//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file implements the targeting of the Machinelegalizer class for /// AMDGPU. /// \todo This should be generated by TableGen. //===----------------------------------------------------------------------===// #if defined(_MSC_VER) || defined(__MINGW32__) // According to Microsoft, one must set _USE_MATH_DEFINES in order to get M_PI // from the Visual C++ cmath / math.h headers: // https://docs.microsoft.com/en-us/cpp/c-runtime-library/math-constants?view=vs-2019 #define _USE_MATH_DEFINES #endif #include "AMDGPU.h" #include "AMDGPULegalizerInfo.h" #include "AMDGPUTargetMachine.h" #include "SIMachineFunctionInfo.h" #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "amdgpu-legalinfo" using namespace llvm; using namespace LegalizeActions; using namespace LegalizeMutations; using namespace LegalityPredicates; static LegalityPredicate isMultiple32(unsigned TypeIdx, unsigned MaxSize = 1024) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getScalarType(); return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0; }; } static LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx].getSizeInBits() == Size; }; } static LegalityPredicate isSmallOddVector(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; return Ty.isVector() && Ty.getNumElements() % 2 != 0 && Ty.getElementType().getSizeInBits() < 32 && Ty.getSizeInBits() % 32 != 0; }; } static LegalityPredicate isWideVec16(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getScalarType(); return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2; }; } static LegalizeMutation oneMoreElement(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy)); }; } static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); unsigned Size = Ty.getSizeInBits(); unsigned Pieces = (Size + 63) / 64; unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces; return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy)); }; } // Increase the number of vector elements to reach the next multiple of 32-bit // type. static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; const LLT EltTy = Ty.getElementType(); const int Size = Ty.getSizeInBits(); const int EltSize = EltTy.getSizeInBits(); const int NextMul32 = (Size + 31) / 32; assert(EltSize < 32); const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize; return std::make_pair(TypeIdx, LLT::vector(NewNumElts, EltTy)); }; } static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) { return [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isVector() && QueryTy.getSizeInBits() < Size; }; } static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) { return [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isVector() && QueryTy.getSizeInBits() > Size; }; } static LegalityPredicate numElementsNotEven(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT QueryTy = Query.Types[TypeIdx]; return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0; }; } // Any combination of 32 or 64-bit elements up to 1024 bits, and multiples of // v2s16. static LegalityPredicate isRegisterType(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const int EltSize = Ty.getElementType().getSizeInBits(); return EltSize == 32 || EltSize == 64 || (EltSize == 16 && Ty.getNumElements() % 2 == 0) || EltSize == 128 || EltSize == 256; } return Ty.getSizeInBits() % 32 == 0 && Ty.getSizeInBits() <= 1024; }; } static LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT Type) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx].getElementType() == Type; }; } static LegalityPredicate isWideScalarTruncStore(unsigned TypeIdx) { return [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[TypeIdx]; return !Ty.isVector() && Ty.getSizeInBits() > 32 && Query.MMODescrs[0].SizeInBits < Ty.getSizeInBits(); }; } AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_, const GCNTargetMachine &TM) : ST(ST_) { using namespace TargetOpcode; auto GetAddrSpacePtr = [&TM](unsigned AS) { return LLT::pointer(AS, TM.getPointerSizeInBits(AS)); }; const LLT S1 = LLT::scalar(1); const LLT S8 = LLT::scalar(8); const LLT S16 = LLT::scalar(16); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); const LLT S96 = LLT::scalar(96); const LLT S128 = LLT::scalar(128); const LLT S256 = LLT::scalar(256); const LLT S1024 = LLT::scalar(1024); const LLT V2S16 = LLT::vector(2, 16); const LLT V4S16 = LLT::vector(4, 16); const LLT V2S32 = LLT::vector(2, 32); const LLT V3S32 = LLT::vector(3, 32); const LLT V4S32 = LLT::vector(4, 32); const LLT V5S32 = LLT::vector(5, 32); const LLT V6S32 = LLT::vector(6, 32); const LLT V7S32 = LLT::vector(7, 32); const LLT V8S32 = LLT::vector(8, 32); const LLT V9S32 = LLT::vector(9, 32); const LLT V10S32 = LLT::vector(10, 32); const LLT V11S32 = LLT::vector(11, 32); const LLT V12S32 = LLT::vector(12, 32); const LLT V13S32 = LLT::vector(13, 32); const LLT V14S32 = LLT::vector(14, 32); const LLT V15S32 = LLT::vector(15, 32); const LLT V16S32 = LLT::vector(16, 32); const LLT V32S32 = LLT::vector(32, 32); const LLT V2S64 = LLT::vector(2, 64); const LLT V3S64 = LLT::vector(3, 64); const LLT V4S64 = LLT::vector(4, 64); const LLT V5S64 = LLT::vector(5, 64); const LLT V6S64 = LLT::vector(6, 64); const LLT V7S64 = LLT::vector(7, 64); const LLT V8S64 = LLT::vector(8, 64); const LLT V16S64 = LLT::vector(16, 64); std::initializer_list AllS32Vectors = {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32, V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32}; std::initializer_list AllS64Vectors = {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64}; const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS); const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS); const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT); const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS); const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS); const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS); const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS); const LLT CodePtr = FlatPtr; const std::initializer_list AddrSpaces64 = { GlobalPtr, ConstantPtr, FlatPtr }; const std::initializer_list AddrSpaces32 = { LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr }; const std::initializer_list FPTypesBase = { S32, S64 }; const std::initializer_list FPTypes16 = { S32, S64, S16 }; const std::initializer_list FPTypesPK16 = { S32, S64, S16, V2S16 }; setAction({G_BRCOND, S1}, Legal); // VCC branches setAction({G_BRCOND, S32}, Legal); // SCC branches // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more // elements for v3s16 getActionDefinitionsBuilder(G_PHI) .legalFor({S32, S64, V2S16, V4S16, S1, S128, S256}) .legalFor(AllS32Vectors) .legalFor(AllS64Vectors) .legalFor(AddrSpaces64) .legalFor(AddrSpaces32) .clampScalar(0, S32, S256) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .legalIf(isPointer(0)); if (ST.has16BitInsts()) { getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) .legalFor({S32, S16}) .clampScalar(0, S16, S32) .scalarize(0); } else { getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); } // FIXME: Not really legal. Placeholder for custom lowering. getActionDefinitionsBuilder({G_SDIV, G_UDIV, G_SREM, G_UREM}) .legalFor({S32, S64}) .clampScalar(0, S32, S64) .widenScalarToNextPow2(0, 32) .scalarize(0); getActionDefinitionsBuilder({G_UMULH, G_SMULH}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); // Report legal for any types we can handle anywhere. For the cases only legal // on the SALU, RegBankSelect will be able to re-legalize. getActionDefinitionsBuilder({G_AND, G_OR, G_XOR}) .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16}) .clampScalar(0, S32, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0)) .widenScalarToNextPow2(0) .scalarize(0); getActionDefinitionsBuilder({G_UADDO, G_USUBO, G_UADDE, G_SADDE, G_USUBE, G_SSUBE}) .legalFor({{S32, S1}, {S32, S32}}) .clampScalar(0, S32, S32) .scalarize(0); // TODO: Implement. getActionDefinitionsBuilder({G_SADDO, G_SSUBO}) .lower(); getActionDefinitionsBuilder(G_BITCAST) // Don't worry about the size constraint. .legalIf(all(isRegisterType(0), isRegisterType(1))) // FIXME: Testing hack .legalForCartesianProduct({S16, LLT::vector(2, 8), }); getActionDefinitionsBuilder(G_FCONSTANT) .legalFor({S32, S64, S16}) .clampScalar(0, S16, S64); getActionDefinitionsBuilder(G_IMPLICIT_DEF) .legalFor({S1, S32, S64, S16, V2S32, V4S32, V2S16, V4S16, GlobalPtr, ConstantPtr, LocalPtr, FlatPtr, PrivatePtr}) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampScalarOrElt(0, S32, S1024) .legalIf(isMultiple32(0)) .widenScalarToNextPow2(0, 32) .clampMaxNumElements(0, S32, 16); // FIXME: i1 operands to intrinsics should always be legal, but other i1 // values may not be legal. We need to figure out how to distinguish // between these two scenarios. getActionDefinitionsBuilder(G_CONSTANT) .legalFor({S1, S32, S64, S16, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr }) .clampScalar(0, S32, S64) .widenScalarToNextPow2(0) .legalIf(isPointer(0)); setAction({G_FRAME_INDEX, PrivatePtr}, Legal); getActionDefinitionsBuilder(G_GLOBAL_VALUE) .customFor({LocalPtr, GlobalPtr, ConstantPtr, Constant32Ptr}); auto &FPOpActions = getActionDefinitionsBuilder( { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE}) .legalFor({S32, S64}); auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS}) .customFor({S32, S64}); auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV) .customFor({S32, S64}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) FPOpActions.legalFor({S16, V2S16}); else FPOpActions.legalFor({S16}); TrigActions.customFor({S16}); FDIVActions.customFor({S16}); } auto &MinNumMaxNum = getActionDefinitionsBuilder({ G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE}); if (ST.hasVOP3PInsts()) { MinNumMaxNum.customFor(FPTypesPK16) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampMaxNumElements(0, S16, 2) .clampScalar(0, S16, S64) .scalarize(0); } else if (ST.has16BitInsts()) { MinNumMaxNum.customFor(FPTypes16) .clampScalar(0, S16, S64) .scalarize(0); } else { MinNumMaxNum.customFor(FPTypesBase) .clampScalar(0, S32, S64) .scalarize(0); } if (ST.hasVOP3PInsts()) FPOpActions.clampMaxNumElements(0, S16, 2); FPOpActions .scalarize(0) .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); TrigActions .scalarize(0) .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); FDIVActions .scalarize(0) .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64); getActionDefinitionsBuilder({G_FNEG, G_FABS}) .legalFor(FPTypesPK16) .clampMaxNumElements(0, S16, 2) .scalarize(0) .clampScalar(0, S16, S64); // TODO: Implement getActionDefinitionsBuilder({G_FMINIMUM, G_FMAXIMUM}).lower(); if (ST.has16BitInsts()) { getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR}) .legalFor({S32, S64, S16}) .scalarize(0) .clampScalar(0, S16, S64); } else { getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR}) .legalFor({S32, S64}) .scalarize(0) .clampScalar(0, S32, S64); } getActionDefinitionsBuilder(G_FPTRUNC) .legalFor({{S32, S64}, {S16, S32}}) .scalarize(0); getActionDefinitionsBuilder(G_FPEXT) .legalFor({{S64, S32}, {S32, S16}}) .lowerFor({{S64, S16}}) // FIXME: Implement .scalarize(0); // TODO: Verify V_BFI_B32 is generated from expanded bit ops. getActionDefinitionsBuilder(G_FCOPYSIGN).lower(); getActionDefinitionsBuilder(G_FSUB) // Use actual fsub instruction .legalFor({S32}) // Must use fadd + fneg .lowerFor({S64, S16, V2S16}) .scalarize(0) .clampScalar(0, S32, S64); // Whether this is legal depends on the floating point mode for the function. auto &FMad = getActionDefinitionsBuilder(G_FMAD); if (ST.hasMadF16()) FMad.customFor({S32, S16}); else FMad.customFor({S32}); FMad.scalarize(0) .lower(); getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) .legalFor({{S64, S32}, {S32, S16}, {S64, S16}, {S32, S1}, {S64, S1}, {S16, S1}, {S96, S32}, // FIXME: Hack {S64, LLT::scalar(33)}, {S32, S8}, {S32, LLT::scalar(24)}}) .scalarize(0) .clampScalar(0, S32, S64); // TODO: Split s1->s64 during regbankselect for VALU. auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) .legalFor({{S32, S32}, {S64, S32}, {S16, S32}}) .lowerFor({{S32, S64}}) .lowerIf(typeIs(1, S1)) .customFor({{S64, S64}}); if (ST.has16BitInsts()) IToFP.legalFor({{S16, S16}}); IToFP.clampScalar(1, S32, S64) .scalarize(0); auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) .legalFor({{S32, S32}, {S32, S64}, {S32, S16}}); if (ST.has16BitInsts()) FPToI.legalFor({{S16, S16}}); else FPToI.minScalar(1, S32); FPToI.minScalar(0, S32) .scalarize(0); getActionDefinitionsBuilder(G_INTRINSIC_ROUND) .scalarize(0) .lower(); if (ST.has16BitInsts()) { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S16, S32, S64}) .clampScalar(0, S16, S64) .scalarize(0); } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32, S64}) .clampScalar(0, S32, S64) .scalarize(0); } else { getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT}) .legalFor({S32}) .customFor({S64}) .clampScalar(0, S32, S64) .scalarize(0); } getActionDefinitionsBuilder(G_PTR_ADD) .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0); getActionDefinitionsBuilder(G_PTR_MASK) .scalarize(0) .alwaysLegal(); setAction({G_BLOCK_ADDR, CodePtr}, Legal); auto &CmpBuilder = getActionDefinitionsBuilder(G_ICMP) // The compare output type differs based on the register bank of the output, // so make both s1 and s32 legal. // // Scalar compares producing output in scc will be promoted to s32, as that // is the allocatable register type that will be needed for the copy from // scc. This will be promoted during RegBankSelect, and we assume something // before that won't try to use s32 result types. // // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg // bank. .legalForCartesianProduct( {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}) .legalForCartesianProduct( {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr}); if (ST.has16BitInsts()) { CmpBuilder.legalFor({{S1, S16}}); } CmpBuilder .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0) .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1))); getActionDefinitionsBuilder(G_FCMP) .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase) .widenScalarToNextPow2(1) .clampScalar(1, S32, S64) .scalarize(0); // FIXME: fexp, flog2, flog10 needs to be custom lowered. getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2, G_FLOG, G_FLOG2, G_FLOG10}) .legalFor({S32}) .scalarize(0); // The 64-bit versions produce 32-bit results, but only on the SALU. getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF, G_CTTZ, G_CTTZ_ZERO_UNDEF, G_CTPOP}) .legalFor({{S32, S32}, {S32, S64}}) .clampScalar(0, S32, S32) .clampScalar(1, S32, S64) .scalarize(0) .widenScalarToNextPow2(0, 32) .widenScalarToNextPow2(1, 32); // TODO: Expand for > s32 getActionDefinitionsBuilder({G_BSWAP, G_BITREVERSE}) .legalFor({S32}) .clampScalar(0, S32, S32) .scalarize(0); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) { getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) .legalFor({S32, S16, V2S16}) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .clampMaxNumElements(0, S16, 2) .clampScalar(0, S16, S32) .widenScalarToNextPow2(0) .scalarize(0); } else { getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) .legalFor({S32, S16}) .widenScalarToNextPow2(0) .clampScalar(0, S16, S32) .scalarize(0); } } else { getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX}) .legalFor({S32}) .clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .scalarize(0); } auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() < Query.Types[TypeIdx1].getSizeInBits(); }; }; auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) { return [=](const LegalityQuery &Query) { return Query.Types[TypeIdx0].getSizeInBits() > Query.Types[TypeIdx1].getSizeInBits(); }; }; getActionDefinitionsBuilder(G_INTTOPTR) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }) .narrowScalarIf(greaterThan(1, 0), [](const LegalityQuery &Query) { return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits())); }); getActionDefinitionsBuilder(G_PTRTOINT) // List the common cases .legalForCartesianProduct(AddrSpaces64, {S64}) .legalForCartesianProduct(AddrSpaces32, {S32}) .scalarize(0) // Accept any address space as long as the size matches .legalIf(sameSize(0, 1)) .widenScalarIf(smallerThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }) .narrowScalarIf( greaterThan(0, 1), [](const LegalityQuery &Query) { return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits())); }); getActionDefinitionsBuilder(G_ADDRSPACE_CAST) .scalarize(0) .custom(); // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we // handle some operations by just promoting the register during // selection. There are also d16 loads on GFX9+ which preserve the high bits. auto maxSizeForAddrSpace = [this](unsigned AS) -> unsigned { switch (AS) { // FIXME: Private element size. case AMDGPUAS::PRIVATE_ADDRESS: return 32; // FIXME: Check subtarget case AMDGPUAS::LOCAL_ADDRESS: return ST.useDS128() ? 128 : 64; // Treat constant and global as identical. SMRD loads are sometimes usable // for global loads (ideally constant address space should be eliminated) // depending on the context. Legality cannot be context dependent, but // RegBankSelect can split the load as necessary depending on the pointer // register bank/uniformity and if the memory is invariant or not written in // a kernel. case AMDGPUAS::CONSTANT_ADDRESS: case AMDGPUAS::GLOBAL_ADDRESS: return 512; default: return 128; } }; const auto needToSplitLoad = [=](const LegalityQuery &Query) -> bool { const LLT DstTy = Query.Types[0]; // Split vector extloads. unsigned MemSize = Query.MMODescrs[0].SizeInBits; unsigned Align = Query.MMODescrs[0].AlignInBits; if (MemSize < DstTy.getSizeInBits()) MemSize = std::max(MemSize, Align); if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize) return true; const LLT PtrTy = Query.Types[1]; unsigned AS = PtrTy.getAddressSpace(); if (MemSize > maxSizeForAddrSpace(AS)) return true; // Catch weird sized loads that don't evenly divide into the access sizes // TODO: May be able to widen depending on alignment etc. unsigned NumRegs = MemSize / 32; if (NumRegs == 3 && !ST.hasDwordx3LoadStores()) return true; if (Align < MemSize) { const SITargetLowering *TLI = ST.getTargetLowering(); return !TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS, Align / 8); } return false; }; unsigned GlobalAlign32 = ST.hasUnalignedBufferAccess() ? 0 : 32; unsigned GlobalAlign16 = ST.hasUnalignedBufferAccess() ? 0 : 16; unsigned GlobalAlign8 = ST.hasUnalignedBufferAccess() ? 0 : 8; // TODO: Refine based on subtargets which support unaligned access or 128-bit // LDS // TODO: Unsupported flat for SI. for (unsigned Op : {G_LOAD, G_STORE}) { const bool IsStore = Op == G_STORE; auto &Actions = getActionDefinitionsBuilder(Op); // Whitelist the common cases. // TODO: Pointer loads // TODO: Wide constant loads // TODO: Only CI+ has 3x loads // TODO: Loads to s16 on gfx9 Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, 32, GlobalAlign32}, {V2S32, GlobalPtr, 64, GlobalAlign32}, {V3S32, GlobalPtr, 96, GlobalAlign32}, {S96, GlobalPtr, 96, GlobalAlign32}, {V4S32, GlobalPtr, 128, GlobalAlign32}, {S128, GlobalPtr, 128, GlobalAlign32}, {S64, GlobalPtr, 64, GlobalAlign32}, {V2S64, GlobalPtr, 128, GlobalAlign32}, {V2S16, GlobalPtr, 32, GlobalAlign32}, {S32, GlobalPtr, 8, GlobalAlign8}, {S32, GlobalPtr, 16, GlobalAlign16}, {S32, LocalPtr, 32, 32}, {S64, LocalPtr, 64, 32}, {V2S32, LocalPtr, 64, 32}, {S32, LocalPtr, 8, 8}, {S32, LocalPtr, 16, 16}, {V2S16, LocalPtr, 32, 32}, {S32, PrivatePtr, 32, 32}, {S32, PrivatePtr, 8, 8}, {S32, PrivatePtr, 16, 16}, {V2S16, PrivatePtr, 32, 32}, {S32, FlatPtr, 32, GlobalAlign32}, {S32, FlatPtr, 16, GlobalAlign16}, {S32, FlatPtr, 8, GlobalAlign8}, {V2S16, FlatPtr, 32, GlobalAlign32}, {S32, ConstantPtr, 32, GlobalAlign32}, {V2S32, ConstantPtr, 64, GlobalAlign32}, {V3S32, ConstantPtr, 96, GlobalAlign32}, {V4S32, ConstantPtr, 128, GlobalAlign32}, {S64, ConstantPtr, 64, GlobalAlign32}, {S128, ConstantPtr, 128, GlobalAlign32}, {V2S32, ConstantPtr, 32, GlobalAlign32}}); Actions .customIf(typeIs(1, Constant32Ptr)) .narrowScalarIf( [=](const LegalityQuery &Query) -> bool { return !Query.Types[0].isVector() && needToSplitLoad(Query); }, [=](const LegalityQuery &Query) -> std::pair { const LLT DstTy = Query.Types[0]; const LLT PtrTy = Query.Types[1]; const unsigned DstSize = DstTy.getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; // Split extloads. if (DstSize > MemSize) return std::make_pair(0, LLT::scalar(MemSize)); if (DstSize > 32 && (DstSize % 32 != 0)) { // FIXME: Need a way to specify non-extload of larger size if // suitably aligned. return std::make_pair(0, LLT::scalar(32 * (DstSize / 32))); } unsigned MaxSize = maxSizeForAddrSpace(PtrTy.getAddressSpace()); if (MemSize > MaxSize) return std::make_pair(0, LLT::scalar(MaxSize)); unsigned Align = Query.MMODescrs[0].AlignInBits; return std::make_pair(0, LLT::scalar(Align)); }) .fewerElementsIf( [=](const LegalityQuery &Query) -> bool { return Query.Types[0].isVector() && needToSplitLoad(Query); }, [=](const LegalityQuery &Query) -> std::pair { const LLT DstTy = Query.Types[0]; const LLT PtrTy = Query.Types[1]; LLT EltTy = DstTy.getElementType(); unsigned MaxSize = maxSizeForAddrSpace(PtrTy.getAddressSpace()); // Split if it's too large for the address space. if (Query.MMODescrs[0].SizeInBits > MaxSize) { unsigned NumElts = DstTy.getNumElements(); unsigned NumPieces = Query.MMODescrs[0].SizeInBits / MaxSize; // FIXME: Refine when odd breakdowns handled // The scalars will need to be re-legalized. if (NumPieces == 1 || NumPieces >= NumElts || NumElts % NumPieces != 0) return std::make_pair(0, EltTy); return std::make_pair(0, LLT::vector(NumElts / NumPieces, EltTy)); } // Need to split because of alignment. unsigned Align = Query.MMODescrs[0].AlignInBits; unsigned EltSize = EltTy.getSizeInBits(); if (EltSize > Align && (EltSize / Align < DstTy.getNumElements())) { return std::make_pair(0, LLT::vector(EltSize / Align, EltTy)); } // May need relegalization for the scalars. return std::make_pair(0, EltTy); }) .minScalar(0, S32); if (IsStore) Actions.narrowScalarIf(isWideScalarTruncStore(0), changeTo(0, S32)); // TODO: Need a bitcast lower option? Actions .legalIf([=](const LegalityQuery &Query) { const LLT Ty0 = Query.Types[0]; unsigned Size = Ty0.getSizeInBits(); unsigned MemSize = Query.MMODescrs[0].SizeInBits; unsigned Align = Query.MMODescrs[0].AlignInBits; // FIXME: Widening store from alignment not valid. if (MemSize < Size) MemSize = std::max(MemSize, Align); // No extending vector loads. if (Size > MemSize && Ty0.isVector()) return false; switch (MemSize) { case 8: case 16: return Size == 32; case 32: case 64: case 128: return true; case 96: return ST.hasDwordx3LoadStores(); case 256: case 512: return true; default: return false; } }) .widenScalarToNextPow2(0) // TODO: v3s32->v4s32 with alignment .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0)); } auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) .legalForTypesWithMemDesc({{S32, GlobalPtr, 8, 8}, {S32, GlobalPtr, 16, 2 * 8}, {S32, LocalPtr, 8, 8}, {S32, LocalPtr, 16, 16}, {S32, PrivatePtr, 8, 8}, {S32, PrivatePtr, 16, 16}, {S32, ConstantPtr, 8, 8}, {S32, ConstantPtr, 16, 2 * 8}}); if (ST.hasFlatAddressSpace()) { ExtLoads.legalForTypesWithMemDesc( {{S32, FlatPtr, 8, 8}, {S32, FlatPtr, 16, 16}}); } ExtLoads.clampScalar(0, S32, S32) .widenScalarToNextPow2(0) .unsupportedIfMemSizeNotPow2() .lower(); auto &Atomics = getActionDefinitionsBuilder( {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX, G_ATOMICRMW_UMIN}) .legalFor({{S32, GlobalPtr}, {S32, LocalPtr}, {S64, GlobalPtr}, {S64, LocalPtr}}); if (ST.hasFlatAddressSpace()) { Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}}); } getActionDefinitionsBuilder(G_ATOMICRMW_FADD) .legalFor({{S32, LocalPtr}}); // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output // demarshalling getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG) .customFor({{S32, GlobalPtr}, {S64, GlobalPtr}, {S32, FlatPtr}, {S64, FlatPtr}}) .legalFor({{S32, LocalPtr}, {S64, LocalPtr}, {S32, RegionPtr}, {S64, RegionPtr}}); getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS) .lower(); // TODO: Pointer types, any 32-bit or 64-bit vector // Condition should be s32 for scalar, s1 for vector. getActionDefinitionsBuilder(G_SELECT) .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr, LocalPtr, FlatPtr, PrivatePtr, LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1, S32}) .clampScalar(0, S16, S64) .moreElementsIf(isSmallOddVector(0), oneMoreElement(0)) .fewerElementsIf(numElementsNotEven(0), scalarize(0)) .scalarize(1) .clampMaxNumElements(0, S32, 2) .clampMaxNumElements(0, LocalPtr, 2) .clampMaxNumElements(0, PrivatePtr, 2) .scalarize(0) .widenScalarToNextPow2(0) .legalIf(all(isPointer(0), typeInSet(1, {S1, S32}))); // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can // be more flexible with the shift amount type. auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR}) .legalFor({{S32, S32}, {S64, S32}}); if (ST.has16BitInsts()) { if (ST.hasVOP3PInsts()) { Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}}) .clampMaxNumElements(0, S16, 2); } else Shifts.legalFor({{S16, S32}, {S16, S16}}); // TODO: Support 16-bit shift amounts Shifts.clampScalar(1, S32, S32); Shifts.clampScalar(0, S16, S64); Shifts.widenScalarToNextPow2(0, 16); } else { // Make sure we legalize the shift amount type first, as the general // expansion for the shifted type will produce much worse code if it hasn't // been truncated already. Shifts.clampScalar(1, S32, S32); Shifts.clampScalar(0, S32, S64); Shifts.widenScalarToNextPow2(0, 32); } Shifts.scalarize(0); for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) { unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0; unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1; unsigned IdxTypeIdx = 2; getActionDefinitionsBuilder(Op) .customIf([=](const LegalityQuery &Query) { const LLT EltTy = Query.Types[EltTypeIdx]; const LLT VecTy = Query.Types[VecTypeIdx]; const LLT IdxTy = Query.Types[IdxTypeIdx]; return (EltTy.getSizeInBits() == 16 || EltTy.getSizeInBits() % 32 == 0) && VecTy.getSizeInBits() % 32 == 0 && VecTy.getSizeInBits() <= 1024 && IdxTy.getSizeInBits() == 32; }) .clampScalar(EltTypeIdx, S32, S64) .clampScalar(VecTypeIdx, S32, S64) .clampScalar(IdxTypeIdx, S32, S32); } getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) .unsupportedIf([=](const LegalityQuery &Query) { const LLT &EltTy = Query.Types[1].getElementType(); return Query.Types[0] != EltTy; }); for (unsigned Op : {G_EXTRACT, G_INSERT}) { unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0; unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1; // FIXME: Doesn't handle extract of illegal sizes. getActionDefinitionsBuilder(Op) .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32))) // FIXME: Multiples of 16 should not be legal. .legalIf([=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; const LLT LitTy = Query.Types[LitTyIdx]; return (BigTy.getSizeInBits() % 32 == 0) && (LitTy.getSizeInBits() % 16 == 0); }) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT BigTy = Query.Types[BigTyIdx]; return (BigTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16)) .widenScalarIf( [=](const LegalityQuery &Query) { const LLT LitTy = Query.Types[LitTyIdx]; return (LitTy.getScalarSizeInBits() < 16); }, LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16)) .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) .widenScalarToNextPow2(BigTyIdx, 32); } auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR) .legalForCartesianProduct(AllS32Vectors, {S32}) .legalForCartesianProduct(AllS64Vectors, {S64}) .clampNumElements(0, V16S32, V32S32) .clampNumElements(0, V2S64, V16S64) .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16)); if (ST.hasScalarPackInsts()) BuildVector.legalFor({V2S16, S32}); BuildVector .minScalarSameAs(1, 0) .legalIf(isRegisterType(0)) .minScalarOrElt(0, S32); if (ST.hasScalarPackInsts()) { getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) .legalFor({V2S16, S32}) .lower(); } else { getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC) .lower(); } getActionDefinitionsBuilder(G_CONCAT_VECTORS) .legalIf(isRegisterType(0)); // TODO: Don't fully scalarize v2s16 pieces getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower(); // Merge/Unmerge for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) { const LLT &Ty = Query.Types[TypeIdx]; if (Ty.isVector()) { const LLT &EltTy = Ty.getElementType(); if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) return true; if (!isPowerOf2_32(EltTy.getSizeInBits())) return true; } return false; }; auto &Builder = getActionDefinitionsBuilder(Op) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16) // Clamp the little scalar to s8-s256 and make it a power of 2. It's not // worth considering the multiples of 64 since 2*192 and 2*384 are not // valid. .clampScalar(LitTyIdx, S16, S256) .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32) .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx)) .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32), elementTypeIs(1, S16)), changeTo(1, V2S16)) // Break up vectors with weird elements into scalars .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, scalarize(0)) .fewerElementsIf( [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, scalarize(1)) .clampScalar(BigTyIdx, S32, S1024) .lowerFor({{S16, V2S16}}); if (Op == G_MERGE_VALUES) { Builder.widenScalarIf( // TODO: Use 16-bit shifts if legal for 8-bit values? [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[LitTyIdx]; return Ty.getSizeInBits() < 32; }, changeTo(LitTyIdx, S32)); } Builder.widenScalarIf( [=](const LegalityQuery &Query) { const LLT Ty = Query.Types[BigTyIdx]; return !isPowerOf2_32(Ty.getSizeInBits()) && Ty.getSizeInBits() % 16 != 0; }, [=](const LegalityQuery &Query) { // Pick the next power of 2, or a multiple of 64 over 128. // Whichever is smaller. const LLT &Ty = Query.Types[BigTyIdx]; unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1); if (NewSizeInBits >= 256) { unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); if (RoundedTo < NewSizeInBits) NewSizeInBits = RoundedTo; } return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); }) .legalIf([=](const LegalityQuery &Query) { const LLT &BigTy = Query.Types[BigTyIdx]; const LLT &LitTy = Query.Types[LitTyIdx]; if (BigTy.isVector() && BigTy.getSizeInBits() < 32) return false; if (LitTy.isVector() && LitTy.getSizeInBits() < 32) return false; return BigTy.getSizeInBits() % 16 == 0 && LitTy.getSizeInBits() % 16 == 0 && BigTy.getSizeInBits() <= 1024; }) // Any vectors left are the wrong size. Scalarize them. .scalarize(0) .scalarize(1); } getActionDefinitionsBuilder(G_SEXT_INREG).lower(); getActionDefinitionsBuilder({G_READ_REGISTER, G_WRITE_REGISTER}).lower(); getActionDefinitionsBuilder(G_READCYCLECOUNTER) .legalFor({S64}); getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE, G_DYN_STACKALLOC, G_INDEXED_LOAD, G_INDEXED_SEXTLOAD, G_INDEXED_ZEXTLOAD, G_INDEXED_STORE}) .unsupported(); computeTables(); verify(*ST.getInstrInfo()); } bool AMDGPULegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer) const { switch (MI.getOpcode()) { case TargetOpcode::G_ADDRSPACE_CAST: return legalizeAddrSpaceCast(MI, MRI, B); case TargetOpcode::G_FRINT: return legalizeFrint(MI, MRI, B); case TargetOpcode::G_FCEIL: return legalizeFceil(MI, MRI, B); case TargetOpcode::G_INTRINSIC_TRUNC: return legalizeIntrinsicTrunc(MI, MRI, B); case TargetOpcode::G_SITOFP: return legalizeITOFP(MI, MRI, B, true); case TargetOpcode::G_UITOFP: return legalizeITOFP(MI, MRI, B, false); case TargetOpcode::G_FMINNUM: case TargetOpcode::G_FMAXNUM: case TargetOpcode::G_FMINNUM_IEEE: case TargetOpcode::G_FMAXNUM_IEEE: return legalizeMinNumMaxNum(MI, MRI, B); case TargetOpcode::G_EXTRACT_VECTOR_ELT: return legalizeExtractVectorElt(MI, MRI, B); case TargetOpcode::G_INSERT_VECTOR_ELT: return legalizeInsertVectorElt(MI, MRI, B); case TargetOpcode::G_FSIN: case TargetOpcode::G_FCOS: return legalizeSinCos(MI, MRI, B); case TargetOpcode::G_GLOBAL_VALUE: return legalizeGlobalValue(MI, MRI, B); case TargetOpcode::G_LOAD: return legalizeLoad(MI, MRI, B, Observer); case TargetOpcode::G_FMAD: return legalizeFMad(MI, MRI, B); case TargetOpcode::G_FDIV: return legalizeFDIV(MI, MRI, B); case TargetOpcode::G_ATOMIC_CMPXCHG: return legalizeAtomicCmpXChg(MI, MRI, B); default: return false; } llvm_unreachable("expected switch to return"); } Register AMDGPULegalizerInfo::getSegmentAperture( unsigned AS, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { MachineFunction &MF = B.getMF(); const GCNSubtarget &ST = MF.getSubtarget(); const LLT S32 = LLT::scalar(32); assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS); if (ST.hasApertureRegs()) { // FIXME: Use inline constants (src_{shared, private}_base) instead of // getreg. unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ? AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE : AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE; unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ? AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE : AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE; unsigned Encoding = AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ | Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ | WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_; Register ApertureReg = MRI.createGenericVirtualRegister(S32); Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass); B.buildInstr(AMDGPU::S_GETREG_B32) .addDef(GetReg) .addImm(Encoding); MRI.setType(GetReg, S32); auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1); B.buildInstr(TargetOpcode::G_SHL) .addDef(ApertureReg) .addUse(GetReg) .addUse(ShiftAmt.getReg(0)); return ApertureReg; } Register QueuePtr = MRI.createGenericVirtualRegister( LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64)); const SIMachineFunctionInfo *MFI = MF.getInfo(); if (!loadInputValue(QueuePtr, B, &MFI->getArgInfo().QueuePtr)) return Register(); // Offset into amd_queue_t for group_segment_aperture_base_hi / // private_segment_aperture_base_hi. uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44; // TODO: can we be smarter about machine pointer info? MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); MachineMemOperand *MMO = MF.getMachineMemOperand( PtrInfo, MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, 4, MinAlign(64, StructOffset)); Register LoadResult = MRI.createGenericVirtualRegister(S32); Register LoadAddr; B.materializePtrAdd(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset); B.buildLoad(LoadResult, LoadAddr, *MMO); return LoadResult; } bool AMDGPULegalizerInfo::legalizeAddrSpaceCast( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { MachineFunction &MF = B.getMF(); B.setInstr(MI); const LLT S32 = LLT::scalar(32); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); LLT DstTy = MRI.getType(Dst); LLT SrcTy = MRI.getType(Src); unsigned DestAS = DstTy.getAddressSpace(); unsigned SrcAS = SrcTy.getAddressSpace(); // TODO: Avoid reloading from the queue ptr for each cast, or at least each // vector element. assert(!DstTy.isVector()); const AMDGPUTargetMachine &TM = static_cast(MF.getTarget()); const GCNSubtarget &ST = MF.getSubtarget(); if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) { MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST)); return true; } if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { // Truncate. B.buildExtract(Dst, Src, 0); MI.eraseFromParent(); return true; } if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) { const SIMachineFunctionInfo *Info = MF.getInfo(); uint32_t AddrHiVal = Info->get32BitAddressHighBits(); // FIXME: This is a bit ugly due to creating a merge of 2 pointers to // another. Merge operands are required to be the same type, but creating an // extra ptrtoint would be kind of pointless. auto HighAddr = B.buildConstant( LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal); B.buildMerge(Dst, {Src, HighAddr.getReg(0)}); MI.eraseFromParent(); return true; } if (SrcAS == AMDGPUAS::FLAT_ADDRESS) { assert(DestAS == AMDGPUAS::LOCAL_ADDRESS || DestAS == AMDGPUAS::PRIVATE_ADDRESS); unsigned NullVal = TM.getNullPointerValue(DestAS); auto SegmentNull = B.buildConstant(DstTy, NullVal); auto FlatNull = B.buildConstant(SrcTy, 0); Register PtrLo32 = MRI.createGenericVirtualRegister(DstTy); // Extract low 32-bits of the pointer. B.buildExtract(PtrLo32, Src, 0); Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1)); B.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0)); B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0)); MI.eraseFromParent(); return true; } if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS) return false; if (!ST.hasFlatAddressSpace()) return false; auto SegmentNull = B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS)); auto FlatNull = B.buildConstant(DstTy, TM.getNullPointerValue(DestAS)); Register ApertureReg = getSegmentAperture(SrcAS, MRI, B); if (!ApertureReg.isValid()) return false; Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1)); B.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0)); Register BuildPtr = MRI.createGenericVirtualRegister(DstTy); // Coerce the type of the low half of the result so we can use merge_values. Register SrcAsInt = MRI.createGenericVirtualRegister(S32); B.buildInstr(TargetOpcode::G_PTRTOINT) .addDef(SrcAsInt) .addUse(Src); // TODO: Should we allow mismatched types but matching sizes in merges to // avoid the ptrtoint? B.buildMerge(BuildPtr, {SrcAsInt, ApertureReg}); B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0)); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeFrint( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register Src = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(Src); assert(Ty.isScalar() && Ty.getSizeInBits() == 64); APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); auto C1 = B.buildFConstant(Ty, C1Val); auto CopySign = B.buildFCopysign(Ty, C1, Src); // TODO: Should this propagate fast-math-flags? auto Tmp1 = B.buildFAdd(Ty, Src, CopySign); auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign); auto C2 = B.buildFConstant(Ty, C2Val); auto Fabs = B.buildFAbs(Ty, Src); auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2); B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2); return true; } bool AMDGPULegalizerInfo::legalizeFceil( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); const LLT S1 = LLT::scalar(1); const LLT S64 = LLT::scalar(64); Register Src = MI.getOperand(1).getReg(); assert(MRI.getType(Src) == S64); // result = trunc(src) // if (src > 0.0 && src != result) // result += 1.0 auto Trunc = B.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {S64}, {Src}); const auto Zero = B.buildFConstant(S64, 0.0); const auto One = B.buildFConstant(S64, 1.0); auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero); auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc); auto And = B.buildAnd(S1, Lt0, NeTrunc); auto Add = B.buildSelect(S64, And, One, Zero); // TODO: Should this propagate fast-math-flags? B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add); return true; } static MachineInstrBuilder extractF64Exponent(unsigned Hi, MachineIRBuilder &B) { const unsigned FractBits = 52; const unsigned ExpBits = 11; LLT S32 = LLT::scalar(32); auto Const0 = B.buildConstant(S32, FractBits - 32); auto Const1 = B.buildConstant(S32, ExpBits); auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false) .addUse(Const0.getReg(0)) .addUse(Const1.getReg(0)); return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023)); } bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); const LLT S1 = LLT::scalar(1); const LLT S32 = LLT::scalar(32); const LLT S64 = LLT::scalar(64); Register Src = MI.getOperand(1).getReg(); assert(MRI.getType(Src) == S64); // TODO: Should this use extract since the low half is unused? auto Unmerge = B.buildUnmerge({S32, S32}, Src); Register Hi = Unmerge.getReg(1); // Extract the upper half, since this is where we will find the sign and // exponent. auto Exp = extractF64Exponent(Hi, B); const unsigned FractBits = 52; // Extract the sign bit. const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31); auto SignBit = B.buildAnd(S32, Hi, SignBitMask); const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1); const auto Zero32 = B.buildConstant(S32, 0); // Extend back to 64-bits. auto SignBit64 = B.buildMerge(S64, {Zero32.getReg(0), SignBit.getReg(0)}); auto Shr = B.buildAShr(S64, FractMask, Exp); auto Not = B.buildNot(S64, Shr); auto Tmp0 = B.buildAnd(S64, Src, Not); auto FiftyOne = B.buildConstant(S32, FractBits - 1); auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32); auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne); auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0); B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1); return true; } bool AMDGPULegalizerInfo::legalizeITOFP( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool Signed) const { B.setInstr(MI); Register Dst = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); const LLT S64 = LLT::scalar(64); const LLT S32 = LLT::scalar(32); assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64); auto Unmerge = B.buildUnmerge({S32, S32}, Src); auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1)) : B.buildUITOFP(S64, Unmerge.getReg(1)); auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0)); auto ThirtyTwo = B.buildConstant(S32, 32); auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false) .addUse(CvtHi.getReg(0)) .addUse(ThirtyTwo.getReg(0)); // TODO: Should this propagate fast-math-flags? B.buildFAdd(Dst, LdExp, CvtLo); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeMinNumMaxNum( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { MachineFunction &MF = B.getMF(); const SIMachineFunctionInfo *MFI = MF.getInfo(); const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE || MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE; // With ieee_mode disabled, the instructions have the correct behavior // already for G_FMINNUM/G_FMAXNUM if (!MFI->getMode().IEEE) return !IsIEEEOp; if (IsIEEEOp) return true; MachineIRBuilder HelperBuilder(MI); GISelObserverWrapper DummyObserver; LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); HelperBuilder.setInstr(MI); return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized; } bool AMDGPULegalizerInfo::legalizeExtractVectorElt( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { // TODO: Should move some of this into LegalizerHelper. // TODO: Promote dynamic indexing of s16 to s32 // TODO: Dynamic s64 indexing is only legal for SGPR. Optional IdxVal = getConstantVRegVal(MI.getOperand(2).getReg(), MRI); if (!IdxVal) // Dynamic case will be selected to register indexing. return true; Register Dst = MI.getOperand(0).getReg(); Register Vec = MI.getOperand(1).getReg(); LLT VecTy = MRI.getType(Vec); LLT EltTy = VecTy.getElementType(); assert(EltTy == MRI.getType(Dst)); B.setInstr(MI); if (IdxVal.getValue() < VecTy.getNumElements()) B.buildExtract(Dst, Vec, IdxVal.getValue() * EltTy.getSizeInBits()); else B.buildUndef(Dst); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeInsertVectorElt( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { // TODO: Should move some of this into LegalizerHelper. // TODO: Promote dynamic indexing of s16 to s32 // TODO: Dynamic s64 indexing is only legal for SGPR. Optional IdxVal = getConstantVRegVal(MI.getOperand(3).getReg(), MRI); if (!IdxVal) // Dynamic case will be selected to register indexing. return true; Register Dst = MI.getOperand(0).getReg(); Register Vec = MI.getOperand(1).getReg(); Register Ins = MI.getOperand(2).getReg(); LLT VecTy = MRI.getType(Vec); LLT EltTy = VecTy.getElementType(); assert(EltTy == MRI.getType(Ins)); B.setInstr(MI); if (IdxVal.getValue() < VecTy.getNumElements()) B.buildInsert(Dst, Vec, Ins, IdxVal.getValue() * EltTy.getSizeInBits()); else B.buildUndef(Dst); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeSinCos( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(DstReg); unsigned Flags = MI.getFlags(); Register TrigVal; auto OneOver2Pi = B.buildFConstant(Ty, 0.5 / M_PI); if (ST.hasTrigReducedRange()) { auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags); TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false) .addUse(MulVal.getReg(0)) .setMIFlags(Flags).getReg(0); } else TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0); Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ? Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos; B.buildIntrinsic(TrigIntrin, makeArrayRef(DstReg), false) .addUse(TrigVal) .setMIFlags(Flags); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::buildPCRelGlobalAddress( Register DstReg, LLT PtrTy, MachineIRBuilder &B, const GlobalValue *GV, unsigned Offset, unsigned GAFlags) const { // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered // to the following code sequence: // // For constant address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol // s_addc_u32 s1, s1, 0 // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // a fixup or relocation is emitted to replace $symbol with a literal // constant, which is a pc-relative offset from the encoding of the $symbol // operand to the global variable. // // For global address space: // s_getpc_b64 s[0:1] // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi // // s_getpc_b64 returns the address of the s_add_u32 instruction and then // fixups or relocations are emitted to replace $symbol@*@lo and // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant, // which is a 64-bit pc-relative offset from the encoding of the $symbol // operand to the global variable. // // What we want here is an offset from the value returned by s_getpc // (which is the address of the s_add_u32 instruction) to the global // variable, but since the encoding of $symbol starts 4 bytes after the start // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too // small. This requires us to add 4 to the global variable offset in order to // compute the correct address. LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg : B.getMRI()->createGenericVirtualRegister(ConstPtrTy); MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET) .addDef(PCReg); MIB.addGlobalAddress(GV, Offset + 4, GAFlags); if (GAFlags == SIInstrInfo::MO_NONE) MIB.addImm(0); else MIB.addGlobalAddress(GV, Offset + 4, GAFlags + 1); B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass); if (PtrTy.getSizeInBits() == 32) B.buildExtract(DstReg, PCReg, 0); return true; } bool AMDGPULegalizerInfo::legalizeGlobalValue( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { Register DstReg = MI.getOperand(0).getReg(); LLT Ty = MRI.getType(DstReg); unsigned AS = Ty.getAddressSpace(); const GlobalValue *GV = MI.getOperand(1).getGlobal(); MachineFunction &MF = B.getMF(); SIMachineFunctionInfo *MFI = MF.getInfo(); B.setInstr(MI); if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) { if (!MFI->isEntryFunction()) { const Function &Fn = MF.getFunction(); DiagnosticInfoUnsupported BadLDSDecl( Fn, "local memory global used by non-kernel function", MI.getDebugLoc()); Fn.getContext().diagnose(BadLDSDecl); } // TODO: We could emit code to handle the initialization somewhere. if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) { B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(), *GV)); MI.eraseFromParent(); return true; } const Function &Fn = MF.getFunction(); DiagnosticInfoUnsupported BadInit( Fn, "unsupported initializer for address space", MI.getDebugLoc()); Fn.getContext().diagnose(BadInit); return true; } const SITargetLowering *TLI = ST.getTargetLowering(); if (TLI->shouldEmitFixup(GV)) { buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0); MI.eraseFromParent(); return true; } if (TLI->shouldEmitPCReloc(GV)) { buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32); MI.eraseFromParent(); return true; } LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy); MachineMemOperand *GOTMMO = MF.getMachineMemOperand( MachinePointerInfo::getGOT(MF), MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant, 8 /*Size*/, 8 /*Align*/); buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32); if (Ty.getSizeInBits() == 32) { // Truncate if this is a 32-bit constant adrdess. auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO); B.buildExtract(DstReg, Load, 0); } else B.buildLoad(DstReg, GOTAddr, *GOTMMO); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeLoad( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, GISelChangeObserver &Observer) const { B.setInstr(MI); LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); auto Cast = B.buildAddrSpaceCast(ConstPtr, MI.getOperand(1).getReg()); Observer.changingInstr(MI); MI.getOperand(1).setReg(Cast.getReg(0)); Observer.changedInstr(MI); return true; } bool AMDGPULegalizerInfo::legalizeFMad( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { LLT Ty = MRI.getType(MI.getOperand(0).getReg()); assert(Ty.isScalar()); MachineFunction &MF = B.getMF(); const SIMachineFunctionInfo *MFI = MF.getInfo(); // TODO: Always legal with future ftz flag. if (Ty == LLT::scalar(32) && !MFI->getMode().FP32Denormals) return true; if (Ty == LLT::scalar(16) && !MFI->getMode().FP64FP16Denormals) return true; MachineIRBuilder HelperBuilder(MI); GISelObserverWrapper DummyObserver; LegalizerHelper Helper(MF, DummyObserver, HelperBuilder); HelperBuilder.setMBB(*MI.getParent()); return Helper.lowerFMad(MI) == LegalizerHelper::Legalized; } bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { Register DstReg = MI.getOperand(0).getReg(); Register PtrReg = MI.getOperand(1).getReg(); Register CmpVal = MI.getOperand(2).getReg(); Register NewVal = MI.getOperand(3).getReg(); assert(SITargetLowering::isFlatGlobalAddrSpace( MRI.getType(PtrReg).getAddressSpace()) && "this should not have been custom lowered"); LLT ValTy = MRI.getType(CmpVal); LLT VecTy = LLT::vector(2, ValTy); B.setInstr(MI); Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0); B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG) .addDef(DstReg) .addUse(PtrReg) .addUse(PackedVal) .setMemRefs(MI.memoperands()); MI.eraseFromParent(); return true; } // Return the use branch instruction, otherwise null if the usage is invalid. static MachineInstr *verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br) { Register CondDef = MI.getOperand(0).getReg(); if (!MRI.hasOneNonDBGUse(CondDef)) return nullptr; MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef); if (UseMI.getParent() != MI.getParent() || UseMI.getOpcode() != AMDGPU::G_BRCOND) return nullptr; // Make sure the cond br is followed by a G_BR MachineBasicBlock::iterator Next = std::next(UseMI.getIterator()); if (Next != MI.getParent()->end()) { if (Next->getOpcode() != AMDGPU::G_BR) return nullptr; Br = &*Next; } return &UseMI; } Register AMDGPULegalizerInfo::getLiveInRegister(MachineRegisterInfo &MRI, Register Reg, LLT Ty) const { Register LiveIn = MRI.getLiveInVirtReg(Reg); if (LiveIn) return LiveIn; Register NewReg = MRI.createGenericVirtualRegister(Ty); MRI.addLiveIn(Reg, NewReg); return NewReg; } bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B, const ArgDescriptor *Arg) const { if (!Arg->isRegister() || !Arg->getRegister().isValid()) return false; // TODO: Handle these assert(Arg->getRegister().isPhysical()); MachineRegisterInfo &MRI = *B.getMRI(); LLT Ty = MRI.getType(DstReg); Register LiveIn = getLiveInRegister(MRI, Arg->getRegister(), Ty); if (Arg->isMasked()) { // TODO: Should we try to emit this once in the entry block? const LLT S32 = LLT::scalar(32); const unsigned Mask = Arg->getMask(); const unsigned Shift = countTrailingZeros(Mask); Register AndMaskSrc = LiveIn; if (Shift != 0) { auto ShiftAmt = B.buildConstant(S32, Shift); AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0); } B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift)); } else B.buildCopy(DstReg, LiveIn); // Insert the argument copy if it doens't already exist. // FIXME: It seems EmitLiveInCopies isn't called anywhere? if (!MRI.getVRegDef(LiveIn)) { // FIXME: Should have scoped insert pt MachineBasicBlock &OrigInsBB = B.getMBB(); auto OrigInsPt = B.getInsertPt(); MachineBasicBlock &EntryMBB = B.getMF().front(); EntryMBB.addLiveIn(Arg->getRegister()); B.setInsertPt(EntryMBB, EntryMBB.begin()); B.buildCopy(LiveIn, Arg->getRegister()); B.setInsertPt(OrigInsBB, OrigInsPt); } return true; } bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin( MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, AMDGPUFunctionArgInfo::PreloadedValue ArgType) const { B.setInstr(MI); const SIMachineFunctionInfo *MFI = B.getMF().getInfo(); const ArgDescriptor *Arg; const TargetRegisterClass *RC; std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType); if (!Arg) { LLVM_DEBUG(dbgs() << "Required arg register missing\n"); return false; } if (loadInputValue(MI.getOperand(0).getReg(), B, Arg)) { MI.eraseFromParent(); return true; } return false; } bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register Dst = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(Dst); LLT S16 = LLT::scalar(16); LLT S32 = LLT::scalar(32); LLT S64 = LLT::scalar(64); if (legalizeFastUnsafeFDIV(MI, MRI, B)) return true; if (DstTy == S16) return legalizeFDIV16(MI, MRI, B); if (DstTy == S32) return legalizeFDIV32(MI, MRI, B); if (DstTy == S64) return legalizeFDIV64(MI, MRI, B); return false; } bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); uint16_t Flags = MI.getFlags(); LLT ResTy = MRI.getType(Res); LLT S32 = LLT::scalar(32); LLT S64 = LLT::scalar(64); const MachineFunction &MF = B.getMF(); bool Unsafe = MF.getTarget().Options.UnsafeFPMath || MI.getFlag(MachineInstr::FmArcp); if (!MF.getTarget().Options.UnsafeFPMath && ResTy == S64) return false; if (!Unsafe && ResTy == S32 && MF.getInfo()->getMode().FP32Denormals) return false; if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) { // 1 / x -> RCP(x) if (CLHS->isExactlyValue(1.0)) { B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) .addUse(RHS) .setMIFlags(Flags); MI.eraseFromParent(); return true; } // -1 / x -> RCP( FNEG(x) ) if (CLHS->isExactlyValue(-1.0)) { auto FNeg = B.buildFNeg(ResTy, RHS, Flags); B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false) .addUse(FNeg.getReg(0)) .setMIFlags(Flags); MI.eraseFromParent(); return true; } } // x / y -> x * (1.0 / y) if (Unsafe) { auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false) .addUse(RHS) .setMIFlags(Flags); B.buildFMul(Res, LHS, RCP, Flags); MI.eraseFromParent(); return true; } return false; } bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); uint16_t Flags = MI.getFlags(); LLT S16 = LLT::scalar(16); LLT S32 = LLT::scalar(32); auto LHSExt = B.buildFPExt(S32, LHS, Flags); auto RHSExt = B.buildFPExt(S32, RHS, Flags); auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) .addUse(RHSExt.getReg(0)) .setMIFlags(Flags); auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags); auto RDst = B.buildFPTrunc(S16, QUOT, Flags); B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) .addUse(RDst.getReg(0)) .addUse(RHS) .addUse(LHS) .setMIFlags(Flags); MI.eraseFromParent(); return true; } // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions // to enable denorm mode. When 'Enable' is false, disable denorm mode. static void toggleSPDenormMode(bool Enable, MachineIRBuilder &B, const GCNSubtarget &ST, AMDGPU::SIModeRegisterDefaults Mode) { // Set SP denorm mode to this value. unsigned SPDenormMode = Enable ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; if (ST.hasDenormModeInst()) { // Preserve default FP64FP16 denorm mode while updating FP32 mode. unsigned DPDenormModeDefault = Mode.FP64FP16Denormals ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT; unsigned NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2); B.buildInstr(AMDGPU::S_DENORM_MODE) .addImm(NewDenormModeValue); } else { // Select FP32 bit field in mode register. unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE | (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) | (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_); B.buildInstr(AMDGPU::S_SETREG_IMM32_B32) .addImm(SPDenormMode) .addImm(SPDenormModeBitField); } } bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); const SIMachineFunctionInfo *MFI = B.getMF().getInfo(); AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode(); uint16_t Flags = MI.getFlags(); LLT S32 = LLT::scalar(32); LLT S1 = LLT::scalar(1); auto One = B.buildFConstant(S32, 1.0f); auto DenominatorScaled = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) .addUse(RHS) .addUse(LHS) .addImm(1) .setMIFlags(Flags); auto NumeratorScaled = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false) .addUse(LHS) .addUse(RHS) .addImm(0) .setMIFlags(Flags); auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) .addUse(DenominatorScaled.getReg(0)) .setMIFlags(Flags); auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags); // FIXME: Doesn't correctly model the FP mode switch, and the FP operations // aren't modeled as reading it. if (!Mode.FP32Denormals) toggleSPDenormMode(true, B, ST, Mode); auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags); auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags); auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags); auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags); auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags); auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags); if (!Mode.FP32Denormals) toggleSPDenormMode(false, B, ST, Mode); auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false) .addUse(Fma4.getReg(0)) .addUse(Fma1.getReg(0)) .addUse(Fma3.getReg(0)) .addUse(NumeratorScaled.getReg(1)) .setMIFlags(Flags); B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false) .addUse(Fmas.getReg(0)) .addUse(RHS) .addUse(LHS) .setMIFlags(Flags); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(1).getReg(); Register RHS = MI.getOperand(2).getReg(); uint16_t Flags = MI.getFlags(); LLT S64 = LLT::scalar(64); LLT S1 = LLT::scalar(1); auto One = B.buildFConstant(S64, 1.0); auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) .addUse(LHS) .addUse(RHS) .addImm(1) .setMIFlags(Flags); auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags); auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false) .addUse(DivScale0.getReg(0)) .setMIFlags(Flags); auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags); auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags); auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags); auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false) .addUse(LHS) .addUse(RHS) .addImm(0) .setMIFlags(Flags); auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags); auto Mul = B.buildMul(S64, DivScale1.getReg(0), Fma3, Flags); auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags); Register Scale; if (!ST.hasUsableDivScaleConditionOutput()) { // Workaround a hardware bug on SI where the condition output from div_scale // is not usable. Scale = MRI.createGenericVirtualRegister(S1); LLT S32 = LLT::scalar(32); auto NumUnmerge = B.buildUnmerge(S32, LHS); auto DenUnmerge = B.buildUnmerge(S32, RHS); auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0); auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1); auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1), Scale1Unmerge.getReg(1)); auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1), Scale0Unmerge.getReg(1)); B.buildXor(Scale, CmpNum, CmpDen); } else { Scale = DivScale1.getReg(1); } auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false) .addUse(Fma4.getReg(0)) .addUse(Fma3.getReg(0)) .addUse(Mul.getReg(0)) .addUse(Scale) .setMIFlags(Flags); B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false) .addUse(Fmas.getReg(0)) .addUse(RHS) .addUse(LHS) .setMIFlags(Flags); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { B.setInstr(MI); Register Res = MI.getOperand(0).getReg(); Register LHS = MI.getOperand(2).getReg(); Register RHS = MI.getOperand(3).getReg(); uint16_t Flags = MI.getFlags(); LLT S32 = LLT::scalar(32); LLT S1 = LLT::scalar(1); auto Abs = B.buildFAbs(S32, RHS, Flags); const APFloat C0Val(1.0f); auto C0 = B.buildConstant(S32, 0x6f800000); auto C1 = B.buildConstant(S32, 0x2f800000); auto C2 = B.buildConstant(S32, FloatToBits(1.0f)); auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags); auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags); auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags); auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false) .addUse(Mul0.getReg(0)) .setMIFlags(Flags); auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags); B.buildFMul(Res, Sel, Mul1, Flags); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { const SIMachineFunctionInfo *MFI = B.getMF().getInfo(); if (!MFI->isEntryFunction()) { return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR); } B.setInstr(MI); uint64_t Offset = ST.getTargetLowering()->getImplicitParameterOffset( B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); LLT IdxTy = LLT::scalar(DstTy.getSizeInBits()); const ArgDescriptor *Arg; const TargetRegisterClass *RC; std::tie(Arg, RC) = MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); if (!Arg) return false; Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy); if (!loadInputValue(KernargPtrReg, B, Arg)) return false; B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0)); MI.eraseFromParent(); return true; } bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, unsigned AddrSpace) const { B.setInstr(MI); Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B); auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32); B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg); MI.eraseFromParent(); return true; } /// Handle register layout difference for f16 images for some subtargets. Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B, MachineRegisterInfo &MRI, Register Reg) const { if (!ST.hasUnpackedD16VMem()) return Reg; const LLT S16 = LLT::scalar(16); const LLT S32 = LLT::scalar(32); LLT StoreVT = MRI.getType(Reg); assert(StoreVT.isVector() && StoreVT.getElementType() == S16); auto Unmerge = B.buildUnmerge(S16, Reg); SmallVector WideRegs; for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0)); int NumElts = StoreVT.getNumElements(); return B.buildBuildVector(LLT::vector(NumElts, S32), WideRegs).getReg(0); } bool AMDGPULegalizerInfo::legalizeRawBufferStore(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B, bool IsFormat) const { // TODO: Reject f16 format on targets where unsupported. Register VData = MI.getOperand(1).getReg(); LLT Ty = MRI.getType(VData); B.setInstr(MI); const LLT S32 = LLT::scalar(32); const LLT S16 = LLT::scalar(16); // Fixup illegal register types for i8 stores. if (Ty == LLT::scalar(8) || Ty == S16) { Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0); MI.getOperand(1).setReg(AnyExt); return true; } if (Ty.isVector()) { if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) { if (IsFormat) MI.getOperand(1).setReg(handleD16VData(B, MRI, VData)); return true; } return Ty.getElementType() == S32 && Ty.getNumElements() <= 4; } return Ty == S32; } bool AMDGPULegalizerInfo::legalizeIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const { // Replace the use G_BRCOND with the exec manipulate and branch pseudos. auto IntrID = MI.getIntrinsicID(); switch (IntrID) { case Intrinsic::amdgcn_if: case Intrinsic::amdgcn_else: { MachineInstr *Br = nullptr; if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br)) { const SIRegisterInfo *TRI = static_cast(MRI.getTargetRegisterInfo()); B.setInstr(*BrCond); Register Def = MI.getOperand(1).getReg(); Register Use = MI.getOperand(3).getReg(); MachineBasicBlock *BrTarget = BrCond->getOperand(1).getMBB(); if (Br) BrTarget = Br->getOperand(0).getMBB(); if (IntrID == Intrinsic::amdgcn_if) { B.buildInstr(AMDGPU::SI_IF) .addDef(Def) .addUse(Use) .addMBB(BrTarget); } else { B.buildInstr(AMDGPU::SI_ELSE) .addDef(Def) .addUse(Use) .addMBB(BrTarget) .addImm(0); } if (Br) Br->getOperand(0).setMBB(BrCond->getOperand(1).getMBB()); MRI.setRegClass(Def, TRI->getWaveMaskRegClass()); MRI.setRegClass(Use, TRI->getWaveMaskRegClass()); MI.eraseFromParent(); BrCond->eraseFromParent(); return true; } return false; } case Intrinsic::amdgcn_loop: { MachineInstr *Br = nullptr; if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI, Br)) { const SIRegisterInfo *TRI = static_cast(MRI.getTargetRegisterInfo()); B.setInstr(*BrCond); // FIXME: Need to adjust branch targets based on unconditional branch. Register Reg = MI.getOperand(2).getReg(); B.buildInstr(AMDGPU::SI_LOOP) .addUse(Reg) .addMBB(BrCond->getOperand(1).getMBB()); MI.eraseFromParent(); BrCond->eraseFromParent(); MRI.setRegClass(Reg, TRI->getWaveMaskRegClass()); return true; } return false; } case Intrinsic::amdgcn_kernarg_segment_ptr: return legalizePreloadedArgIntrin( MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); case Intrinsic::amdgcn_implicitarg_ptr: return legalizeImplicitArgPtr(MI, MRI, B); case Intrinsic::amdgcn_workitem_id_x: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKITEM_ID_X); case Intrinsic::amdgcn_workitem_id_y: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKITEM_ID_Y); case Intrinsic::amdgcn_workitem_id_z: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKITEM_ID_Z); case Intrinsic::amdgcn_workgroup_id_x: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKGROUP_ID_X); case Intrinsic::amdgcn_workgroup_id_y: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKGROUP_ID_Y); case Intrinsic::amdgcn_workgroup_id_z: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::WORKGROUP_ID_Z); case Intrinsic::amdgcn_dispatch_ptr: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::DISPATCH_PTR); case Intrinsic::amdgcn_queue_ptr: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::QUEUE_PTR); case Intrinsic::amdgcn_implicit_buffer_ptr: return legalizePreloadedArgIntrin( MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR); case Intrinsic::amdgcn_dispatch_id: return legalizePreloadedArgIntrin(MI, MRI, B, AMDGPUFunctionArgInfo::DISPATCH_ID); case Intrinsic::amdgcn_fdiv_fast: return legalizeFDIVFastIntrin(MI, MRI, B); case Intrinsic::amdgcn_is_shared: return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS); case Intrinsic::amdgcn_is_private: return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS); case Intrinsic::amdgcn_wavefrontsize: { B.setInstr(MI); B.buildConstant(MI.getOperand(0), ST.getWavefrontSize()); MI.eraseFromParent(); return true; } case Intrinsic::amdgcn_raw_buffer_store: return legalizeRawBufferStore(MI, MRI, B, false); case Intrinsic::amdgcn_raw_buffer_store_format: return legalizeRawBufferStore(MI, MRI, B, true); default: return true; } return true; }