").str()); PP->assignPassManager(activeStack, getTopLevelPassManagerType()); } } /// Find the pass that implements Analysis AID. Search immutable /// passes and all pass managers. If desired pass is not found /// then return NULL. Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) { // For immutable passes we have a direct mapping from ID to pass, so check // that first. if (Pass *P = ImmutablePassMap.lookup(AID)) return P; // Check pass managers for (PMDataManager *PassManager : PassManagers) if (Pass *P = PassManager->findAnalysisPass(AID, false)) return P; // Check other pass managers for (PMDataManager *IndirectPassManager : IndirectPassManagers) if (Pass *P = IndirectPassManager->findAnalysisPass(AID, false)) return P; return nullptr; } const PassInfo *PMTopLevelManager::findAnalysisPassInfo(AnalysisID AID) const { const PassInfo *&PI = AnalysisPassInfos[AID]; if (!PI) PI = PassRegistry::getPassRegistry()->getPassInfo(AID); else assert(PI == PassRegistry::getPassRegistry()->getPassInfo(AID) && "The pass info pointer changed for an analysis ID!"); return PI; } void PMTopLevelManager::addImmutablePass(ImmutablePass *P) { P->initializePass(); ImmutablePasses.push_back(P); // Add this pass to the map from its analysis ID. We clobber any prior runs // of the pass in the map so that the last one added is the one found when // doing lookups. AnalysisID AID = P->getPassID(); ImmutablePassMap[AID] = P; // Also add any interfaces implemented by the immutable pass to the map for // fast lookup. const PassInfo *PassInf = findAnalysisPassInfo(AID); assert(PassInf && "Expected all immutable passes to be initialized"); for (const PassInfo *ImmPI : PassInf->getInterfacesImplemented()) ImmutablePassMap[ImmPI->getTypeInfo()] = P; } // Print passes managed by this top level manager. void PMTopLevelManager::dumpPasses() const { if (PassDebugging < Structure) return; // Print out the immutable passes for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) { ImmutablePasses[i]->dumpPassStructure(0); } // Every class that derives from PMDataManager also derives from Pass // (sometimes indirectly), but there's no inheritance relationship // between PMDataManager and Pass, so we have to getAsPass to get // from a PMDataManager* to a Pass*. for (PMDataManager *Manager : PassManagers) Manager->getAsPass()->dumpPassStructure(1); } void PMTopLevelManager::dumpArguments() const { if (PassDebugging < Arguments) return; dbgs() << "Pass Arguments: "; for (ImmutablePass *P : ImmutablePasses) if (const PassInfo *PI = findAnalysisPassInfo(P->getPassID())) { assert(PI && "Expected all immutable passes to be initialized"); if (!PI->isAnalysisGroup()) dbgs() << " -" << PI->getPassArgument(); } for (PMDataManager *PM : PassManagers) PM->dumpPassArguments(); dbgs() << "\n"; } void PMTopLevelManager::initializeAllAnalysisInfo() { for (PMDataManager *PM : PassManagers) PM->initializeAnalysisInfo(); // Initailize other pass managers for (PMDataManager *IPM : IndirectPassManagers) IPM->initializeAnalysisInfo(); for (auto LU : LastUser) { SmallPtrSet &L = InversedLastUser[LU.second]; L.insert(LU.first); } } /// Destructor PMTopLevelManager::~PMTopLevelManager() { for (PMDataManager *PM : PassManagers) delete PM; for (ImmutablePass *P : ImmutablePasses) delete P; } //===----------------------------------------------------------------------===// // PMDataManager implementation /// Augement AvailableAnalysis by adding analysis made available by pass P. void PMDataManager::recordAvailableAnalysis(Pass *P) { AnalysisID PI = P->getPassID(); AvailableAnalysis[PI] = P; assert(!AvailableAnalysis.empty()); // This pass is the current implementation of all of the interfaces it // implements as well. const PassInfo *PInf = TPM->findAnalysisPassInfo(PI); if (!PInf) return; const std::vector &II = PInf->getInterfacesImplemented(); for (unsigned i = 0, e = II.size(); i != e; ++i) AvailableAnalysis[II[i]->getTypeInfo()] = P; } // Return true if P preserves high level analysis used by other // passes managed by this manager bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); if (AnUsage->getPreservesAll()) return true; const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); for (Pass *P1 : HigherLevelAnalysis) { if (P1->getAsImmutablePass() == nullptr && !is_contained(PreservedSet, P1->getPassID())) return false; } return true; } /// verifyPreservedAnalysis -- Verify analysis preserved by pass P. void PMDataManager::verifyPreservedAnalysis(Pass *P) { // Don't do this unless assertions are enabled. #ifdef NDEBUG return; #endif AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); // Verify preserved analysis for (AnalysisID AID : PreservedSet) { if (Pass *AP = findAnalysisPass(AID, true)) { TimeRegion PassTimer(getPassTimer(AP)); AP->verifyAnalysis(); } } } /// Remove Analysis not preserved by Pass P void PMDataManager::removeNotPreservedAnalysis(Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); if (AnUsage->getPreservesAll()) return; const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); for (DenseMap::iterator I = AvailableAnalysis.begin(), E = AvailableAnalysis.end(); I != E; ) { DenseMap::iterator Info = I++; if (Info->second->getAsImmutablePass() == nullptr && !is_contained(PreservedSet, Info->first)) { // Remove this analysis if (PassDebugging >= Details) { Pass *S = Info->second; dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; dbgs() << S->getPassName() << "'\n"; } AvailableAnalysis.erase(Info); } } // Check inherited analysis also. If P is not preserving analysis // provided by parent manager then remove it here. for (unsigned Index = 0; Index < PMT_Last; ++Index) { if (!InheritedAnalysis[Index]) continue; for (DenseMap::iterator I = InheritedAnalysis[Index]->begin(), E = InheritedAnalysis[Index]->end(); I != E; ) { DenseMap::iterator Info = I++; if (Info->second->getAsImmutablePass() == nullptr && !is_contained(PreservedSet, Info->first)) { // Remove this analysis if (PassDebugging >= Details) { Pass *S = Info->second; dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; dbgs() << S->getPassName() << "'\n"; } InheritedAnalysis[Index]->erase(Info); } } } } /// Remove analysis passes that are not used any longer void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg, enum PassDebuggingString DBG_STR) { SmallVector DeadPasses; // If this is a on the fly manager then it does not have TPM. if (!TPM) return; TPM->collectLastUses(DeadPasses, P); if (PassDebugging >= Details && !DeadPasses.empty()) { dbgs() << " -*- '" << P->getPassName(); dbgs() << "' is the last user of following pass instances."; dbgs() << " Free these instances\n"; } for (Pass *P : DeadPasses) freePass(P, Msg, DBG_STR); } void PMDataManager::freePass(Pass *P, StringRef Msg, enum PassDebuggingString DBG_STR) { dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg); { // If the pass crashes releasing memory, remember this. PassManagerPrettyStackEntry X(P); TimeRegion PassTimer(getPassTimer(P)); P->releaseMemory(); } AnalysisID PI = P->getPassID(); if (const PassInfo *PInf = TPM->findAnalysisPassInfo(PI)) { // Remove the pass itself (if it is not already removed). AvailableAnalysis.erase(PI); // Remove all interfaces this pass implements, for which it is also // listed as the available implementation. const std::vector &II = PInf->getInterfacesImplemented(); for (unsigned i = 0, e = II.size(); i != e; ++i) { DenseMap::iterator Pos = AvailableAnalysis.find(II[i]->getTypeInfo()); if (Pos != AvailableAnalysis.end() && Pos->second == P) AvailableAnalysis.erase(Pos); } } } /// Add pass P into the PassVector. Update /// AvailableAnalysis appropriately if ProcessAnalysis is true. void PMDataManager::add(Pass *P, bool ProcessAnalysis) { // This manager is going to manage pass P. Set up analysis resolver // to connect them. AnalysisResolver *AR = new AnalysisResolver(*this); P->setResolver(AR); // If a FunctionPass F is the last user of ModulePass info M // then the F's manager, not F, records itself as a last user of M. SmallVector TransferLastUses; if (!ProcessAnalysis) { // Add pass PassVector.push_back(P); return; } // At the moment, this pass is the last user of all required passes. SmallVector LastUses; SmallVector UsedPasses; SmallVector ReqAnalysisNotAvailable; unsigned PDepth = this->getDepth(); collectRequiredAndUsedAnalyses(UsedPasses, ReqAnalysisNotAvailable, P); for (Pass *PUsed : UsedPasses) { unsigned RDepth = 0; assert(PUsed->getResolver() && "Analysis Resolver is not set"); PMDataManager &DM = PUsed->getResolver()->getPMDataManager(); RDepth = DM.getDepth(); if (PDepth == RDepth) LastUses.push_back(PUsed); else if (PDepth > RDepth) { // Let the parent claim responsibility of last use TransferLastUses.push_back(PUsed); // Keep track of higher level analysis used by this manager. HigherLevelAnalysis.push_back(PUsed); } else llvm_unreachable("Unable to accommodate Used Pass"); } // Set P as P's last user until someone starts using P. // However, if P is a Pass Manager then it does not need // to record its last user. if (!P->getAsPMDataManager()) LastUses.push_back(P); TPM->setLastUser(LastUses, P); if (!TransferLastUses.empty()) { Pass *My_PM = getAsPass(); TPM->setLastUser(TransferLastUses, My_PM); TransferLastUses.clear(); } // Now, take care of required analyses that are not available. for (AnalysisID ID : ReqAnalysisNotAvailable) { const PassInfo *PI = TPM->findAnalysisPassInfo(ID); Pass *AnalysisPass = PI->createPass(); this->addLowerLevelRequiredPass(P, AnalysisPass); } // Take a note of analysis required and made available by this pass. // Remove the analysis not preserved by this pass removeNotPreservedAnalysis(P); recordAvailableAnalysis(P); // Add pass PassVector.push_back(P); } /// Populate UP with analysis pass that are used or required by /// pass P and are available. Populate RP_NotAvail with analysis /// pass that are required by pass P but are not available. void PMDataManager::collectRequiredAndUsedAnalyses( SmallVectorImpl &UP, SmallVectorImpl &RP_NotAvail, Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); for (const auto &UsedID : AnUsage->getUsedSet()) if (Pass *AnalysisPass = findAnalysisPass(UsedID, true)) UP.push_back(AnalysisPass); for (const auto &RequiredID : AnUsage->getRequiredSet()) if (Pass *AnalysisPass = findAnalysisPass(RequiredID, true)) UP.push_back(AnalysisPass); else RP_NotAvail.push_back(RequiredID); for (const auto &RequiredID : AnUsage->getRequiredTransitiveSet()) if (Pass *AnalysisPass = findAnalysisPass(RequiredID, true)) UP.push_back(AnalysisPass); else RP_NotAvail.push_back(RequiredID); } // All Required analyses should be available to the pass as it runs! Here // we fill in the AnalysisImpls member of the pass so that it can // successfully use the getAnalysis() method to retrieve the // implementations it needs. // void PMDataManager::initializeAnalysisImpl(Pass *P) { AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); for (const AnalysisID ID : AnUsage->getRequiredSet()) { Pass *Impl = findAnalysisPass(ID, true); if (!Impl) // This may be analysis pass that is initialized on the fly. // If that is not the case then it will raise an assert when it is used. continue; AnalysisResolver *AR = P->getResolver(); assert(AR && "Analysis Resolver is not set"); AR->addAnalysisImplsPair(ID, Impl); } } /// Find the pass that implements Analysis AID. If desired pass is not found /// then return NULL. Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) { // Check if AvailableAnalysis map has one entry. DenseMap::const_iterator I = AvailableAnalysis.find(AID); if (I != AvailableAnalysis.end()) return I->second; // Search Parents through TopLevelManager if (SearchParent) return TPM->findAnalysisPass(AID); return nullptr; } // Print list of passes that are last used by P. void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{ SmallVector LUses; // If this is a on the fly manager then it does not have TPM. if (!TPM) return; TPM->collectLastUses(LUses, P); for (Pass *P : LUses) { dbgs() << "--" << std::string(Offset*2, ' '); P->dumpPassStructure(0); } } void PMDataManager::dumpPassArguments() const { for (Pass *P : PassVector) { if (PMDataManager *PMD = P->getAsPMDataManager()) PMD->dumpPassArguments(); else if (const PassInfo *PI = TPM->findAnalysisPassInfo(P->getPassID())) if (!PI->isAnalysisGroup()) dbgs() << " -" << PI->getPassArgument(); } } void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1, enum PassDebuggingString S2, StringRef Msg) { if (PassDebugging < Executions) return; dbgs() << "[" << std::chrono::system_clock::now() << "] " << (void *)this << std::string(getDepth() * 2 + 1, ' '); switch (S1) { case EXECUTION_MSG: dbgs() << "Executing Pass '" << P->getPassName(); break; case MODIFICATION_MSG: dbgs() << "Made Modification '" << P->getPassName(); break; case FREEING_MSG: dbgs() << " Freeing Pass '" << P->getPassName(); break; default: break; } switch (S2) { case ON_FUNCTION_MSG: dbgs() << "' on Function '" << Msg << "'...\n"; break; case ON_MODULE_MSG: dbgs() << "' on Module '" << Msg << "'...\n"; break; case ON_REGION_MSG: dbgs() << "' on Region '" << Msg << "'...\n"; break; case ON_LOOP_MSG: dbgs() << "' on Loop '" << Msg << "'...\n"; break; case ON_CG_MSG: dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n"; break; default: break; } } void PMDataManager::dumpRequiredSet(const Pass *P) const { if (PassDebugging < Details) return; AnalysisUsage analysisUsage; P->getAnalysisUsage(analysisUsage); dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet()); } void PMDataManager::dumpPreservedSet(const Pass *P) const { if (PassDebugging < Details) return; AnalysisUsage analysisUsage; P->getAnalysisUsage(analysisUsage); dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet()); } void PMDataManager::dumpUsedSet(const Pass *P) const { if (PassDebugging < Details) return; AnalysisUsage analysisUsage; P->getAnalysisUsage(analysisUsage); dumpAnalysisUsage("Used", P, analysisUsage.getUsedSet()); } void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P, const AnalysisUsage::VectorType &Set) const { assert(PassDebugging >= Details); if (Set.empty()) return; dbgs() << (const void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:"; for (unsigned i = 0; i != Set.size(); ++i) { if (i) dbgs() << ','; const PassInfo *PInf = TPM->findAnalysisPassInfo(Set[i]); if (!PInf) { // Some preserved passes, such as AliasAnalysis, may not be initialized by // all drivers. dbgs() << " Uninitialized Pass"; continue; } dbgs() << ' ' << PInf->getPassName(); } dbgs() << '\n'; } /// Add RequiredPass into list of lower level passes required by pass P. /// RequiredPass is run on the fly by Pass Manager when P requests it /// through getAnalysis interface. /// This should be handled by specific pass manager. void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { if (TPM) { TPM->dumpArguments(); TPM->dumpPasses(); } // Module Level pass may required Function Level analysis info // (e.g. dominator info). Pass manager uses on the fly function pass manager // to provide this on demand. In that case, in Pass manager terminology, // module level pass is requiring lower level analysis info managed by // lower level pass manager. // When Pass manager is not able to order required analysis info, Pass manager // checks whether any lower level manager will be able to provide this // analysis info on demand or not. #ifndef NDEBUG dbgs() << "Unable to schedule '" << RequiredPass->getPassName(); dbgs() << "' required by '" << P->getPassName() << "'\n"; #endif llvm_unreachable("Unable to schedule pass"); } std::tuple PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) { llvm_unreachable("Unable to find on the fly pass"); } // Destructor PMDataManager::~PMDataManager() { for (Pass *P : PassVector) delete P; } //===----------------------------------------------------------------------===// // NOTE: Is this the right place to define this method ? // getAnalysisIfAvailable - Return analysis result or null if it doesn't exist. Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const { return PM.findAnalysisPass(ID, dir); } std::tuple AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI, Function &F) { return PM.getOnTheFlyPass(P, AnalysisPI, F); } namespace llvm { namespace legacy { //===----------------------------------------------------------------------===// // FunctionPassManager implementation /// Create new Function pass manager FunctionPassManager::FunctionPassManager(Module *m) : M(m) { FPM = new legacy::FunctionPassManagerImpl(); // FPM is the top level manager. FPM->setTopLevelManager(FPM); AnalysisResolver *AR = new AnalysisResolver(*FPM); FPM->setResolver(AR); } FunctionPassManager::~FunctionPassManager() { delete FPM; } void FunctionPassManager::add(Pass *P) { FPM->add(P); } /// run - Execute all of the passes scheduled for execution. Keep /// track of whether any of the passes modifies the function, and if /// so, return true. /// bool FunctionPassManager::run(Function &F) { handleAllErrors(F.materialize(), [&](ErrorInfoBase &EIB) { report_fatal_error("Error reading bitcode file: " + EIB.message()); }); return FPM->run(F); } /// doInitialization - Run all of the initializers for the function passes. /// bool FunctionPassManager::doInitialization() { return FPM->doInitialization(*M); } /// doFinalization - Run all of the finalizers for the function passes. /// bool FunctionPassManager::doFinalization() { return FPM->doFinalization(*M); } } // namespace legacy } // namespace llvm /// cleanup - After running all passes, clean up pass manager cache. void FPPassManager::cleanup() { for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); AnalysisResolver *AR = FP->getResolver(); assert(AR && "Analysis Resolver is not set"); AR->clearAnalysisImpls(); } } //===----------------------------------------------------------------------===// // FPPassManager implementation char FPPassManager::ID = 0; /// Print passes managed by this manager void FPPassManager::dumpPassStructure(unsigned Offset) { dbgs().indent(Offset*2) << "FunctionPass Manager\n"; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); FP->dumpPassStructure(Offset + 1); dumpLastUses(FP, Offset+1); } } /// Execute all of the passes scheduled for execution by invoking /// runOnFunction method. Keep track of whether any of the passes modifies /// the function, and if so, return true. bool FPPassManager::runOnFunction(Function &F) { if (F.isDeclaration()) return false; bool Changed = false; Module &M = *F.getParent(); // Collect inherited analysis from Module level pass manager. populateInheritedAnalysis(TPM->activeStack); unsigned InstrCount, FunctionSize = 0; StringMap> FunctionToInstrCount; bool EmitICRemark = M.shouldEmitInstrCountChangedRemark(); // Collect the initial size of the module. if (EmitICRemark) { InstrCount = initSizeRemarkInfo(M, FunctionToInstrCount); FunctionSize = F.getInstructionCount(); } llvm::TimeTraceScope FunctionScope("OptFunction", F.getName()); for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { FunctionPass *FP = getContainedPass(Index); bool LocalChanged = false; llvm::TimeTraceScope PassScope("RunPass", FP->getPassName()); dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName()); dumpRequiredSet(FP); initializeAnalysisImpl(FP); { PassManagerPrettyStackEntry X(FP, F); TimeRegion PassTimer(getPassTimer(FP)); LocalChanged |= FP->runOnFunction(F); if (EmitICRemark) { unsigned NewSize = F.getInstructionCount(); // Update the size of the function, emit a remark, and update the size // of the module. if (NewSize != FunctionSize) { int64_t Delta = static_cast(NewSize) - static_cast(FunctionSize); emitInstrCountChangedRemark(FP, M, Delta, InstrCount, FunctionToInstrCount, &F); InstrCount = static_cast(InstrCount) + Delta; FunctionSize = NewSize; } } } Changed |= LocalChanged; if (LocalChanged) dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName()); dumpPreservedSet(FP); dumpUsedSet(FP); verifyPreservedAnalysis(FP); removeNotPreservedAnalysis(FP); recordAvailableAnalysis(FP); removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG); } return Changed; } bool FPPassManager::runOnModule(Module &M) { bool Changed = false; for (Function &F : M) Changed |= runOnFunction(F); return Changed; } bool FPPassManager::doInitialization(Module &M) { bool Changed = false; for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) Changed |= getContainedPass(Index)->doInitialization(M); return Changed; } bool FPPassManager::doFinalization(Module &M) { bool Changed = false; for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index) Changed |= getContainedPass(Index)->doFinalization(M); return Changed; } //===----------------------------------------------------------------------===// // MPPassManager implementation /// Execute all of the passes scheduled for execution by invoking /// runOnModule method. Keep track of whether any of the passes modifies /// the module, and if so, return true. bool MPPassManager::runOnModule(Module &M) { llvm::TimeTraceScope TimeScope("OptModule", M.getName()); bool Changed = false; // Initialize on-the-fly passes for (auto &OnTheFlyManager : OnTheFlyManagers) { legacy::FunctionPassManagerImpl *FPP = OnTheFlyManager.second; Changed |= FPP->doInitialization(M); } // Initialize module passes for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) Changed |= getContainedPass(Index)->doInitialization(M); unsigned InstrCount; StringMap> FunctionToInstrCount; bool EmitICRemark = M.shouldEmitInstrCountChangedRemark(); // Collect the initial size of the module. if (EmitICRemark) InstrCount = initSizeRemarkInfo(M, FunctionToInstrCount); for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { ModulePass *MP = getContainedPass(Index); bool LocalChanged = false; dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier()); dumpRequiredSet(MP); initializeAnalysisImpl(MP); { PassManagerPrettyStackEntry X(MP, M); TimeRegion PassTimer(getPassTimer(MP)); LocalChanged |= MP->runOnModule(M); if (EmitICRemark) { // Update the size of the module. unsigned ModuleCount = M.getInstructionCount(); if (ModuleCount != InstrCount) { int64_t Delta = static_cast(ModuleCount) - static_cast(InstrCount); emitInstrCountChangedRemark(MP, M, Delta, InstrCount, FunctionToInstrCount); InstrCount = ModuleCount; } } } Changed |= LocalChanged; if (LocalChanged) dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG, M.getModuleIdentifier()); dumpPreservedSet(MP); dumpUsedSet(MP); verifyPreservedAnalysis(MP); removeNotPreservedAnalysis(MP); recordAvailableAnalysis(MP); removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG); } // Finalize module passes for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index) Changed |= getContainedPass(Index)->doFinalization(M); // Finalize on-the-fly passes for (auto &OnTheFlyManager : OnTheFlyManagers) { legacy::FunctionPassManagerImpl *FPP = OnTheFlyManager.second; // We don't know when is the last time an on-the-fly pass is run, // so we need to releaseMemory / finalize here FPP->releaseMemoryOnTheFly(); Changed |= FPP->doFinalization(M); } return Changed; } /// Add RequiredPass into list of lower level passes required by pass P. /// RequiredPass is run on the fly by Pass Manager when P requests it /// through getAnalysis interface. void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { assert(RequiredPass && "No required pass?"); assert(P->getPotentialPassManagerType() == PMT_ModulePassManager && "Unable to handle Pass that requires lower level Analysis pass"); assert((P->getPotentialPassManagerType() < RequiredPass->getPotentialPassManagerType()) && "Unable to handle Pass that requires lower level Analysis pass"); legacy::FunctionPassManagerImpl *FPP = OnTheFlyManagers[P]; if (!FPP) { FPP = new legacy::FunctionPassManagerImpl(); // FPP is the top level manager. FPP->setTopLevelManager(FPP); OnTheFlyManagers[P] = FPP; } const PassInfo *RequiredPassPI = TPM->findAnalysisPassInfo(RequiredPass->getPassID()); Pass *FoundPass = nullptr; if (RequiredPassPI && RequiredPassPI->isAnalysis()) { FoundPass = ((PMTopLevelManager*)FPP)->findAnalysisPass(RequiredPass->getPassID()); } if (!FoundPass) { FoundPass = RequiredPass; // This should be guaranteed to add RequiredPass to the passmanager given // that we checked for an available analysis above. FPP->add(RequiredPass); } // Register P as the last user of FoundPass or RequiredPass. SmallVector LU; LU.push_back(FoundPass); FPP->setLastUser(LU, P); } /// Return function pass corresponding to PassInfo PI, that is /// required by module pass MP. Instantiate analysis pass, by using /// its runOnFunction() for function F. std::tuple MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F) { legacy::FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP]; assert(FPP && "Unable to find on the fly pass"); FPP->releaseMemoryOnTheFly(); bool Changed = FPP->run(F); return std::make_tuple(((PMTopLevelManager *)FPP)->findAnalysisPass(PI), Changed); } namespace llvm { namespace legacy { //===----------------------------------------------------------------------===// // PassManager implementation /// Create new pass manager PassManager::PassManager() { PM = new PassManagerImpl(); // PM is the top level manager PM->setTopLevelManager(PM); } PassManager::~PassManager() { delete PM; } void PassManager::add(Pass *P) { PM->add(P); } /// run - Execute all of the passes scheduled for execution. Keep track of /// whether any of the passes modifies the module, and if so, return true. bool PassManager::run(Module &M) { return PM->run(M); } } // namespace legacy } // namespace llvm //===----------------------------------------------------------------------===// // PMStack implementation // // Pop Pass Manager from the stack and clear its analysis info. void PMStack::pop() { PMDataManager *Top = this->top(); Top->initializeAnalysisInfo(); S.pop_back(); } // Push PM on the stack and set its top level manager. void PMStack::push(PMDataManager *PM) { assert(PM && "Unable to push. Pass Manager expected"); assert(PM->getDepth()==0 && "Pass Manager depth set too early"); if (!this->empty()) { assert(PM->getPassManagerType() > this->top()->getPassManagerType() && "pushing bad pass manager to PMStack"); PMTopLevelManager *TPM = this->top()->getTopLevelManager(); assert(TPM && "Unable to find top level manager"); TPM->addIndirectPassManager(PM); PM->setTopLevelManager(TPM); PM->setDepth(this->top()->getDepth()+1); } else { assert((PM->getPassManagerType() == PMT_ModulePassManager || PM->getPassManagerType() == PMT_FunctionPassManager) && "pushing bad pass manager to PMStack"); PM->setDepth(1); } S.push_back(PM); } // Dump content of the pass manager stack. LLVM_DUMP_METHOD void PMStack::dump() const { for (PMDataManager *Manager : S) dbgs() << Manager->getAsPass()->getPassName() << ' '; if (!S.empty()) dbgs() << '\n'; } /// Find appropriate Module Pass Manager in the PM Stack and /// add self into that manager. void ModulePass::assignPassManager(PMStack &PMS, PassManagerType PreferredType) { // Find Module Pass Manager PassManagerType T; while ((T = PMS.top()->getPassManagerType()) > PMT_ModulePassManager && T != PreferredType) PMS.pop(); PMS.top()->add(this); } /// Find appropriate Function Pass Manager or Call Graph Pass Manager /// in the PM Stack and add self into that manager. void FunctionPass::assignPassManager(PMStack &PMS, PassManagerType /*PreferredType*/) { // Find Function Pass Manager PMDataManager *PM; while (PM = PMS.top(), PM->getPassManagerType() > PMT_FunctionPassManager) PMS.pop(); // Create new Function Pass Manager if needed. if (PM->getPassManagerType() != PMT_FunctionPassManager) { // [1] Create new Function Pass Manager auto *FPP = new FPPassManager; FPP->populateInheritedAnalysis(PMS); // [2] Set up new manager's top level manager PM->getTopLevelManager()->addIndirectPassManager(FPP); // [3] Assign manager to manage this new manager. This may create // and push new managers into PMS FPP->assignPassManager(PMS, PM->getPassManagerType()); // [4] Push new manager into PMS PMS.push(FPP); PM = FPP; } // Assign FPP as the manager of this pass. PM->add(this); } legacy::PassManagerBase::~PassManagerBase() {}