//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for /// AMDGPU. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "AMDGPULegalizerInfo.h" #include "AMDGPUTargetMachine.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "amdgpu-legalinfo" using namespace llvm; using namespace LegalizeActions; using namespace LegalizeMutations; using namespace LegalityPredicates; static LegalityPredicate isMultiple32(unsigned TypeIdx, unsigned MaxSize = 512) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getScalarType(); return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0; }; } static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; return Ty.isVector() && Ty.getNumElements() % 2 != 0 && Ty.getElementType().getSizeInBits() < 32; }; } static LegalizeMutation oneMoreElement(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy)); }; } static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); unsigned Size = Ty.getSizeInBits(); unsigned Pieces = (Size + 63) / 64; unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy)); }; } static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) { return [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isVector() && QueryTy.getSizeInBits() > Size; }; } static LegalityPredicate numElementsNotEven(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0; }; } // Any combination of 32 or 64-bit elements up to 512 bits, and multiples of // v2s16. static LegalityPredicate isRegisterType(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const int EltSize = Ty.getElementType().getSizeInBits(); return EltSize == 32 || EltSize == 64 || (EltSize == 16 && Ty.getNumElements() % 2 == 0) || EltSize == 128 || EltSize == 256; } return Ty.getSizeInBits() % 32 == 0 && Ty.getSizeInBits() <= 512; }; } AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_, const GCNTargetMachine &TM) : ST(ST_) { using namespace TargetOpcode; auto GetAddrSpacePtr = [&TM](unsigned AS) { return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); }; const LLT S1 = LLT::scalar(1); const LLT S8 = LLT::scalar(8); const LLT S16 = LLT::scalar(16); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); const LLT S128 = LLT::scalar(128); const LLT S256 = LLT::scalar(256); const LLT S512 = LLT::scalar(512); const LLT V2S16 = LLT::vector(2, 16); const LLT V4S16 = LLT::vector(4, 16); const LLT V2S32 = LLT::vector(2, 32); const LLT V3S32 = LLT::vector(3, 32); const LLT V4S32 = LLT::vector(4, 32); const LLT V5S32 = LLT::vector(5, 32); const LLT V6S32 = LLT::vector(6, 32); const LLT V7S32 = LLT::vector(7, 32); const LLT V8S32 = LLT::vector(8, 32); const LLT V9S32 = LLT::vector(9, 32); const LLT V10S32 = LLT::vector(10, 32); const LLT V11S32 = LLT::vector(11, 32); const LLT V12S32 = LLT::vector(12, 32); const LLT V13S32 = LLT::vector(13, 32); const LLT V14S32 = LLT::vector(14, 32); const LLT V15S32 = LLT::vector(15, 32); const LLT V16S32 = LLT::vector(16, 32); const LLT V2S64 = LLT::vector(2, 64); const LLT V3S64 = LLT::vector(3, 64); const LLT V4S64 = LLT::vector(4, 64); const LLT V5S64 = LLT::vector(5, 64); const LLT V6S64 = LLT::vector(6, 64); const LLT V7S64 = LLT::vector(7, 64); const LLT V8S64 = LLT::vector(8, 64); std::initializer_list AllS32Vectors = {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32}; std::initializer_list AllS64Vectors = {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64}; const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); const LLT CodePtr = FlatPtr; const std::initializer_list AddrSpaces64 = { GlobalPtr, ConstantPtr, FlatPtr }; const std::initializer_list AddrSpaces32 = { LocalPtr, PrivatePtr }; const std::initializer_list FPTypesBase = { S32, S64 }; const std::initializer_list FPTypes16 = { S32, S64, S16 }; const std::initializer_list FPTypesPK16 = { S32, S64, S16, V2S16 }; setAction({G_BRCOND, S1}, Legal); // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more // elements for v3s16 getActionDefinitionsBuilder(G_PHI) .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) .legalFor(AllS32Vectors) .legalFor(AllS64Vectors) .legalFor(AddrSpaces64) .legalFor(AddrSpaces32) .clampScalar(0, S32, S256) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .legalIf(isPointer(0)); if (ST.has16BitInsts()) { getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) .legalFor({S32, S16}) .clampScalar(0, S16, S32) .scalarize(0); } else { getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); } getActionDefinitionsBuilder({G_UMULH, G_SMULH}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); // Report legal for any types we can handle anywhere. For the cases only legal // on the SALU, RegBankSelect will be able to re-legalize. getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16}) .clampScalar(0, S32, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(vectorWiderThan(0, 32), fewerEltsToSize64Vector(0)) .widenScalarToNextPow2(0) .scalarize(0); getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) .legalFor({{S32, S1}}) .clampScalar(0, S32, S32); getActionDefinitionsBuilder(G_BITCAST) .legalForCartesianProduct({S32, V2S16}) .legalForCartesianProduct({S64, V2S32, V4S16}) .legalForCartesianProduct({V2S64, V4S32}) // Don't worry about the size constraint. .legalIf(all(isPointer(0), isPointer(1))); if (ST.has16BitInsts()) { getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64, S16}) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64}) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_IMPLICIT_DEF) .legalFor({S1, S32, S64, V2S32, V4S32, V2S16, V4S16, GlobalPtr, ConstantPtr, LocalPtr, FlatPtr, PrivatePtr}) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampScalarOrElt(0, S32, S512) .legalIf(isMultiple32(0)) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16); // FIXME: i1 operands to intrinsics should always be legal, but other i1 // values may not be legal. We need to figure out how to distinguish // between these two scenarios. getActionDefinitionsBuilder(G_CONSTANT) .legalFor({S1, S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) .clampScalar(0, S32, S64) .widenScalarToNextPow2(0) .legalIf(isPointer(0)); setAction({G_FRAME_INDEX, PrivatePtr}, Legal); auto &FPOpActions = getActionDefinitionsBuilder( { G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA, G_FCANONICALIZE}) .legalFor({S32, S64}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) FPOpActions.legalFor({S16, V2S16}); else FPOpActions.legalFor({S16}); } auto &MinNumMaxNum = getActionDefinitionsBuilder({ G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE}); if (ST.hasVOP3PInsts()) { MinNumMaxNum.customFor(FPTypesPK16) .clampMaxNumElements(0, S16, 2) .clampScalar(0, S16, S64) .scalarize(0); } else if (ST.has16BitInsts()) { MinNumMaxNum.customFor(FPTypes16) .clampScalar(0, S16, S64) .scalarize(0); } else { MinNumMaxNum.customFor(FPTypesBase) .clampScalar(0, S32, S64) .scalarize(0); } // TODO: Implement getActionDefinitionsBuilder({G_FMINIMUM, G_FMAXIMUM}).lower(); if (ST.hasVOP3PInsts()) FPOpActions.clampMaxNumElements(0, S16, 2); FPOpActions .scalarize(0) .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); if (ST.has16BitInsts()) { getActionDefinitionsBuilder(G_FSQRT) .legalFor({S32, S64, S16}) .scalarize(0) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder(G_FSQRT) .legalFor({S32, S64}) .scalarize(0) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_FPTRUNC) .legalFor({{S32, S64}, {S16, S32}}) .scalarize(0); getActionDefinitionsBuilder(G_FPEXT) .legalFor({{S64, S32}, {S32, S16}}) .lowerFor({{S64, S16}}) // FIXME: Implement .scalarize(0); // TODO: Verify V_BFI_B32 is generated from expanded bit ops. getActionDefinitionsBuilder(G_FCOPYSIGN).lower(); getActionDefinitionsBuilder(G_FSUB) // Use actual fsub instruction .legalFor({S32}) // Must use fadd + fneg .lowerFor({S64, S16, V2S16}) .scalarize(0) .clampScalar(0, S32, S64); getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, {S32, S1}, {S64, S1}, {S16, S1}, // FIXME: Hack {S64, LLT::scalar(33)}, {S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}}) .scalarize(0); getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) .legalFor({{S32, S32}, {S64, S32}}) .lowerFor({{S32, S64}}) .customFor({{S64, S64}}) .scalarize(0); getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) .legalFor({{S32, S32}, {S32, S64}}) .scalarize(0); getActionDefinitionsBuilder(G_INTRINSIC_ROUND) .legalFor({S32, S64}) .scalarize(0); if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32, S64}) .clampScalar(0, S32, S64) .scalarize(0); } else { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32}) .customFor({S64}) .clampScalar(0, S32, S64) .scalarize(0); } getActionDefinitionsBuilder(G_GEP) .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0); setAction({G_BLOCK_ADDR, CodePtr}, Legal); auto &CmpBuilder = getActionDefinitionsBuilder(G_ICMP) .legalForCartesianProduct( {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) .legalFor({{S1, S32}, {S1, S64}}); if (ST.has16BitInsts()) { CmpBuilder.legalFor({{S1, S16}}); } CmpBuilder .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0) .legalIf(all(typeIs(0, S1), isPointer(1))); getActionDefinitionsBuilder(G_FCMP) .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase) .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0); // FIXME: fexp, flog2, flog10 needs to be custom lowered. getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2, G_FLOG, G_FLOG2, G_FLOG10}) .legalFor({S32}) .scalarize(0); // The 64-bit versions produce 32-bit results, but only on the SALU. getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF, G_CTTZ, G_CTTZ_ZERO_UNDEF, G_CTPOP}) .legalFor({{S32, S32}, {S32, S64}}) .clampScalar(0, S32, S32) .clampScalar(1, S32, S64) .scalarize(0) .widenScalarToNextPow2(0, 32) .widenScalarToNextPow2(1, 32); // TODO: Expand for > s32 getActionDefinitionsBuilder(G_BSWAP) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) { getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) .legalFor({S32, S16, V2S16}) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampMaxNumElements(0, S16, 2) .clampScalar(0, S16, S32) .widenScalarToNextPow2(0) .scalarize(0); } else { getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) .legalFor({S32, S16}) .widenScalarToNextPow2(0) .clampScalar(0, S16, S32) .scalarize(0); } } else { getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) .legalFor({S32}) .clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .scalarize(0); } auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() < Query.Types[TypeIdx1].getSizeInBits(); }; }; auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() > Query.Types[TypeIdx1].getSizeInBits(); }; }; getActionDefinitionsBuilder(G_INTTOPTR) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }) .narrowScalarIf(greaterThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }); getActionDefinitionsBuilder(G_PTRTOINT) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }) .narrowScalarIf( greaterThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }); if (ST.hasFlatAddressSpace()) { getActionDefinitionsBuilder(G_ADDRSPACE_CAST) .scalarize(0) .custom(); } // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we // handle some operations by just promoting the register during // selection. There are also d16 loads on GFX9+ which preserve the high bits. getActionDefinitionsBuilder({G_LOAD, G_STORE}) .narrowScalarIf([](const LegalityQuery &Query) { unsigned Size = Query.Types[0].getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; return (Size > 32 && MemSize < Size); }, [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(32)); }) .fewerElementsIf([=](const LegalityQuery &Query) { unsigned MemSize = Query.MMODescrs[0].SizeInBits; return (MemSize == 96) && Query.Types[0].isVector() && !ST.hasDwordx3LoadStores(); }, [=](const LegalityQuery &Query) { return std::make_pair(0, V2S32); }) .legalIf([=](const LegalityQuery &Query) { const LLT &Ty0 = Query.Types[0]; unsigned Size = Ty0.getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; if (Size < 32 || (Size > 32 && MemSize < Size)) return false; if (Ty0.isVector() && Size != MemSize) return false; // TODO: Decompose private loads into 4-byte components. // TODO: Illegal flat loads on SI switch (MemSize) { case 8: case 16: return Size == 32; case 32: case 64: case 128: return true; case 96: return ST.hasDwordx3LoadStores(); case 256: case 512: // TODO: Possibly support loads of i256 and i512 . This will require // adding i256 and i512 types to MVT in order for to be able to use // TableGen. // TODO: Add support for other vector types, this will require // defining more value mappings for the new types. return Ty0.isVector() && (Ty0.getScalarType().getSizeInBits() == 32 || Ty0.getScalarType().getSizeInBits() == 64); default: return false; } }) .clampScalar(0, S32, S64); // FIXME: Handle alignment requirements. auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) .legalForTypesWithMemDesc({ {S32, GlobalPtr, 8, 8}, {S32, GlobalPtr, 16, 8}, {S32, LocalPtr, 8, 8}, {S32, LocalPtr, 16, 8}, {S32, PrivatePtr, 8, 8}, {S32, PrivatePtr, 16, 8}}); if (ST.hasFlatAddressSpace()) { ExtLoads.legalForTypesWithMemDesc({{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 8}}); } ExtLoads.clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .unsupportedIfMemSizeNotPow2() .lower(); auto &Atomics = getActionDefinitionsBuilder( {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG}) .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, {S64, GlobalPtr}, {S64, LocalPtr}}); if (ST.hasFlatAddressSpace()) { Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); } // TODO: Pointer types, any 32-bit or 64-bit vector getActionDefinitionsBuilder(G_SELECT) .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1}) .clampScalar(0, S16, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(numElementsNotEven(0), scalarize(0)) .scalarize(1) .clampMaxNumElements(0, S32, 2) .clampMaxNumElements(0, LocalPtr, 2) .clampMaxNumElements(0, PrivatePtr, 2) .scalarize(0) .widenScalarToNextPow2(0) .legalIf(all(isPointer(0), typeIs(1, S1))); // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can // be more flexible with the shift amount type. auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) .legalFor({{S32, S32}, {S64, S32}}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) { Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}}) .clampMaxNumElements(0, S16, 2); } else Shifts.legalFor({{S16, S32}, {S16, S16}}); Shifts.clampScalar(1, S16, S32); Shifts.clampScalar(0, S16, S64); Shifts.widenScalarToNextPow2(0, 16); } else { // Make sure we legalize the shift amount type first, as the general // expansion for the shifted type will produce much worse code if it hasn't // been truncated already. Shifts.clampScalar(1, S32, S32); Shifts.clampScalar(0, S32, S64); Shifts.widenScalarToNextPow2(0, 32); } Shifts.scalarize(0); for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; unsigned IdxTypeIdx = 2; getActionDefinitionsBuilder(Op) .customIf([=](const LegalityQuery &Query) { const LLT EltTy = Query.Types[EltTypeIdx]; const LLT VecTy = Query.Types[VecTypeIdx]; const LLT IdxTy = Query.Types[IdxTypeIdx]; return (EltTy.getSizeInBits() == 16 || EltTy.getSizeInBits() % 32 == 0) && VecTy.getSizeInBits() % 32 == 0 && VecTy.getSizeInBits() <= 512 && IdxTy.getSizeInBits() == 32; }) .clampScalar(EltTypeIdx, S32, S64) .clampScalar(VecTypeIdx, S32, S64) .clampScalar(IdxTypeIdx, S32, S32); } getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) .unsupportedIf([=](const LegalityQuery &Query) { const LLT &EltTy = Query.Types[1].getElementType(); return Query.Types[0] != EltTy; }); for (unsigned Op : {G_EXTRACT, G_INSERT}) { unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; // FIXME: Doesn't handle extract of illegal sizes. getActionDefinitionsBuilder(Op) .legalIf([=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; const LLT LitTy = Query.Types[LitTyIdx]; return (BigTy.getSizeInBits() % 32 == 0) && (LitTy.getSizeInBits() % 16 == 0); }) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; return (BigTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT LitTy = Query.Types[LitTyIdx]; return (LitTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) .widenScalarToNextPow2(BigTyIdx, 32); } getActionDefinitionsBuilder(G_BUILD_VECTOR) .legalForCartesianProduct(AllS32Vectors, {S32}) .legalForCartesianProduct(AllS64Vectors, {S64}) .clampNumElements(0, V16S32, V16S32) .clampNumElements(0, V2S64, V8S64) .minScalarSameAs(1, 0) .legalIf(isRegisterType(0)) .minScalarOrElt(0, S32); getActionDefinitionsBuilder(G_CONCAT_VECTORS) .legalIf(isRegisterType(0)); // Merge/Unmerge for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const LLT &EltTy = Ty.getElementType(); if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) return true; if (!isPowerOf2_32(EltTy.getSizeInBits())) return true; } return false; }; getActionDefinitionsBuilder(Op) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) // Clamp the little scalar to s8-s256 and make it a power of 2. It's not // worth considering the multiples of 64 since 2*192 and 2*384 are not // valid. .clampScalar(LitTyIdx, S16, S256) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) // Break up vectors with weird elements into scalars .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, scalarize(0)) .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, scalarize(1)) .clampScalar(BigTyIdx, S32, S512) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT &Ty = Query.Types[BigTyIdx]; return !isPowerOf2_32(Ty.getSizeInBits()) && Ty.getSizeInBits() % 16 != 0; }, [=](const LegalityQuery &Query) { // Pick the next power of 2, or a multiple of 64 over 128. // Whichever is smaller. const LLT &Ty = Query.Types[BigTyIdx]; unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); if (NewSizeInBits >= 256) { unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); if (RoundedTo < NewSizeInBits) NewSizeInBits = RoundedTo; } return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); }) .legalIf([=](const LegalityQuery &Query) { const LLT &BigTy = Query.Types[BigTyIdx]; const LLT &LitTy = Query.Types[LitTyIdx]; if (BigTy.isVector() && BigTy.getSizeInBits() < 32) return false; if (LitTy.isVector() && LitTy.getSizeInBits() < 32) return false; return BigTy.getSizeInBits() % 16 == 0 && LitTy.getSizeInBits() % 16 == 0 && BigTy.getSizeInBits() <= 512; }) // Any vectors left are the wrong size. Scalarize them. .scalarize(0) .scalarize(1); } computeTables(); verify(*ST.getInstrInfo()); } bool AMDGPULegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder, GISelChangeObserver &Observer) const { switch (MI.getOpcode()) { case TargetOpcode::G_ADDRSPACE_CAST: return legalizeAddrSpaceCast(MI, MRI, MIRBuilder); case TargetOpcode::G_FRINT: return legalizeFrint(MI, MRI, MIRBuilder); case TargetOpcode::G_FCEIL: return legalizeFceil(MI, MRI, MIRBuilder); case TargetOpcode::G_INTRINSIC_TRUNC: return legalizeIntrinsicTrunc(MI, MRI, MIRBuilder); case TargetOpcode::G_SITOFP: return legalizeITOFP(MI, MRI, MIRBuilder, true); case TargetOpcode::G_UITOFP: return legalizeITOFP(MI, MRI, MIRBuilder, false); case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: return legalizeMinNumMaxNum(MI, MRI, MIRBuilder); case TargetOpcode::G_EXTRACT_VECTOR_ELT: return legalizeExtractVectorElt(MI, MRI, MIRBuilder); case TargetOpcode::G_INSERT_VECTOR_ELT: return legalizeInsertVectorElt(MI, MRI, MIRBuilder); default: return false; } llvm_unreachable("expected switch to return"); } Register AMDGPULegalizerInfo::getSegmentAperture( unsigned AS, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MachineFunction &MF = MIRBuilder.getMF(); const GCNSubtarget &ST = MF.getSubtarget(); const LLT S32 = LLT::scalar(32); if (ST.hasApertureRegs()) { // FIXME: Use inline constants (src_{shared, private}_base) instead of // getreg. unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; unsigned Encoding = AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; Register ApertureReg = MRI.createGenericVirtualRegister(S32); Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); MIRBuilder.buildInstr(AMDGPU::S_GETREG_B32) .addDef(GetReg) .addImm(Encoding); MRI.setType(GetReg, S32); auto ShiftAmt = MIRBuilder.buildConstant(S32, WidthM1 + 1); MIRBuilder.buildInstr(TargetOpcode::G_SHL) .addDef(ApertureReg) .addUse(GetReg) .addUse(ShiftAmt.getReg(0)); return ApertureReg; } Register QueuePtr = MRI.createGenericVirtualRegister( LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); // FIXME: Placeholder until we can track the input registers. MIRBuilder.buildConstant(QueuePtr, 0xdeadbeef); // Offset into amd_queue_t for group_segment_aperture_base_hi / // private_segment_aperture_base_hi. uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; // FIXME: Don't use undef Value *V = UndefValue::get(PointerType::get( Type::getInt8Ty(MF.getFunction().getContext()), AMDGPUAS::CONSTANT_ADDRESS)); MachinePointerInfo PtrInfo(V, StructOffset); MachineMemOperand *MMO = MF.getMachineMemOperand( PtrInfo, MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, 4, MinAlign(64, StructOffset)); Register LoadResult = MRI.createGenericVirtualRegister(S32); Register LoadAddr; MIRBuilder.materializeGEP(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset); MIRBuilder.buildLoad(LoadResult, LoadAddr, *MMO); return LoadResult; } bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MachineFunction &MF = MIRBuilder.getMF(); MIRBuilder.setInstr(MI); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); unsigned DestAS = DstTy.getAddressSpace(); unsigned SrcAS = SrcTy.getAddressSpace(); // TODO: Avoid reloading from the queue ptr for each cast, or at least each // vector element. assert(!DstTy.isVector()); const AMDGPUTargetMachine &TM = static_cast(MF.getTarget()); const GCNSubtarget &ST = MF.getSubtarget(); if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) { MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BITCAST)); return true; } if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || DestAS == AMDGPUAS::PRIVATE_ADDRESS); unsigned NullVal = TM.getNullPointerValue(DestAS); auto SegmentNull = MIRBuilder.buildConstant(DstTy, NullVal); auto FlatNull = MIRBuilder.buildConstant(SrcTy, 0); Register PtrLo32 = MRI.createGenericVirtualRegister(DstTy); // Extract low 32-bits of the pointer. MIRBuilder.buildExtract(PtrLo32, Src, 0); Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0)); MIRBuilder.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); MI.eraseFromParent(); return true; } assert(SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS); auto SegmentNull = MIRBuilder.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); auto FlatNull = MIRBuilder.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); Register ApertureReg = getSegmentAperture(DestAS, MRI, MIRBuilder); Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1)); MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0)); Register BuildPtr = MRI.createGenericVirtualRegister(DstTy); // Coerce the type of the low half of the result so we can use merge_values. Register SrcAsInt = MRI.createGenericVirtualRegister(LLT::scalar(32)); MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT) .addDef(SrcAsInt) .addUse(Src); // TODO: Should we allow mismatched types but matching sizes in merges to // avoid the ptrtoint? MIRBuilder.buildMerge(BuildPtr, {SrcAsInt, ApertureReg}); MIRBuilder.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0)); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeFrint( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const { MIRBuilder.setInstr(MI); Register Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Src); assert(Ty.isScalar() && Ty.getSizeInBits() == 64); APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); auto C1 = MIRBuilder.buildFConstant(Ty, C1Val); auto CopySign = MIRBuilder.buildFCopysign(Ty, C1, Src); // TODO: Should this propagate fast-math-flags? auto Tmp1 = MIRBuilder.buildFAdd(Ty, Src, CopySign); auto Tmp2 = MIRBuilder.buildFSub(Ty, Tmp1, CopySign); auto C2 = MIRBuilder.buildFConstant(Ty, C2Val); auto Fabs = MIRBuilder.buildFAbs(Ty, Src); auto Cond = MIRBuilder.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); MIRBuilder.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); return true; } bool AMDGPULegalizerInfo::legalizeFceil( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); const LLT S1 = LLT::scalar(1); const LLT S64 = LLT::scalar(64); Register Src = MI.getOperand(1).getReg(); assert(MRI.getType(Src) == S64); // result = trunc(src) // if (src > 0.0 && src != result) // result += 1.0 auto Trunc = B.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {S64}, {Src}); const auto Zero = B.buildFConstant(S64, 0.0); const auto One = B.buildFConstant(S64, 1.0); auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero); auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc); auto And = B.buildAnd(S1, Lt0, NeTrunc); auto Add = B.buildSelect(S64, And, One, Zero); // TODO: Should this propagate fast-math-flags? B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add); return true; } static MachineInstrBuilder extractF64Exponent(unsigned Hi, MachineIRBuilder &B) { const unsigned FractBits = 52; const unsigned ExpBits = 11; LLT S32 = LLT::scalar(32); auto Const0 = B.buildConstant(S32, FractBits - 32); auto Const1 = B.buildConstant(S32, ExpBits); auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false) .addUse(Const0.getReg(0)) .addUse(Const1.getReg(0)); return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023)); } bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); const LLT S1 = LLT::scalar(1); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); Register Src = MI.getOperand(1).getReg(); assert(MRI.getType(Src) == S64); // TODO: Should this use extract since the low half is unused? auto Unmerge = B.buildUnmerge({S32, S32}, Src); Register Hi = Unmerge.getReg(1); // Extract the upper half, since this is where we will find the sign and // exponent. auto Exp = extractF64Exponent(Hi, B); const unsigned FractBits = 52; // Extract the sign bit. const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31); auto SignBit = B.buildAnd(S32, Hi, SignBitMask); const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1); const auto Zero32 = B.buildConstant(S32, 0); // Extend back to 64-bits. auto SignBit64 = B.buildMerge(S64, {Zero32.getReg(0), SignBit.getReg(0)}); auto Shr = B.buildAShr(S64, FractMask, Exp); auto Not = B.buildNot(S64, Shr); auto Tmp0 = B.buildAnd(S64, Src, Not); auto FiftyOne = B.buildConstant(S32, FractBits - 1); auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32); auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne); auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0); B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1); return true; } bool AMDGPULegalizerInfo::legalizeITOFP( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const { B.setInstr(MI); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); auto Unmerge = B.buildUnmerge({S32, S32}, Src); auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1)) : B.buildUITOFP(S64, Unmerge.getReg(1)); auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0)); auto ThirtyTwo = B.buildConstant(S32, 32); auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false) .addUse(CvtHi.getReg(0)) .addUse(ThirtyTwo.getReg(0)); // TODO: Should this propagate fast-math-flags? B.buildFAdd(Dst, LdExp, CvtLo); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeMinNumMaxNum( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { MachineFunction &MF = B.getMF(); const SIMachineFunctionInfo *MFI = MF.getInfo(); const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE || MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE; // With ieee_mode disabled, the instructions have the correct behavior // already for G_FMINNUM/G_FMAXNUM if (!MFI->getMode().IEEE) return !IsIEEEOp; if (IsIEEEOp) return true; MachineIRBuilder HelperBuilder(MI); GISelObserverWrapper DummyObserver; LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); HelperBuilder.setMBB(*MI.getParent()); return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized; } bool AMDGPULegalizerInfo::legalizeExtractVectorElt( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { // TODO: Should move some of this into LegalizerHelper. // TODO: Promote dynamic indexing of s16 to s32 // TODO: Dynamic s64 indexing is only legal for SGPR. Optional IdxVal = getConstantVRegVal(MI.getOperand(2).getReg(), MRI); if (!IdxVal) // Dynamic case will be selected to register indexing. return true; Register Dst = MI.getOperand(0).getReg(); Register Vec = MI.getOperand(1).getReg(); LLT VecTy = MRI.getType(Vec); LLT EltTy = VecTy.getElementType(); assert(EltTy == MRI.getType(Dst)); B.setInstr(MI); if (IdxVal.getValue() < VecTy.getNumElements()) B.buildExtract(Dst, Vec, IdxVal.getValue() * EltTy.getSizeInBits()); else B.buildUndef(Dst); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeInsertVectorElt( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { // TODO: Should move some of this into LegalizerHelper. // TODO: Promote dynamic indexing of s16 to s32 // TODO: Dynamic s64 indexing is only legal for SGPR. Optional IdxVal = getConstantVRegVal(MI.getOperand(3).getReg(), MRI); if (!IdxVal) // Dynamic case will be selected to register indexing. return true; Register Dst = MI.getOperand(0).getReg(); Register Vec = MI.getOperand(1).getReg(); Register Ins = MI.getOperand(2).getReg(); LLT VecTy = MRI.getType(Vec); LLT EltTy = VecTy.getElementType(); assert(EltTy == MRI.getType(Ins)); B.setInstr(MI); if (IdxVal.getValue() < VecTy.getNumElements()) B.buildInsert(Dst, Vec, Ins, IdxVal.getValue() * EltTy.getSizeInBits()); else B.buildUndef(Dst); MI.eraseFromParent(); return true; } // Return the use branch instruction, otherwise null if the usage is invalid. static MachineInstr *verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI) { Register CondDef = MI.getOperand(0).getReg(); if (!MRI.hasOneNonDBGUse(CondDef)) return nullptr; MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef); return UseMI.getParent() == MI.getParent() && UseMI.getOpcode() == AMDGPU::G_BRCOND ? &UseMI : nullptr; } Register AMDGPULegalizerInfo::getLiveInRegister(MachineRegisterInfo &MRI, Register Reg, LLT Ty) const { Register LiveIn = MRI.getLiveInVirtReg(Reg); if (LiveIn) return LiveIn; Register NewReg = MRI.createGenericVirtualRegister(Ty); MRI.addLiveIn(Reg, NewReg); return NewReg; } bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B, const ArgDescriptor *Arg) const { if (!Arg->isRegister()) return false; // TODO: Handle these assert(Arg->getRegister() != 0); assert(Arg->getRegister().isPhysical()); MachineRegisterInfo &MRI = *B.getMRI(); LLT Ty = MRI.getType(DstReg); Register LiveIn = getLiveInRegister(MRI, Arg->getRegister(), Ty); if (Arg->isMasked()) { // TODO: Should we try to emit this once in the entry block? const LLT S32 = LLT::scalar(32); const unsigned Mask = Arg->getMask(); const unsigned Shift = countTrailingZeros(Mask); auto ShiftAmt = B.buildConstant(S32, Shift); auto LShr = B.buildLShr(S32, LiveIn, ShiftAmt); B.buildAnd(DstReg, LShr, B.buildConstant(S32, Mask >> Shift)); } else B.buildCopy(DstReg, LiveIn); // Insert the argument copy if it doens't already exist. // FIXME: It seems EmitLiveInCopies isn't called anywhere? if (!MRI.getVRegDef(LiveIn)) { MachineBasicBlock &EntryMBB = B.getMF().front(); EntryMBB.addLiveIn(Arg->getRegister()); B.setInsertPt(EntryMBB, EntryMBB.begin()); B.buildCopy(LiveIn, Arg->getRegister()); } return true; } bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { B.setInstr(MI); const SIMachineFunctionInfo *MFI = B.getMF().getInfo(); const ArgDescriptor *Arg; const TargetRegisterClass *RC; std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType); if (!Arg) { LLVM_DEBUG(dbgs() << "Required arg register missing\n"); return false; } if (loadInputValue(MI.getOperand(0).getReg(), B, Arg)) { MI.eraseFromParent(); return true; } return false; } bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { const SIMachineFunctionInfo *MFI = B.getMF().getInfo(); if (!MFI->isEntryFunction()) { return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); } B.setInstr(MI); uint64_t Offset = ST.getTargetLowering()->getImplicitParameterOffset( B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); LLT IdxTy = LLT::scalar(DstTy.getSizeInBits()); const ArgDescriptor *Arg; const TargetRegisterClass *RC; std::tie(Arg, RC) = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); if (!Arg) return false; Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy); if (!loadInputValue(KernargPtrReg, B, Arg)) return false; B.buildGEP(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0)); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { // Replace the use G_BRCOND with the exec manipulate and branch pseudos. switch (MI.getOperand(MI.getNumExplicitDefs()).getIntrinsicID()) { case Intrinsic::amdgcn_if: { if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI)) { const SIRegisterInfo *TRI = static_cast(MRI.getTargetRegisterInfo()); B.setInstr(*BrCond); Register Def = MI.getOperand(1).getReg(); Register Use = MI.getOperand(3).getReg(); B.buildInstr(AMDGPU::SI_IF) .addDef(Def) .addUse(Use) .addMBB(BrCond->getOperand(1).getMBB()); MRI.setRegClass(Def, TRI->getWaveMaskRegClass()); MRI.setRegClass(Use, TRI->getWaveMaskRegClass()); MI.eraseFromParent(); BrCond->eraseFromParent(); return true; } return false; } case Intrinsic::amdgcn_loop: { if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI)) { const SIRegisterInfo *TRI = static_cast(MRI.getTargetRegisterInfo()); B.setInstr(*BrCond); Register Reg = MI.getOperand(2).getReg(); B.buildInstr(AMDGPU::SI_LOOP) .addUse(Reg) .addMBB(BrCond->getOperand(1).getMBB()); MI.eraseFromParent(); BrCond->eraseFromParent(); MRI.setRegClass(Reg, TRI->getWaveMaskRegClass()); return true; } return false; } case Intrinsic::amdgcn_kernarg_segment_ptr: return legalizePreloadedArgIntrin( MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); case Intrinsic::amdgcn_implicitarg_ptr: return legalizeImplicitArgPtr(MI, MRI, B); case Intrinsic::amdgcn_workitem_id_x: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKITEM_ID_X); case Intrinsic::amdgcn_workitem_id_y: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKITEM_ID_Y); case Intrinsic::amdgcn_workitem_id_z: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKITEM_ID_Z); case Intrinsic::amdgcn_workgroup_id_x: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKGROUP_ID_X); case Intrinsic::amdgcn_workgroup_id_y: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); case Intrinsic::amdgcn_workgroup_id_z: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); case Intrinsic::amdgcn_dispatch_ptr: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::DISPATCH_PTR); case Intrinsic::amdgcn_queue_ptr: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::QUEUE_PTR); case Intrinsic::amdgcn_implicit_buffer_ptr: return legalizePreloadedArgIntrin( MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); case Intrinsic::amdgcn_dispatch_id: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::DISPATCH_ID); default: return true; } return true; }