//===- AMDGPInstCombineIntrinsic.cpp - AMDGPU specific InstCombine pass ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // \file // This file implements a TargetTransformInfo analysis pass specific to the // AMDGPU target machine. It uses the target's detailed information to provide // more precise answers to certain TTI queries, while letting the target // independent and default TTI implementations handle the rest. // //===----------------------------------------------------------------------===// #include "AMDGPUInstrInfo.h" #include "AMDGPUTargetTransformInfo.h" #include "GCNSubtarget.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/Transforms/InstCombine/InstCombiner.h" using namespace llvm; #define DEBUG_TYPE "AMDGPUtti" namespace { struct AMDGPUImageDMaskIntrinsic { unsigned Intr; }; #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL #include "InstCombineTables.inc" } // end anonymous namespace // Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs. // // A single NaN input is folded to minnum, so we rely on that folding for // handling NaNs. static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1, const APFloat &Src2) { APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2); APFloat::cmpResult Cmp0 = Max3.compare(Src0); assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately"); if (Cmp0 == APFloat::cmpEqual) return maxnum(Src1, Src2); APFloat::cmpResult Cmp1 = Max3.compare(Src1); assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately"); if (Cmp1 == APFloat::cmpEqual) return maxnum(Src0, Src2); return maxnum(Src0, Src1); } // Check if a value can be converted to a 16-bit value without losing // precision. // The value is expected to be either a float (IsFloat = true) or an unsigned // integer (IsFloat = false). static bool canSafelyConvertTo16Bit(Value &V, bool IsFloat) { Type *VTy = V.getType(); if (VTy->isHalfTy() || VTy->isIntegerTy(16)) { // The value is already 16-bit, so we don't want to convert to 16-bit again! return false; } if (IsFloat) { if (ConstantFP *ConstFloat = dyn_cast(&V)) { // We need to check that if we cast the index down to a half, we do not // lose precision. APFloat FloatValue(ConstFloat->getValueAPF()); bool LosesInfo = true; FloatValue.convert(APFloat::IEEEhalf(), APFloat::rmTowardZero, &LosesInfo); return !LosesInfo; } } else { if (ConstantInt *ConstInt = dyn_cast(&V)) { // We need to check that if we cast the index down to an i16, we do not // lose precision. APInt IntValue(ConstInt->getValue()); return IntValue.getActiveBits() <= 16; } } Value *CastSrc; bool IsExt = IsFloat ? match(&V, m_FPExt(PatternMatch::m_Value(CastSrc))) : match(&V, m_ZExt(PatternMatch::m_Value(CastSrc))); if (IsExt) { Type *CastSrcTy = CastSrc->getType(); if (CastSrcTy->isHalfTy() || CastSrcTy->isIntegerTy(16)) return true; } return false; } // Convert a value to 16-bit. static Value *convertTo16Bit(Value &V, InstCombiner::BuilderTy &Builder) { Type *VTy = V.getType(); if (isa(&V) || isa(&V) || isa(&V)) return cast(&V)->getOperand(0); if (VTy->isIntegerTy()) return Builder.CreateIntCast(&V, Type::getInt16Ty(V.getContext()), false); if (VTy->isFloatingPointTy()) return Builder.CreateFPCast(&V, Type::getHalfTy(V.getContext())); llvm_unreachable("Should never be called!"); } /// Applies Function(II.Args, II.ArgTys) and replaces the intrinsic call with /// the modified arguments. static Optional modifyIntrinsicCall( IntrinsicInst &II, unsigned NewIntr, InstCombiner &IC, std::function &, SmallVectorImpl &)> Func) { SmallVector ArgTys; if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), ArgTys)) return None; SmallVector Args(II.args()); // Modify arguments and types Func(Args, ArgTys); Function *I = Intrinsic::getDeclaration(II.getModule(), NewIntr, ArgTys); CallInst *NewCall = IC.Builder.CreateCall(I, Args); NewCall->takeName(&II); NewCall->copyMetadata(II); if (isa(NewCall)) NewCall->copyFastMathFlags(&II); // Erase and replace uses if (!II.getType()->isVoidTy()) IC.replaceInstUsesWith(II, NewCall); return IC.eraseInstFromFunction(II); } static Optional simplifyAMDGCNImageIntrinsic(const GCNSubtarget *ST, const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr, IntrinsicInst &II, InstCombiner &IC) { // Optimize _L to _LZ when _L is zero if (const auto *LZMappingInfo = AMDGPU::getMIMGLZMappingInfo(ImageDimIntr->BaseOpcode)) { if (auto *ConstantLod = dyn_cast(II.getOperand(ImageDimIntr->LodIndex))) { if (ConstantLod->isZero() || ConstantLod->isNegative()) { const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = AMDGPU::getImageDimIntrinsicByBaseOpcode(LZMappingInfo->LZ, ImageDimIntr->Dim); return modifyIntrinsicCall( II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { Args.erase(Args.begin() + ImageDimIntr->LodIndex); }); } } } // Optimize _mip away, when 'lod' is zero if (const auto *MIPMappingInfo = AMDGPU::getMIMGMIPMappingInfo(ImageDimIntr->BaseOpcode)) { if (auto *ConstantMip = dyn_cast(II.getOperand(ImageDimIntr->MipIndex))) { if (ConstantMip->isZero()) { const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = AMDGPU::getImageDimIntrinsicByBaseOpcode(MIPMappingInfo->NONMIP, ImageDimIntr->Dim); return modifyIntrinsicCall( II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { Args.erase(Args.begin() + ImageDimIntr->MipIndex); }); } } } // Optimize _bias away when 'bias' is zero if (const auto *BiasMappingInfo = AMDGPU::getMIMGBiasMappingInfo(ImageDimIntr->BaseOpcode)) { if (auto *ConstantBias = dyn_cast(II.getOperand(ImageDimIntr->BiasIndex))) { if (ConstantBias->isZero()) { const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = AMDGPU::getImageDimIntrinsicByBaseOpcode(BiasMappingInfo->NoBias, ImageDimIntr->Dim); return modifyIntrinsicCall( II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { Args.erase(Args.begin() + ImageDimIntr->BiasIndex); ArgTys.erase(ArgTys.begin() + ImageDimIntr->BiasTyArg); }); } } } // Optimize _offset away when 'offset' is zero if (const auto *OffsetMappingInfo = AMDGPU::getMIMGOffsetMappingInfo(ImageDimIntr->BaseOpcode)) { if (auto *ConstantOffset = dyn_cast(II.getOperand(ImageDimIntr->OffsetIndex))) { if (ConstantOffset->isZero()) { const AMDGPU::ImageDimIntrinsicInfo *NewImageDimIntr = AMDGPU::getImageDimIntrinsicByBaseOpcode( OffsetMappingInfo->NoOffset, ImageDimIntr->Dim); return modifyIntrinsicCall( II, NewImageDimIntr->Intr, IC, [&](auto &Args, auto &ArgTys) { Args.erase(Args.begin() + ImageDimIntr->OffsetIndex); }); } } } // Try to use A16 or G16 if (!ST->hasA16() && !ST->hasG16()) return None; // Address is interpreted as float if the instruction has a sampler or as // unsigned int if there is no sampler. bool HasSampler = AMDGPU::getMIMGBaseOpcodeInfo(ImageDimIntr->BaseOpcode)->Sampler; bool FloatCoord = false; // true means derivatives can be converted to 16 bit, coordinates not bool OnlyDerivatives = false; for (unsigned OperandIndex = ImageDimIntr->GradientStart; OperandIndex < ImageDimIntr->VAddrEnd; OperandIndex++) { Value *Coord = II.getOperand(OperandIndex); // If the values are not derived from 16-bit values, we cannot optimize. if (!canSafelyConvertTo16Bit(*Coord, HasSampler)) { if (OperandIndex < ImageDimIntr->CoordStart || ImageDimIntr->GradientStart == ImageDimIntr->CoordStart) { return None; } // All gradients can be converted, so convert only them OnlyDerivatives = true; break; } assert(OperandIndex == ImageDimIntr->GradientStart || FloatCoord == Coord->getType()->isFloatingPointTy()); FloatCoord = Coord->getType()->isFloatingPointTy(); } if (!OnlyDerivatives && !ST->hasA16()) OnlyDerivatives = true; // Only supports G16 // Check if there is a bias parameter and if it can be converted to f16 if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); assert(HasSampler && "Only image instructions with a sampler can have a bias"); if (!canSafelyConvertTo16Bit(*Bias, HasSampler)) OnlyDerivatives = true; } if (OnlyDerivatives && (!ST->hasG16() || ImageDimIntr->GradientStart == ImageDimIntr->CoordStart)) return None; Type *CoordType = FloatCoord ? Type::getHalfTy(II.getContext()) : Type::getInt16Ty(II.getContext()); return modifyIntrinsicCall( II, II.getIntrinsicID(), IC, [&](auto &Args, auto &ArgTys) { ArgTys[ImageDimIntr->GradientTyArg] = CoordType; if (!OnlyDerivatives) { ArgTys[ImageDimIntr->CoordTyArg] = CoordType; // Change the bias type if (ImageDimIntr->NumBiasArgs != 0) ArgTys[ImageDimIntr->BiasTyArg] = Type::getHalfTy(II.getContext()); } unsigned EndIndex = OnlyDerivatives ? ImageDimIntr->CoordStart : ImageDimIntr->VAddrEnd; for (unsigned OperandIndex = ImageDimIntr->GradientStart; OperandIndex < EndIndex; OperandIndex++) { Args[OperandIndex] = convertTo16Bit(*II.getOperand(OperandIndex), IC.Builder); } // Convert the bias if (!OnlyDerivatives && ImageDimIntr->NumBiasArgs != 0) { Value *Bias = II.getOperand(ImageDimIntr->BiasIndex); Args[ImageDimIntr->BiasIndex] = convertTo16Bit(*Bias, IC.Builder); } }); } bool GCNTTIImpl::canSimplifyLegacyMulToMul(const Value *Op0, const Value *Op1, InstCombiner &IC) const { // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or // infinity, gives +0.0. If we can prove we don't have one of the special // cases then we can use a normal multiply instead. // TODO: Create and use isKnownFiniteNonZero instead of just matching // constants here. if (match(Op0, PatternMatch::m_FiniteNonZero()) || match(Op1, PatternMatch::m_FiniteNonZero())) { // One operand is not zero or infinity or NaN. return true; } auto *TLI = &IC.getTargetLibraryInfo(); if (isKnownNeverInfinity(Op0, TLI) && isKnownNeverNaN(Op0, TLI) && isKnownNeverInfinity(Op1, TLI) && isKnownNeverNaN(Op1, TLI)) { // Neither operand is infinity or NaN. return true; } return false; } Optional GCNTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const { Intrinsic::ID IID = II.getIntrinsicID(); switch (IID) { case Intrinsic::amdgcn_rcp: { Value *Src = II.getArgOperand(0); // TODO: Move to ConstantFolding/InstSimplify? if (isa(Src)) { Type *Ty = II.getType(); auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); return IC.replaceInstUsesWith(II, QNaN); } if (II.isStrictFP()) break; if (const ConstantFP *C = dyn_cast(Src)) { const APFloat &ArgVal = C->getValueAPF(); APFloat Val(ArgVal.getSemantics(), 1); Val.divide(ArgVal, APFloat::rmNearestTiesToEven); // This is more precise than the instruction may give. // // TODO: The instruction always flushes denormal results (except for f16), // should this also? return IC.replaceInstUsesWith(II, ConstantFP::get(II.getContext(), Val)); } break; } case Intrinsic::amdgcn_rsq: { Value *Src = II.getArgOperand(0); // TODO: Move to ConstantFolding/InstSimplify? if (isa(Src)) { Type *Ty = II.getType(); auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); return IC.replaceInstUsesWith(II, QNaN); } break; } case Intrinsic::amdgcn_frexp_mant: case Intrinsic::amdgcn_frexp_exp: { Value *Src = II.getArgOperand(0); if (const ConstantFP *C = dyn_cast(Src)) { int Exp; APFloat Significand = frexp(C->getValueAPF(), Exp, APFloat::rmNearestTiesToEven); if (IID == Intrinsic::amdgcn_frexp_mant) { return IC.replaceInstUsesWith( II, ConstantFP::get(II.getContext(), Significand)); } // Match instruction special case behavior. if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf) Exp = 0; return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Exp)); } if (isa(Src)) { return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); } break; } case Intrinsic::amdgcn_class: { enum { S_NAN = 1 << 0, // Signaling NaN Q_NAN = 1 << 1, // Quiet NaN N_INFINITY = 1 << 2, // Negative infinity N_NORMAL = 1 << 3, // Negative normal N_SUBNORMAL = 1 << 4, // Negative subnormal N_ZERO = 1 << 5, // Negative zero P_ZERO = 1 << 6, // Positive zero P_SUBNORMAL = 1 << 7, // Positive subnormal P_NORMAL = 1 << 8, // Positive normal P_INFINITY = 1 << 9 // Positive infinity }; const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL | N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY; Value *Src0 = II.getArgOperand(0); Value *Src1 = II.getArgOperand(1); const ConstantInt *CMask = dyn_cast(Src1); if (!CMask) { if (isa(Src0)) { return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); } if (isa(Src1)) { return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); } break; } uint32_t Mask = CMask->getZExtValue(); // If all tests are made, it doesn't matter what the value is. if ((Mask & FullMask) == FullMask) { return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), true)); } if ((Mask & FullMask) == 0) { return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), false)); } if (Mask == (S_NAN | Q_NAN)) { // Equivalent of isnan. Replace with standard fcmp. Value *FCmp = IC.Builder.CreateFCmpUNO(Src0, Src0); FCmp->takeName(&II); return IC.replaceInstUsesWith(II, FCmp); } if (Mask == (N_ZERO | P_ZERO)) { // Equivalent of == 0. Value *FCmp = IC.Builder.CreateFCmpOEQ(Src0, ConstantFP::get(Src0->getType(), 0.0)); FCmp->takeName(&II); return IC.replaceInstUsesWith(II, FCmp); } // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &IC.getTargetLibraryInfo())) { return IC.replaceOperand( II, 1, ConstantInt::get(Src1->getType(), Mask & ~(S_NAN | Q_NAN))); } const ConstantFP *CVal = dyn_cast(Src0); if (!CVal) { if (isa(Src0)) { return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); } // Clamp mask to used bits if ((Mask & FullMask) != Mask) { CallInst *NewCall = IC.Builder.CreateCall( II.getCalledFunction(), {Src0, ConstantInt::get(Src1->getType(), Mask & FullMask)}); NewCall->takeName(&II); return IC.replaceInstUsesWith(II, NewCall); } break; } const APFloat &Val = CVal->getValueAPF(); bool Result = ((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) || ((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) || ((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) || ((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) || ((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) || ((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) || ((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) || ((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) || ((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) || ((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative()); return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), Result)); } case Intrinsic::amdgcn_cvt_pkrtz: { Value *Src0 = II.getArgOperand(0); Value *Src1 = II.getArgOperand(1); if (const ConstantFP *C0 = dyn_cast(Src0)) { if (const ConstantFP *C1 = dyn_cast(Src1)) { const fltSemantics &HalfSem = II.getType()->getScalarType()->getFltSemantics(); bool LosesInfo; APFloat Val0 = C0->getValueAPF(); APFloat Val1 = C1->getValueAPF(); Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo); Constant *Folded = ConstantVector::get({ConstantFP::get(II.getContext(), Val0), ConstantFP::get(II.getContext(), Val1)}); return IC.replaceInstUsesWith(II, Folded); } } if (isa(Src0) && isa(Src1)) { return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); } break; } case Intrinsic::amdgcn_cvt_pknorm_i16: case Intrinsic::amdgcn_cvt_pknorm_u16: case Intrinsic::amdgcn_cvt_pk_i16: case Intrinsic::amdgcn_cvt_pk_u16: { Value *Src0 = II.getArgOperand(0); Value *Src1 = II.getArgOperand(1); if (isa(Src0) && isa(Src1)) { return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); } break; } case Intrinsic::amdgcn_ubfe: case Intrinsic::amdgcn_sbfe: { // Decompose simple cases into standard shifts. Value *Src = II.getArgOperand(0); if (isa(Src)) { return IC.replaceInstUsesWith(II, Src); } unsigned Width; Type *Ty = II.getType(); unsigned IntSize = Ty->getIntegerBitWidth(); ConstantInt *CWidth = dyn_cast(II.getArgOperand(2)); if (CWidth) { Width = CWidth->getZExtValue(); if ((Width & (IntSize - 1)) == 0) { return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(Ty)); } // Hardware ignores high bits, so remove those. if (Width >= IntSize) { return IC.replaceOperand( II, 2, ConstantInt::get(CWidth->getType(), Width & (IntSize - 1))); } } unsigned Offset; ConstantInt *COffset = dyn_cast(II.getArgOperand(1)); if (COffset) { Offset = COffset->getZExtValue(); if (Offset >= IntSize) { return IC.replaceOperand( II, 1, ConstantInt::get(COffset->getType(), Offset & (IntSize - 1))); } } bool Signed = IID == Intrinsic::amdgcn_sbfe; if (!CWidth || !COffset) break; // The case of Width == 0 is handled above, which makes this transformation // safe. If Width == 0, then the ashr and lshr instructions become poison // value since the shift amount would be equal to the bit size. assert(Width != 0); // TODO: This allows folding to undef when the hardware has specific // behavior? if (Offset + Width < IntSize) { Value *Shl = IC.Builder.CreateShl(Src, IntSize - Offset - Width); Value *RightShift = Signed ? IC.Builder.CreateAShr(Shl, IntSize - Width) : IC.Builder.CreateLShr(Shl, IntSize - Width); RightShift->takeName(&II); return IC.replaceInstUsesWith(II, RightShift); } Value *RightShift = Signed ? IC.Builder.CreateAShr(Src, Offset) : IC.Builder.CreateLShr(Src, Offset); RightShift->takeName(&II); return IC.replaceInstUsesWith(II, RightShift); } case Intrinsic::amdgcn_exp: case Intrinsic::amdgcn_exp_compr: { ConstantInt *En = cast(II.getArgOperand(1)); unsigned EnBits = En->getZExtValue(); if (EnBits == 0xf) break; // All inputs enabled. bool IsCompr = IID == Intrinsic::amdgcn_exp_compr; bool Changed = false; for (int I = 0; I < (IsCompr ? 2 : 4); ++I) { if ((!IsCompr && (EnBits & (1 << I)) == 0) || (IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) { Value *Src = II.getArgOperand(I + 2); if (!isa(Src)) { IC.replaceOperand(II, I + 2, UndefValue::get(Src->getType())); Changed = true; } } } if (Changed) { return &II; } break; } case Intrinsic::amdgcn_fmed3: { // Note this does not preserve proper sNaN behavior if IEEE-mode is enabled // for the shader. Value *Src0 = II.getArgOperand(0); Value *Src1 = II.getArgOperand(1); Value *Src2 = II.getArgOperand(2); // Checking for NaN before canonicalization provides better fidelity when // mapping other operations onto fmed3 since the order of operands is // unchanged. CallInst *NewCall = nullptr; if (match(Src0, PatternMatch::m_NaN()) || isa(Src0)) { NewCall = IC.Builder.CreateMinNum(Src1, Src2); } else if (match(Src1, PatternMatch::m_NaN()) || isa(Src1)) { NewCall = IC.Builder.CreateMinNum(Src0, Src2); } else if (match(Src2, PatternMatch::m_NaN()) || isa(Src2)) { NewCall = IC.Builder.CreateMaxNum(Src0, Src1); } if (NewCall) { NewCall->copyFastMathFlags(&II); NewCall->takeName(&II); return IC.replaceInstUsesWith(II, NewCall); } bool Swap = false; // Canonicalize constants to RHS operands. // // fmed3(c0, x, c1) -> fmed3(x, c0, c1) if (isa(Src0) && !isa(Src1)) { std::swap(Src0, Src1); Swap = true; } if (isa(Src1) && !isa(Src2)) { std::swap(Src1, Src2); Swap = true; } if (isa(Src0) && !isa(Src1)) { std::swap(Src0, Src1); Swap = true; } if (Swap) { II.setArgOperand(0, Src0); II.setArgOperand(1, Src1); II.setArgOperand(2, Src2); return &II; } if (const ConstantFP *C0 = dyn_cast(Src0)) { if (const ConstantFP *C1 = dyn_cast(Src1)) { if (const ConstantFP *C2 = dyn_cast(Src2)) { APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(), C2->getValueAPF()); return IC.replaceInstUsesWith( II, ConstantFP::get(IC.Builder.getContext(), Result)); } } } break; } case Intrinsic::amdgcn_icmp: case Intrinsic::amdgcn_fcmp: { const ConstantInt *CC = cast(II.getArgOperand(2)); // Guard against invalid arguments. int64_t CCVal = CC->getZExtValue(); bool IsInteger = IID == Intrinsic::amdgcn_icmp; if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE || CCVal > CmpInst::LAST_ICMP_PREDICATE)) || (!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE || CCVal > CmpInst::LAST_FCMP_PREDICATE))) break; Value *Src0 = II.getArgOperand(0); Value *Src1 = II.getArgOperand(1); if (auto *CSrc0 = dyn_cast(Src0)) { if (auto *CSrc1 = dyn_cast(Src1)) { Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1); if (CCmp->isNullValue()) { return IC.replaceInstUsesWith( II, ConstantExpr::getSExt(CCmp, II.getType())); } // The result of V_ICMP/V_FCMP assembly instructions (which this // intrinsic exposes) is one bit per thread, masked with the EXEC // register (which contains the bitmask of live threads). So a // comparison that always returns true is the same as a read of the // EXEC register. Function *NewF = Intrinsic::getDeclaration( II.getModule(), Intrinsic::read_register, II.getType()); Metadata *MDArgs[] = {MDString::get(II.getContext(), "exec")}; MDNode *MD = MDNode::get(II.getContext(), MDArgs); Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); NewCall->addFnAttr(Attribute::Convergent); NewCall->takeName(&II); return IC.replaceInstUsesWith(II, NewCall); } // Canonicalize constants to RHS. CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(static_cast(CCVal)); II.setArgOperand(0, Src1); II.setArgOperand(1, Src0); II.setArgOperand( 2, ConstantInt::get(CC->getType(), static_cast(SwapPred))); return &II; } if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE) break; // Canonicalize compare eq with true value to compare != 0 // llvm.amdgcn.icmp(zext (i1 x), 1, eq) // -> llvm.amdgcn.icmp(zext (i1 x), 0, ne) // llvm.amdgcn.icmp(sext (i1 x), -1, eq) // -> llvm.amdgcn.icmp(sext (i1 x), 0, ne) Value *ExtSrc; if (CCVal == CmpInst::ICMP_EQ && ((match(Src1, PatternMatch::m_One()) && match(Src0, m_ZExt(PatternMatch::m_Value(ExtSrc)))) || (match(Src1, PatternMatch::m_AllOnes()) && match(Src0, m_SExt(PatternMatch::m_Value(ExtSrc))))) && ExtSrc->getType()->isIntegerTy(1)) { IC.replaceOperand(II, 1, ConstantInt::getNullValue(Src1->getType())); IC.replaceOperand(II, 2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE)); return &II; } CmpInst::Predicate SrcPred; Value *SrcLHS; Value *SrcRHS; // Fold compare eq/ne with 0 from a compare result as the predicate to the // intrinsic. The typical use is a wave vote function in the library, which // will be fed from a user code condition compared with 0. Fold in the // redundant compare. // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne) // -> llvm.amdgcn.[if]cmp(a, b, pred) // // llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq) // -> llvm.amdgcn.[if]cmp(a, b, inv pred) if (match(Src1, PatternMatch::m_Zero()) && match(Src0, PatternMatch::m_ZExtOrSExt( m_Cmp(SrcPred, PatternMatch::m_Value(SrcLHS), PatternMatch::m_Value(SrcRHS))))) { if (CCVal == CmpInst::ICMP_EQ) SrcPred = CmpInst::getInversePredicate(SrcPred); Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ? Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp; Type *Ty = SrcLHS->getType(); if (auto *CmpType = dyn_cast(Ty)) { // Promote to next legal integer type. unsigned Width = CmpType->getBitWidth(); unsigned NewWidth = Width; // Don't do anything for i1 comparisons. if (Width == 1) break; if (Width <= 16) NewWidth = 16; else if (Width <= 32) NewWidth = 32; else if (Width <= 64) NewWidth = 64; else if (Width > 64) break; // Can't handle this. if (Width != NewWidth) { IntegerType *CmpTy = IC.Builder.getIntNTy(NewWidth); if (CmpInst::isSigned(SrcPred)) { SrcLHS = IC.Builder.CreateSExt(SrcLHS, CmpTy); SrcRHS = IC.Builder.CreateSExt(SrcRHS, CmpTy); } else { SrcLHS = IC.Builder.CreateZExt(SrcLHS, CmpTy); SrcRHS = IC.Builder.CreateZExt(SrcRHS, CmpTy); } } } else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy()) break; Function *NewF = Intrinsic::getDeclaration( II.getModule(), NewIID, {II.getType(), SrcLHS->getType()}); Value *Args[] = {SrcLHS, SrcRHS, ConstantInt::get(CC->getType(), SrcPred)}; CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); NewCall->takeName(&II); return IC.replaceInstUsesWith(II, NewCall); } break; } case Intrinsic::amdgcn_ballot: { if (auto *Src = dyn_cast(II.getArgOperand(0))) { if (Src->isZero()) { // amdgcn.ballot(i1 0) is zero. return IC.replaceInstUsesWith(II, Constant::getNullValue(II.getType())); } if (Src->isOne()) { // amdgcn.ballot(i1 1) is exec. const char *RegName = "exec"; if (II.getType()->isIntegerTy(32)) RegName = "exec_lo"; else if (!II.getType()->isIntegerTy(64)) break; Function *NewF = Intrinsic::getDeclaration( II.getModule(), Intrinsic::read_register, II.getType()); Metadata *MDArgs[] = {MDString::get(II.getContext(), RegName)}; MDNode *MD = MDNode::get(II.getContext(), MDArgs); Value *Args[] = {MetadataAsValue::get(II.getContext(), MD)}; CallInst *NewCall = IC.Builder.CreateCall(NewF, Args); NewCall->addFnAttr(Attribute::Convergent); NewCall->takeName(&II); return IC.replaceInstUsesWith(II, NewCall); } } break; } case Intrinsic::amdgcn_wqm_vote: { // wqm_vote is identity when the argument is constant. if (!isa(II.getArgOperand(0))) break; return IC.replaceInstUsesWith(II, II.getArgOperand(0)); } case Intrinsic::amdgcn_kill: { const ConstantInt *C = dyn_cast(II.getArgOperand(0)); if (!C || !C->getZExtValue()) break; // amdgcn.kill(i1 1) is a no-op return IC.eraseInstFromFunction(II); } case Intrinsic::amdgcn_update_dpp: { Value *Old = II.getArgOperand(0); auto *BC = cast(II.getArgOperand(5)); auto *RM = cast(II.getArgOperand(3)); auto *BM = cast(II.getArgOperand(4)); if (BC->isZeroValue() || RM->getZExtValue() != 0xF || BM->getZExtValue() != 0xF || isa(Old)) break; // If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value. return IC.replaceOperand(II, 0, UndefValue::get(Old->getType())); } case Intrinsic::amdgcn_permlane16: case Intrinsic::amdgcn_permlanex16: { // Discard vdst_in if it's not going to be read. Value *VDstIn = II.getArgOperand(0); if (isa(VDstIn)) break; ConstantInt *FetchInvalid = cast(II.getArgOperand(4)); ConstantInt *BoundCtrl = cast(II.getArgOperand(5)); if (!FetchInvalid->getZExtValue() && !BoundCtrl->getZExtValue()) break; return IC.replaceOperand(II, 0, UndefValue::get(VDstIn->getType())); } case Intrinsic::amdgcn_readfirstlane: case Intrinsic::amdgcn_readlane: { // A constant value is trivially uniform. if (Constant *C = dyn_cast(II.getArgOperand(0))) { return IC.replaceInstUsesWith(II, C); } // The rest of these may not be safe if the exec may not be the same between // the def and use. Value *Src = II.getArgOperand(0); Instruction *SrcInst = dyn_cast(Src); if (SrcInst && SrcInst->getParent() != II.getParent()) break; // readfirstlane (readfirstlane x) -> readfirstlane x // readlane (readfirstlane x), y -> readfirstlane x if (match(Src, PatternMatch::m_Intrinsic())) { return IC.replaceInstUsesWith(II, Src); } if (IID == Intrinsic::amdgcn_readfirstlane) { // readfirstlane (readlane x, y) -> readlane x, y if (match(Src, PatternMatch::m_Intrinsic())) { return IC.replaceInstUsesWith(II, Src); } } else { // readlane (readlane x, y), y -> readlane x, y if (match(Src, PatternMatch::m_Intrinsic( PatternMatch::m_Value(), PatternMatch::m_Specific(II.getArgOperand(1))))) { return IC.replaceInstUsesWith(II, Src); } } break; } case Intrinsic::amdgcn_ldexp: { // FIXME: This doesn't introduce new instructions and belongs in // InstructionSimplify. Type *Ty = II.getType(); Value *Op0 = II.getArgOperand(0); Value *Op1 = II.getArgOperand(1); // Folding undef to qnan is safe regardless of the FP mode. if (isa(Op0)) { auto *QNaN = ConstantFP::get(Ty, APFloat::getQNaN(Ty->getFltSemantics())); return IC.replaceInstUsesWith(II, QNaN); } const APFloat *C = nullptr; match(Op0, PatternMatch::m_APFloat(C)); // FIXME: Should flush denorms depending on FP mode, but that's ignored // everywhere else. // // These cases should be safe, even with strictfp. // ldexp(0.0, x) -> 0.0 // ldexp(-0.0, x) -> -0.0 // ldexp(inf, x) -> inf // ldexp(-inf, x) -> -inf if (C && (C->isZero() || C->isInfinity())) { return IC.replaceInstUsesWith(II, Op0); } // With strictfp, be more careful about possibly needing to flush denormals // or not, and snan behavior depends on ieee_mode. if (II.isStrictFP()) break; if (C && C->isNaN()) { // FIXME: We just need to make the nan quiet here, but that's unavailable // on APFloat, only IEEEfloat auto *Quieted = ConstantFP::get(Ty, scalbn(*C, 0, APFloat::rmNearestTiesToEven)); return IC.replaceInstUsesWith(II, Quieted); } // ldexp(x, 0) -> x // ldexp(x, undef) -> x if (isa(Op1) || match(Op1, PatternMatch::m_ZeroInt())) { return IC.replaceInstUsesWith(II, Op0); } break; } case Intrinsic::amdgcn_fmul_legacy: { Value *Op0 = II.getArgOperand(0); Value *Op1 = II.getArgOperand(1); // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or // infinity, gives +0.0. // TODO: Move to InstSimplify? if (match(Op0, PatternMatch::m_AnyZeroFP()) || match(Op1, PatternMatch::m_AnyZeroFP())) return IC.replaceInstUsesWith(II, ConstantFP::getNullValue(II.getType())); // If we can prove we don't have one of the special cases then we can use a // normal fmul instruction instead. if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) { auto *FMul = IC.Builder.CreateFMulFMF(Op0, Op1, &II); FMul->takeName(&II); return IC.replaceInstUsesWith(II, FMul); } break; } case Intrinsic::amdgcn_fma_legacy: { Value *Op0 = II.getArgOperand(0); Value *Op1 = II.getArgOperand(1); Value *Op2 = II.getArgOperand(2); // The legacy behaviour is that multiplying +/-0.0 by anything, even NaN or // infinity, gives +0.0. // TODO: Move to InstSimplify? if (match(Op0, PatternMatch::m_AnyZeroFP()) || match(Op1, PatternMatch::m_AnyZeroFP())) { // It's tempting to just return Op2 here, but that would give the wrong // result if Op2 was -0.0. auto *Zero = ConstantFP::getNullValue(II.getType()); auto *FAdd = IC.Builder.CreateFAddFMF(Zero, Op2, &II); FAdd->takeName(&II); return IC.replaceInstUsesWith(II, FAdd); } // If we can prove we don't have one of the special cases then we can use a // normal fma instead. if (canSimplifyLegacyMulToMul(Op0, Op1, IC)) { II.setCalledOperand(Intrinsic::getDeclaration( II.getModule(), Intrinsic::fma, II.getType())); return &II; } break; } case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: { if (isa(II.getArgOperand(0))) return IC.replaceInstUsesWith(II, UndefValue::get(II.getType())); if (isa(II.getArgOperand(0))) return IC.replaceInstUsesWith(II, ConstantInt::getFalse(II.getType())); break; } default: { if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr = AMDGPU::getImageDimIntrinsicInfo(II.getIntrinsicID())) { return simplifyAMDGCNImageIntrinsic(ST, ImageDimIntr, II, IC); } } } return None; } /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics. /// /// Note: This only supports non-TFE/LWE image intrinsic calls; those have /// struct returns. static Value *simplifyAMDGCNMemoryIntrinsicDemanded(InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, int DMaskIdx = -1) { auto *IIVTy = cast(II.getType()); unsigned VWidth = IIVTy->getNumElements(); if (VWidth == 1) return nullptr; IRBuilderBase::InsertPointGuard Guard(IC.Builder); IC.Builder.SetInsertPoint(&II); // Assume the arguments are unchanged and later override them, if needed. SmallVector Args(II.args()); if (DMaskIdx < 0) { // Buffer case. const unsigned ActiveBits = DemandedElts.getActiveBits(); const unsigned UnusedComponentsAtFront = DemandedElts.countTrailingZeros(); // Start assuming the prefix of elements is demanded, but possibly clear // some other bits if there are trailing zeros (unused components at front) // and update offset. DemandedElts = (1 << ActiveBits) - 1; if (UnusedComponentsAtFront > 0) { static const unsigned InvalidOffsetIdx = 0xf; unsigned OffsetIdx; switch (II.getIntrinsicID()) { case Intrinsic::amdgcn_raw_buffer_load: OffsetIdx = 1; break; case Intrinsic::amdgcn_s_buffer_load: // If resulting type is vec3, there is no point in trimming the // load with updated offset, as the vec3 would most likely be widened to // vec4 anyway during lowering. if (ActiveBits == 4 && UnusedComponentsAtFront == 1) OffsetIdx = InvalidOffsetIdx; else OffsetIdx = 1; break; case Intrinsic::amdgcn_struct_buffer_load: OffsetIdx = 2; break; default: // TODO: handle tbuffer* intrinsics. OffsetIdx = InvalidOffsetIdx; break; } if (OffsetIdx != InvalidOffsetIdx) { // Clear demanded bits and update the offset. DemandedElts &= ~((1 << UnusedComponentsAtFront) - 1); auto *Offset = II.getArgOperand(OffsetIdx); unsigned SingleComponentSizeInBits = IC.getDataLayout().getTypeSizeInBits(II.getType()->getScalarType()); unsigned OffsetAdd = UnusedComponentsAtFront * SingleComponentSizeInBits / 8; auto *OffsetAddVal = ConstantInt::get(Offset->getType(), OffsetAdd); Args[OffsetIdx] = IC.Builder.CreateAdd(Offset, OffsetAddVal); } } } else { // Image case. ConstantInt *DMask = cast(II.getArgOperand(DMaskIdx)); unsigned DMaskVal = DMask->getZExtValue() & 0xf; // Mask off values that are undefined because the dmask doesn't cover them DemandedElts &= (1 << countPopulation(DMaskVal)) - 1; unsigned NewDMaskVal = 0; unsigned OrigLoadIdx = 0; for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) { const unsigned Bit = 1 << SrcIdx; if (!!(DMaskVal & Bit)) { if (!!DemandedElts[OrigLoadIdx]) NewDMaskVal |= Bit; OrigLoadIdx++; } } if (DMaskVal != NewDMaskVal) Args[DMaskIdx] = ConstantInt::get(DMask->getType(), NewDMaskVal); } unsigned NewNumElts = DemandedElts.countPopulation(); if (!NewNumElts) return UndefValue::get(II.getType()); if (NewNumElts >= VWidth && DemandedElts.isMask()) { if (DMaskIdx >= 0) II.setArgOperand(DMaskIdx, Args[DMaskIdx]); return nullptr; } // Validate function argument and return types, extracting overloaded types // along the way. SmallVector OverloadTys; if (!Intrinsic::getIntrinsicSignature(II.getCalledFunction(), OverloadTys)) return nullptr; Module *M = II.getParent()->getParent()->getParent(); Type *EltTy = IIVTy->getElementType(); Type *NewTy = (NewNumElts == 1) ? EltTy : FixedVectorType::get(EltTy, NewNumElts); OverloadTys[0] = NewTy; Function *NewIntrin = Intrinsic::getDeclaration(M, II.getIntrinsicID(), OverloadTys); CallInst *NewCall = IC.Builder.CreateCall(NewIntrin, Args); NewCall->takeName(&II); NewCall->copyMetadata(II); if (NewNumElts == 1) { return IC.Builder.CreateInsertElement(UndefValue::get(II.getType()), NewCall, DemandedElts.countTrailingZeros()); } SmallVector EltMask; unsigned NewLoadIdx = 0; for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) { if (!!DemandedElts[OrigLoadIdx]) EltMask.push_back(NewLoadIdx++); else EltMask.push_back(NewNumElts); } Value *Shuffle = IC.Builder.CreateShuffleVector(NewCall, EltMask); return Shuffle; } Optional GCNTTIImpl::simplifyDemandedVectorEltsIntrinsic( InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, std::function SimplifyAndSetOp) const { switch (II.getIntrinsicID()) { case Intrinsic::amdgcn_buffer_load: case Intrinsic::amdgcn_buffer_load_format: case Intrinsic::amdgcn_raw_buffer_load: case Intrinsic::amdgcn_raw_buffer_load_format: case Intrinsic::amdgcn_raw_tbuffer_load: case Intrinsic::amdgcn_s_buffer_load: case Intrinsic::amdgcn_struct_buffer_load: case Intrinsic::amdgcn_struct_buffer_load_format: case Intrinsic::amdgcn_struct_tbuffer_load: case Intrinsic::amdgcn_tbuffer_load: return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts); default: { if (getAMDGPUImageDMaskIntrinsic(II.getIntrinsicID())) { return simplifyAMDGCNMemoryIntrinsicDemanded(IC, II, DemandedElts, 0); } break; } } return None; }