//===-- AMDGPUAnnotateUniformValues.cpp - ---------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// This pass adds amdgpu.uniform metadata to IR values so this information /// can be used during instruction selection. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryDependenceAnalysis.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstVisitor.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "amdgpu-annotate-uniform" using namespace llvm; namespace { class AMDGPUAnnotateUniformValues : public FunctionPass, public InstVisitor { LegacyDivergenceAnalysis *DA; MemoryDependenceResults *MDR; LoopInfo *LI; DenseMap noClobberClones; bool isKernelFunc; public: static char ID; AMDGPUAnnotateUniformValues() : FunctionPass(ID) { } bool doInitialization(Module &M) override; bool runOnFunction(Function &F) override; StringRef getPassName() const override { return "AMDGPU Annotate Uniform Values"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.setPreservesAll(); } void visitBranchInst(BranchInst &I); void visitLoadInst(LoadInst &I); bool isClobberedInFunction(LoadInst * Load); }; } // End anonymous namespace INITIALIZE_PASS_BEGIN(AMDGPUAnnotateUniformValues, DEBUG_TYPE, "Add AMDGPU uniform metadata", false, false) INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis) INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(AMDGPUAnnotateUniformValues, DEBUG_TYPE, "Add AMDGPU uniform metadata", false, false) char AMDGPUAnnotateUniformValues::ID = 0; static void setUniformMetadata(Instruction *I) { I->setMetadata("amdgpu.uniform", MDNode::get(I->getContext(), {})); } static void setNoClobberMetadata(Instruction *I) { I->setMetadata("amdgpu.noclobber", MDNode::get(I->getContext(), {})); } static void DFS(BasicBlock *Root, SetVector & Set) { for (auto I : predecessors(Root)) if (Set.insert(I)) DFS(I, Set); } bool AMDGPUAnnotateUniformValues::isClobberedInFunction(LoadInst * Load) { // 1. get Loop for the Load->getparent(); // 2. if it exists, collect all the BBs from the most outer // loop and check for the writes. If NOT - start DFS over all preds. // 3. Start DFS over all preds from the most outer loop header. SetVector Checklist; BasicBlock *Start = Load->getParent(); Checklist.insert(Start); const Value *Ptr = Load->getPointerOperand(); const Loop *L = LI->getLoopFor(Start); if (L) { const Loop *P = L; do { L = P; P = P->getParentLoop(); } while (P); Checklist.insert(L->block_begin(), L->block_end()); Start = L->getHeader(); } DFS(Start, Checklist); for (auto &BB : Checklist) { BasicBlock::iterator StartIt = (!L && (BB == Load->getParent())) ? BasicBlock::iterator(Load) : BB->end(); auto Q = MDR->getPointerDependencyFrom(MemoryLocation(Ptr), true, StartIt, BB, Load); if (Q.isClobber() || Q.isUnknown()) return true; } return false; } void AMDGPUAnnotateUniformValues::visitBranchInst(BranchInst &I) { if (DA->isUniform(&I)) setUniformMetadata(I.getParent()->getTerminator()); } void AMDGPUAnnotateUniformValues::visitLoadInst(LoadInst &I) { Value *Ptr = I.getPointerOperand(); if (!DA->isUniform(Ptr)) return; auto isGlobalLoad = [&](LoadInst &Load)->bool { return Load.getPointerAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS; }; // We're tracking up to the Function boundaries // We cannot go beyond because of FunctionPass restrictions // Thus we can ensure that memory not clobbered for memory // operations that live in kernel only. bool NotClobbered = isKernelFunc && !isClobberedInFunction(&I); Instruction *PtrI = dyn_cast(Ptr); if (!PtrI && NotClobbered && isGlobalLoad(I)) { if (isa(Ptr) || isa(Ptr)) { // Lookup for the existing GEP if (noClobberClones.count(Ptr)) { PtrI = noClobberClones[Ptr]; } else { // Create GEP of the Value Function *F = I.getParent()->getParent(); Value *Idx = Constant::getIntegerValue( Type::getInt32Ty(Ptr->getContext()), APInt(64, 0)); // Insert GEP at the entry to make it dominate all uses PtrI = GetElementPtrInst::Create( Ptr->getType()->getPointerElementType(), Ptr, ArrayRef(Idx), Twine(""), F->getEntryBlock().getFirstNonPHI()); } I.replaceUsesOfWith(Ptr, PtrI); } } if (PtrI) { setUniformMetadata(PtrI); if (NotClobbered) setNoClobberMetadata(PtrI); } } bool AMDGPUAnnotateUniformValues::doInitialization(Module &M) { return false; } bool AMDGPUAnnotateUniformValues::runOnFunction(Function &F) { if (skipFunction(F)) return false; DA = &getAnalysis(); MDR = &getAnalysis().getMemDep(); LI = &getAnalysis().getLoopInfo(); isKernelFunc = F.getCallingConv() == CallingConv::AMDGPU_KERNEL; visit(F); noClobberClones.clear(); return true; } FunctionPass * llvm::createAMDGPUAnnotateUniformValues() { return new AMDGPUAnnotateUniformValues(); }